
Performance Analysis and 
Compiler Optimizations

Kevin London london@cs.utk.edu

Philip Mucci mucci@cs.utk.edu
http://www.cs.utk.edu/~mucci/MPPopt.html



Credits

• http://techpubs.sgi.com

• http://www.sun.com/hpc

• http://www.mhpcc.edu 

• http://www.psc.edu

• John Levesque (IBM)

• Ramesh Menon (SGI)

• Lots of other people. Thanks!



Overview

• Compiler Flags

• Performance Tools 

• Features of Fortran 90

• OpenMP optimization

• MPI tools and tricks



  Not Getting the Performance 
You Want

• Ever feel like beating your computer?

• Hopefully the compiler will relieve some of 
that stress



   Using the Compiler to 
Optimize Code

• Extra performance in very little time

• Start with a conservative set of flags and 
gradually add more

• Compiler should do all the optimization but 
it usually doesn’t so keep good code 
practices in mind

• Always link in optimized libraries



Compiler Specific Flags

• Understanding the flags that are available 
and when to use them

• Knowing about optimized libraries that are 
available and using them

• These are the keys to success



SP2 Flags and Libraries

-O,-O2 - Optimize

-O3 - Maximum optimization, may alter semantics.

-qarch=pwr2, -qtune=pwr2 - Tune for Power2.

-qcache=size=128k,line=256 - Tune Cache for Power2SC.

-qstrict - Turn off semantic altering optimizations.

-qhot - Turn on addition loop and memory optimization, Fortran only.

-Pv,-Pv! - Invoke the VAST preprocessor before compiling. (C)

-Pk,-Pk! - Invoke the KAP preprocessor before compiling. (C)

-qhsflt - Don’t round floating floating point numbers and don’t range check 
floating point to integer conversions.

-inline=<func1>,<func2> - Inline all calls to func1 and func2.

-qalign=4k - Align large arrays and structures to a 4k boundary.

-lesslp2 - Link in the Engineering and Scientific Subroutine Library. 



        Recommended flags for 
IBM SP

-O3 -qarch=pwr2 -qarch=pwr2 -qhsflt -qipa

• Use at link and compile time

• Turn on the highest level of Optimization 
for the IBM SP

• Favor speed over precise numerical 
rounding



Accuracy Considerations

• Try moving forward
-O2 -qipa

-qhot -qarch=pwr2 -qtune=pwr2 

-qcache=size=128k, line=256 

-qfloat=hsflt

-Pv -Wp,-ew9

• Try backing off
-O3 -qarch=pwr2 -qtune=pwr2 

-qstrict

-qfloat=hssngl



Numerical Libraries

• Link in the Engineering and Scientific Subroutine Library

– Link with -lesslp2

• Link in the Basic Linear Algebra Routines

• Link in the Mathematical Acceleration subsystems (MASS) 
Libraries

– Can be obtained at 
http://www.austin.ibm.com/tech/MASS



O2K Flags and Libraries

-O,-O2 - Optimize

-O3 - Maximal generic optimization, may alter semantics.

-Ofast=ip27 - SGI compiler group’s best set of flags.

-IPA=on - Enable interprocedural analysis.

-n32 - 32-bit object, best performer.

-copt - Enable the C source-to-source optimizer.

-INLINE:<func1>,<func2> - Inline all calls to func1 and func2.

-LNO - Enable the loop nest optimizer.

-cord - Enable reordering of instructions based on feedback information.

-feedback - Record information about the programs execution behavior to be 
used by IPA, LNO and -cord.

-lcomplib.sgimath -lfastm - Include BLAS, FFTs, Convolutions, 
EISPACK, LINPACK, LAPACK, Sparse Solvers and the fast math library.



  Recommended Flags for Origin 
2000

-n32 -mips4 -Ofast=ip27 -LNO:cache_size2=4096 

-OPT:IEEE_arithmetic=3

• Use at link and compile time

• We don’t need more than 2GB of data

• Turn on the highest level of optimization 
for the Origin

• Tell compiler we have 4MB of L2 cache

• Favor speed over precise numerical 
rounding



Accuracy Considerations

• Try moving forward
-O2 -IPA -SWP:=ON 

-LNO -TENV:X=0-5

• Try backing off
-Ofast=ip27

-OPT:roundoff=0-3

-OPT:IEEE_arithmetic=1-3



Exception profiling

• If there are few exceptions, enable a faster 
level of exception handling at compile time 
with -TENV:X=0-5

• Defaults are 1 at -O0 through -O2, 2 at    
-O3 and higher

• Else if there are exceptions, link with 

-lfpe 

setenv TRAP_FPE “UNDERFL=ZERO”



Interprocedural Analysis

• When analysis is confined to a single 
procedure, the optimizer is forced to make 
worst case assumptions about the possible 
effects of subroutines.

• IPA analyzes the entire program at once and 
feeds that information into the other phases.



Inlining

• Replaces a subroutine call with the function 
itself.

• Useful in loops that have a large iteration 
count and functions that don’t do a lot of 
work.

• Allows other optimizations.

• Most compilers will do inlining but the 
decision process is conservative.



Manual Inlining

-INLINE:file=<filename>

-INLINE:must=<name>[,name2,name3..]

-INLINE:all

• Exposes internals of the call to the 
optimizer

• Eliminates overhead of the call

• Expands code



Loop Nest Optimizer

• Optimizes the use of the memory heirarchy

• Works on relatively small sections of code

• Enabled with -LNO

• Visualize the transformations with 
-FLIST:=on

-CLIST:=on



Optimized Arithmetic Libraries

• Advantages:
– Subroutines are quick to code and understand.

– Routines provide portability.

– Routines perform well.

– Comprehensive set of routines.

• Disadvantages
– Can lead to vertical code structure

– May mask memory performance problems



Numerical Libraries

• libfastm 
– Link with -r10000 and -lfastm

– Link before -lm

• CHALLENGEcomplib and SCSL
– Sequential and parallel versions

– FFTs, convolutions, BLAS, LINPACK, 
EISPACK, LAPACK and sparse solvers



CHALLENGEcomplib and 
SCSL

• Serial
-lcomplib.sgimath or

-lscs

• Parallel
-mp -lcomplib.sgimath_mp or

-lscs_mp



T3E Flags and Libraries

-O,-O2 - Optimize

-O3 - Maximum optimization, may alter semantics.

-apad - Pad arrays to avoid cache line conflicts

-unroll - Apply aggressive unrolling

-pipeline - Software pipelining

-split - Apply loop splitting.

-aggress - Apply aggressive code motion

-Wl”-Dallocate(alignsz)=64b” Align common blocks on cache line 
boundary

-lmfastv - Fastest vectorized intrinsic library

-lsci - Include library with BLAS, LAPACK and ESSL routines

-inlinefrom=<> - Specifies source file or directory of functions to inline

-inline2 - Aggressively inline function calls.



Sun Enterprise Flags and 
Libraries

-fast A macro that expands into many options that strike a balance between 
speed, portability, and safety.

-native, -xtarget, -xarch, -xchip tell the compiler about certain 

characteristics of the machine on which you will be running.

If -native is used with -xarch and -xchip it makes the code faster

but it can only run on those chips.

-xO4 tell the compiler to use optimization level 4

-dalign tells to align values of type DOUBLE PRECISION on 8-byte 
bounderies

-xlibmil    Tell the compiler to inline certain mathematical operations

-xlibmopt  Use the optimized math library

-fsimple   Use a simplified floating point model.  May not be bitwise the same.

-xprefetch  Allows compiler to use PREFETCH instruction

-lmvec directs the linker to link with the vector math library



   Recommended flags for the 
Sun Enterprise

-fast -native -xlibmil -fsimple -xlibmopt

• Favor speed over rounding precision

• When compiling, compile all your source 
files on one line



Accuracy Considerations

• Try moving forward
-xO3 -xlibmil -xlibmopt -native

-fast

-dalign -fsimple=2

-xprefetch

• Try moving backward
-fast -xlibmil -xlibmopt -native -fsimple=2 -dalign

-fast -xlibmil -xlibmopt -native -fsimple=1

-xO3 -xlibmil -xlibmopt -native -fsimple=1



Performance Tools



O2K Performance Tools

• Hardware Counters

• Profilers
– perfex

– SpeedShop

– prof

– dprof

– cvd



Some Hardware Counter Events

• Cycles, Instructions

• Loads, Stores, Misses

• Exceptions, Mispredictions

• Coherency

• Issued/Graduated

• Conditionals



   Hardware Performance Counter 
Access

• At the application level with perfex

• At the function level with SpeedShop and 
prof.

• List all the events with perfex -h



Speedshop 

• Find out exactly where program is spending 
it’s time
– procedures

– lines

• Uses 3 methods
– Sampling

– Counting

– Tracing



Speedshop Components

• 4 parts
– ssrun performs experiments and collects data

– ssusage reports machine resources

– prof processes the data and prepares reports

– SpeedShop allows caliper points

• See man pages



Speedshop Usage

ssrun [options] <exe>

• output is placed in ./
command.experiment.pid

• Viewed with
prof [options] <command.experiment.pid>



SpeedShop Sampling

• All procedures called by the code, many 
will be foreign to the programmer.

• Statistics are created by sampling and then 
looking up the PC and correlating it with 
the address and symbol table information.

• Phase problems may cause erroneous 
results and reporting.



Speedshop Counting

• Based upon basic block profiling

• Basic block is a section of code with one 
entry and one exit

• Executable is instrumented with pixie

• pixie adds a counter to every basic block



Ideal Experiment

• ssrun -ideal

• Calculates ideal time
– no cache/TLB misses

– minimum latencies for all operations

• Exact operation count with -op
– floating point operations (MADD is 2)

– integer operations



ideal Experiment Example

 Prof run at: Fri Jan 30 01:59:32 1998
 Command line: prof nn0.ideal.21088
 --------------------------------------------------------
 3954782081: Total number of cycles
  20.28093s: Total execution time
 2730104514: Total number of instructions executed
      1.449: Ratio of cycles / instruction
              195: Clock rate in MHz

    R10000: Target processor modeled
---------------------------------------------------------
.
.
.
---------------------------------------------------------
        cycles(%)  cum %     secs    instrns calls procedure(dso:file)
3951360680(99.91)  99.91    20.26 2726084981     1 main(nn0.pixie:nn0.c)
1617034( 0.04)     99.95     0.01    1850963  5001 doprnt



pcsamp Experiment Example
------------------------------------------------------------------
Profile listing generated Fri Jan 30 02:06:07 1998
    with:       prof nn0.pcsamp.21081
------------------------------------------------------------------
samples   time    CPU    FPU   Clock   N-cpu  S-interval Countsize
   1270    13s R10000 R10010 195.0MHz   1     10.0ms     2(bytes)
Each sample covers 4 bytes for every 10.0ms ( 0.08% of 12.7000s)
------------------------------------------------------------------
samples   time(%)      cum time(%)      procedure (dso:file)
   1268    13s( 99.8)   13s( 99.8)           main (nn0:nn0.c)
      1  0.01s(  0.1)   13s( 99.9)        _doprnt 



usertime Experiment Example
----------------------------------------------------------------
Profile listing generated Fri Jan 30 02:11:45 1998
    with:       prof nn0.usertime.21077
----------------------------------------------------------------
        Total Time (secs)     : 3.81
        Total Samples         : 127
        Stack backtrace failed: 0
        Sample interval (ms)  : 30
        CPU                   : R10000
        FPU                   : R10010
        Clock                 : 195.0MHz
        Number of CPUs        : 1
----------------------------------------------------------------
index  %Samples  self    descendents  total        name
(1)    100.0%    3.78        0.03     127          main
(2)      0.8%    0.00        0.03       1          _gettimeofday

(3 )      0.8%    0.03        0.00       1          _BSD_getime 



Gprof information

• In addition to the information from prof
– Contributions from descendants

– Distribution relative to callers

• To get gprof like information use
prof -gprof <output file>



Exception Profiling

• By default the R10000 causes hardware 
traps on floating point exceptions and then 
ignores them in software

• This can result in lots of overhead.

• Use ssrun -fpe <exe> to generate a 
trace of locations generating exceptions.



Address Space Profiling

• Used primarily for checking shared memory 
programs for memory contention.

• Generates a trace of most frequently 
referenced pages

• Samples operand address instead of PC
dprof -hwpc <exe>



Parallel Profiling

• After tuning for a single CPU, tune for 
parallel.

• Use full path of tool
• ssrun/perfex used directly with mpirun

• mpirun <opts> /bin/perfex -mp <opts> <exe> 
<args> |& cat > output

• mpirun <opts> /bin/ssrun <opts> <exe> <args>



Parallel Profiling

• perfex outputs all tasks followed by all 
tasks summed

• In shared memory executables, watch 
– load imbalance (cntr 21, flinstr)

– excessive synchronization (4, store cond)

– false sharing (31, shared cache block)



CASEVision Debugger

• cvd

• GUI interface to SpeedShop PC sampling 
and ideal experiments

• Interface to viewing automatic 
parallelization options

• Poor documentation

• Debugging support

• This tool is complex...



    Performance Tools for the 
IBM SP2

• Profilers
– tprof

– xprofile



tprof for the SP2

• Reports CPU usage for programs and 
system. i.e.
– All other processes while your program was 

executing

– Each subroutine of the program

– Kernel and Idle time

– Each line of the program

• We are interested in source statement 
profiling.



xprofile for the SP2

• A graphical version of gprof

• Shows call-tree and time associated with it



          Performance Tools for 
Cray T3E

• Profilers
– Pat

– Apprentice



PAT for the T3E

• Uses the UNICOS/mk profil() system 
call to gather information by periodically 
sampling and examining the program 
counter.

• Works on C, C++ and Fortran executables

• No recompiling necessary

• Just link with -lpat



Apprentice for the T3E

• Graphical interface for identifying 
bottlenecks.

% f90 -eA <file>.f -lapp

% cc -happrentice <file>.c 
-lapp

% a.out

% apprentice app.rif



      Performance Tools for the 
Sun Enterprise

• Profilers
– prof

– gprof

– looptool

– tconv

– prism



looptool for SUN

• To use looptool compile the most time-
consuming loops with -Zlp and run the code

• Then use loopreport to produce a list of the 
loops and how much time they took



looptool output

Legend for compiler hints

0  No hint available
1  Loop contains procedure
2 Compiler generated two versions of this loop
3 The variable(s) “%s” cause a data dependency in this loop
4  Loop was significantly transformed during optimization
5  Loop may not hold enough work to be profitably parallelized
6  Loop was marked by user-inserted pragma,  DOALL
8  Loop contains I/O, or other function calls, that are not MT safe
-------------------------------------------------------------------------------------------------
Source File:   /export/home/langenba/gasp/src/gasp/front.F

Loop  ID      Line #         Par?       Hints      Entries    Nest     Wallclock       %
        12            256          No         8             3              2          3498.92       96.27
        13            277          No         8             3              3          3498.93       96.27
        14            282          No         1             3              4          3498.93       96.27
        15            371          No         8             0              5                0.00       96.27



tcov for Sun

• To get a line-by-line description of where 
the code was executing

• Compile with -xprofile=tcov:

• Running will create a directory, to read the 
report use tcov

• tcov -x <executable.profile> source.f



Sample tcov report

   2  --> Do 90, J = 1, N

600   ->    IF ( BETA .EQ. ZERO) THEN

#### ->        DO 50,  I  = 1, M

#### -> C(I, J) = ZERO

    50         CONTINUE

   ELSE IF ( BETA .NE. ONE) THEN

 100  -> DO 60, I = 1, M

5100 ->    C(I,J) = BETA * C(I, J)

ETC…….



Fortran 90 Issues

• Object-Oriented Features

• Operator Overloading

• Dynamic Memory Allocation

• Array Syntax

• WHERE

• CSHIFT/EOSHIFT

• MATMUL/SUM/MAXVAL...



Fortran 90 and OO programming

• Object Oriented programming is a mixed 
blessing for HPC.
– Featuritis: n. The overwhelming urge to use 

every feature of a programming language.

– You think tuning/parallelizing legacy F77 is 
tough?

– When using OO features, use only what you 
need, not what’s in fashion. 

– Example: Telluride, < 2% time in > 50 
functions.



Operator Overloading

• Hard to read

• May result in function calls which...

• Prohibits some compiler optimizations



Dynamic Memory Allocation

• This is good right?
– Yes. BUT, now we must worry about the 

mapping of allocated arrays to cache

– Most F77 compilers perform internal and 
external padding of array’s in COMMON

– This is no longer possible because this may 
violate correctness



Array Syntax

• Looks nice, but requires a lot of work by the 
compiler.
– Temporary arrays, extent fetching

– Loop fusion, blocking

– Dependency analysis

• Diagnosis? Larger number of loads Vs. 
floating point instructions than expected.

• Advice? Group operations with the same 
extents as close as possible.



Fortran 90 WHERE

• Arguably the most evil primitive in F90
– But gosh it’s useful!

• Results in a conditional in the innermost 
loop. What use is your pipeline?

• 2 options
– Instead of a boolean mask, multiply by a floating 

point array of 1.0 or 0.0. No branches!

– Code the loop by hand and unroll. Separate 
loads of the mask value and conditionals. 



CSHIFT and F90 intrinsics

• CSHIFT is just as bad as WHERE.
– Why? Because of a branch inside a loop.

• However, some intrinsics, especially those 
that perform reductions are usually much 
faster than those coded by hand.



F90 Derived Types

• An excellent feature not widely used, 
mostly because types are a new concept. 
But they can alleviate a lot of performance 
problems and greatly increase readability.
– Improve spatial locality

– Reduce run-time address computations

– Facilitate padding for cache lines



MPI Optimizations

• The MPI protocol

• Collective operations

• Portable MPI tips

• Vendor MPI tips



The MPI Protocol
Short messages

• MPI processes have a finite number of small 
preallocated buffers for short messages.

• Messages that are less than this threshold are sent 
without any handshake.

• If the receive is posted, the data is received in 
place. Otherwise, the message is copied into an 
available buffer. If no buffers are available, the 
send may block or signal an error.



The MPI Protocol
Long messages

• Long messages
– MPI sends a request to the remote process to 

receive the data. If the receive is posted, a reply 
is sent to the sender containing information 
about the destination. The sender then proceeds. 
If the receive is not posted, the sender may 
block, return or signal an error depending on the 
semantics of the call.



What does all this mean?

• Why use MPI_ISEND on short messages? 
MPI_Ixxxx primitives must allocate a 
request handle for you, which is not free.

• If you can guarantee the receive is posted, 
use MPI_[I]RSEND. This bypasses the 
handshake.

• Most MPI’s are not threaded internally so 
MPI_ISEND just defers the transfer to 
MPI_WAIT



Portable MPI tips

• Use contiguous datatypes or 
MPI_TYPE_STRUCT. Never use 
MPI_Pack or MPI_Unpack

• Post receives before sends

• Send BIG messages

• Avoid persistent requests

• Avoid MPI_Probe, MPI_Barrier



Vendor MPI tricks

• Tune short message length to avoid 
handshake at reasonable message lengths.
– IBM SP setenv MP_EAGERLIMIT 16384

– SGI O2K dplace -data_pagesize 64k

– SUN E10000 setenv MPI_SHORTMSGSIZE 16384

– Similar options on MPICH and LAM

• SGI O2K setenv MPI_NAP 1



MPI Tools

• Nupshot/Jumpshot

• Vampir

• Pablo

• Paradyn



MPE Logging/nupshot

URL http://www.mcs.anl.gov/mpi/mpich/

Version 1.1, April 1997

Languages Language-independent

Tested platforms SGI PCA and Origin 2000
IBM SP
Sun Solaris



MPE Logging/nupshot

• Included with MPICH 1.1 distribution

• Distributed separately from rest of MPICH from 
PTLIB

• MPE logging library produces trace files in ALOG 
format

• nupshot display trace files in ALOG or PICL 
format

• Minimal documentation in MPICH User’s Guide 
and man pages



MPE Logging Library

• MPI profiling library

• Additional routines for user-defined events 
and states
– MPE_Log_get_event_number

– MPE_Describe_event

– MPE_Describe_state

– MPE_Log_event



MPE Logging Library (cont.)

• MPI application linked with liblmpi.a 
produces trace file in ALOG format
– Calls to MPE_Log_event store event records in 

per-process memory buffer

– Memory buffers are collected and merged 
during MPI_Finalize

• MPI_Pcontrol can be used to suspend and 
restart logging



nupshot

• Current version requires Tcl 7.3 and Tk 3.6

• Must be built with -32 on SGI IRIX

• Visualization displays
– Timeline

– Mountain Ranges

– State duration histograms

• Zooming and scrolling capabilities



Timelines Display

• Initially present by default

• Each bar represents states of a process over time 
with colors specified in log file.

• Clicking on bar with left mouse button brings up 
info box containing state name and duration.

• Messages between processes are represented by 
arrows.



Other Displays

• Mountain Ranges
– Use Display menu to bring up this view

– Color-coded histogram of states present over 
time of execution

• State duration histograms
– Accessed by menu buttons that pop up according 

to which states were found in log file



nupshot



Vampir and Vampirtrace

URL http://www.pallas.de/pages/vampir.htm

Version Vampir 2.0
Vampirtrace 1.5

Languages/
libraries
supported

Fortran 77/90, C, C++, HPF, MPI

Platforms Most all HPC and workstation
platforms



Vampir Features

• Tool for converting tracefile data for MPI 
programs into a variety of graphical views

• Highly configurable

• Timeline display with zooming and 
scrolling capabilities

• Profiling and communications statistics



Vampir GUI Features

• Four basic window styles
– List windows such as call tree views

– Graphics windows such as timeline and statistics 
views

– Source listing windows such as source code 
display (not available on all platforms)

– Configuration dialogs



Vampir GUI Features (cont.)

• All Vampir views except list windows have 
context-sensitive menus that pop up when the right 
mouse button is clicked inside the view.

• All Vampir menus can be “torn off” so that they 
remain displayed.  When tear off functionality is 
enabled, selecting the dashed line tears off the 
menu.  The menu remains displayed until the user 
presses the ESCAPE key within the window or 
selects close from the window manager menu.



Vampir GUI Features (cont.)

• Zooming is available in most Vampir graphic 
windows.  To magnify a part of the display, press 
the left mouse button at the start of the region to be 
magnified.  While holding the left button down, 
drag the mouse to the end of the desired region, 
then release the mouse button.

• Configuration setting for the various windows can 
be changed by using the Preferences menu on the 
main window. 



Global Timeline Display

• Pops up by default after a tracefile is loaded or 
pause loaded.

• Shows all analyzed state changes over the entire 
time period in one display.

• Horizontal axis is time, vertical axis is processes.

• Messages between processes shown as black lines 
which may appear as solid black in condensed 
display.



Global Timeline Display (cont.)

• Zoom to get more detailed view.

• Unzoom by using context-sensitive menu or U key.

• Use Window Options/Adapt (hotkey A) to see 
entire trace.

• Select Ruler function (hotkey R) and drag mouse 
with left button pressed to measure exact length of 
time period.



Zoomed Global Timeline Display



Global Timeline Context Menu

• Close

• Undo Zoom

• Ruler

• Identify Message

• Identify State

• Window Options menu

• Components menu

• Pointer Function menu

• Options menu

• Print



Identify Message

• Select this function from the Timeline 
context-sensitive menu and then select the 
message line.

• A message box with information about the 
selected message will appear.

• If source code information is available, two 
source code windows for the send and 
receive operations will be opened, with the 
send and receive lines highlighted.



Identify State

• Select this function from the Timeline 
context-sensitive menu and then select a 
process bar.

• A message box with information about the 
selected state will appear.

• If source code information is available, a 
source code window will be opened with 
the corresponding line of code highlighted.



Process Timeline Display

• Select desired process(es) and invoke Process 
Displays/Timeline or press CTL-T

• Window pops up with timeline display for a single 
process.

• Horizontal axis is time, vertical axis is used to 
display different states at different heights.

• Ruler function as in Global Timeline Display.



Process Timeline Display



Global Activity Chart Display

• Select Global Displays/Activity Chart or use 
hotkey ALT-A.

• Window depicting activity statistics for complete 
trace file in pie chart form pops up.

• Use Display/MPI on context-sensitive menu to 
show statistics for MPI calls only.

• Use Options/Absolute Scale to change from 
relative to absolute scale.



Global Activity Chart Display (cont.)
• Use Hiding/Hide Max to remove largest portion 

(followed by left mouse click on any process)

– Can be used repeatedly

– Reset/Hiding restores original display

– Undo Hiding goes back one step

• Mode/Hor. Histogram switches to histogram 
display.

– Options/Logarithmic toggles between linear and 
logarithmic scales.

• Mode/Table displays exact values in table format.



Global Activity Chart with Application Activity Displayed



Global Activity Chart with Timeline Portion Displayed



Process Activity Chart Display
• Select process(es) and then select Process 

Displays/Activity Chart or use hotkey CTL-A.

• A separate statistics window for each selected 
process pops up.

• Activity names are displayed directly at 
corresponding pie sectors.

• Use Options/Append Values to append exact time 
portions or values to each activity.

• Other menu items similar to Global Activity Chart 
Display.



Process Activity Chart Display



Process Activity Chart Display



Process Activity Chart Histogram Display



Process Activity Chart Table Display



Global Communication Statistics 
Display

• Displays a matrix describing messages between 
sender-receiver pairs

• Default view shows absolute numbers of bytes 
communicated between pairs of processes.

• Use Timeline Portion and Freeze options

• Filter Messages dialog

• Use Count submenu to change values displayed 
(e.g., to total number of messages)

• Length Statistics sub-display



Global Communication Statistics Display



Global Communication Statistics Display 
using Timeline Portion



Global Parallelism Display

• Shows how many processes are involved in 
which activities over time

• Zoom and Ruler features (as in Timeline 
Display)

• Use Configuration dialog to deselect and 
order activities



Global Parallelism Display



OpenMP Optimization

• Well, we’re still figuring out how to get it 
to work in general.

• It’s not the panacea we thought it would be.

• Sure it’s easier than HPF, but is it as 
expressive?

• Doesn’t matter, since nobody uses HPF.



OpenMP Optimization cont.

• Parallelization strategies

• Synchronization

• Scheduling

• Variables



Loop Level Approach

• Easy to parallelize code

• Each expense loop paralleled one at a time

• Ensure correctness

• Not easy to ensure good scalability

• Remember that non-parallel code will 
dominate. 



SPMD via OpenMP

• Useful if developing from scratch

• Implement to run on any number of threads
– Query number of threads

omp_get_num_threads()

– Find my thread number
omp_get_thread_num()

– Calculate extents

– All subdomain data is PRIVATE



OpenMP Synchronization

• Critical section - a section of code that must 
be executed completely by one thread. Non-
reentrant

• C$OMP CRITICAL 
– Implies synchronization and one thread of 

execution at a time.

• Use C$OMP ATOMIC
– Multiple threads may execute it, but it must run 

to completion.



OpenMP Barriers

• During the debugging phase, be liberal.

• During tuning barriers are not always 
necessary in every case.

• There is an implied barriers at the end of 
every PARALLEL DO construct.

• Consecutive loops may be independent.

• Use C$OMP END DO NOWAIT



Barrier Optimization

• Barriers are very expensive at high 
processor counts

• Example: Domain Decomposition
– shared array of synchronization variables for 

each domain: ready(x,y)
C$OMP FLUSH

ready(x,y)=.TRUE.

C$OMP END FLUSH



OpenMP NOWAIT clause

• Correct use of NOWAIT depends on the 
schedule however. The default schedule is 
different on different machines.
– Specify explicitly when using NOWAIT

• NOWAIT with REDUCTION or 
LASTPRIVATE
– These variables are ready only after a 

subsequent barrier



OpenMP Scheduling

C$OMP DO SCHEDULE(TYPE[,CHUNK])

• static - round robin assignment, low 
overhead

• dynamic - load balancing

• guided - chunk size is reduced 
exponentially

• runtime
– setenv OMP_SCHEDULE “dynamic,4”



Dynamic Threads

• Varies the number of threads depending on 
the load of the machine at the start of each 
parallel region.
– Only works for codes with multiple parallel 

regions.

• Optional feature in OpenMP.



Reducing Overhead

• The coarser the grain, the better. Why? Our 
architectures really trade bandwidth for 
latency.
– The compiler must aggregate data for transfer.

• Combine multiple DO directives
– More work per parallel region, reduce 

synchronization.

• Replicated execution is ok.



OpenMP Reduction

C$OMP PARALLEL DO REDUCTION (+,X)

do

x = x <op> expr

enddo

• Only scalar’s are allowed

• Sensitive to roundoff errors



OpenMP and PRIVATE’s

• SHARED - one copy, remote read/write

• PRIVATE - uninitialized copy for each 
thread

• FIRSTPRIVATE - initialized from original

• DEFAULT(CLASS) - different on each

• THREADPRIVATE - global data private to 
a thread. (COMMON, static)



Parallel I/O and OpenMP

• If your I/O is done in a C routine
– Normal file descriptor based I/O will fight for 

access to the file pointer.

– Use open() and mmap() and operate on 
segments of the memory mapped file in a 
PARALLEL DO region.



OpenMP Memory Consistency

• Provides a memory fence

• Necessary for consistent memory across 
threads.

• If using synchronization variables, give 
flush the name of the variable.

• C$OMP FLUSH(var) 



OpenMP and Global Variables

• Use C$OMP THREADPRIVATE() for data 
needed by subroutines in the parallel region.
– Common blocks



OpenMP Performance Tuning

• Fix false sharing
– Multiple threads writing to the same cache line

• Increase chunk size

• Tune schedule

• Reduce barriers

• SPMD Vs. Loop Level



Additional Material

http://www.cs.utk.edu/~mucci/MPPopt.html

• Slides 

• Optimization Guides

• Papers

• Pointers

• Compiler Benchmarks


