Innovative Computing Laboratory
RS ESITY (i TENNESSES
[EIMPUTER SEIERUE ZHNITTENS

Iptimization for HPC Architectures

hirley V. Moore
il Philip J. Mucci
Innovanve Computing Laboratory
;\ “University of Tennessee
H\‘\i _shirley @cs.utk.edu
'.%"‘a_k_ mucci@cs.utk.edu

e AN % Sameer Shende
' S " University of Oregon
sameer@cs.uoregon.edu

NRL-Monterey
Dec 3-4, 2003

Course Qutline

HPC Architectures

Performance Optimization Issues
Compiler Optimizations

Tuned Numerical Libraries

Hand Tuning

Communication Performance
OpenMP Performance
Performance Analysis Tools
Performance Results

Philip Mucci

HPC Architectures

Philip Mucci

Architecture BEvalution

> Moore’s Law: Microprocessor CPU performance doubles
every 18 months.

> Cost and size of storage have fallen along a similar
exponential curve.

> But decrease in time to access storage, called /atency,
has not kept up, thus leading to
> deeper and more complex memory hierarchies
> “load-store” architecture

Philip Mucci

Processar-DRAM Gap (latency)

, P —

b rllr -
ST S8 §85=s
= Eo LS
nH.Mw = O~ 0O~

] 2
= C O

5 0O c ©

/@ smS/W
Q@ E o Vi
”C._nluw]
Q A=
- 0 5 -
oo =

7

“Moore’s Law

—i
99uewW.I0LIdd

1000

000¢

6661
38661
/661
9661
G661
7661
€661
C66T
(1661
0661
6861
8861
/361
9861
G861
361
€861
¢861

1861

0861

S S -

‘©
o
S

=

2

=

o

Processor Families

> Have high-level design features in common

> Four broad families over the past 30 years
CISC

Vector

RISC

VLIW

A4

A4

A4

A4

Philip Mucci

CASC

> Complex Instruction Set Computer
> Designed in the 1970s

> Goal: define a set of assembly instructions so that high-
level language constructs could be translated into as few
assembly language instructions as possible => many
Instructions access memory, many instruction types

> CISC instructions are typically broken down into lower
level instructions called microcode.

> Difficult to pipeline instructions on CISC processors
> Examples: VAX 11/780, Intel Pentium Pro

Philip Mucci

Gl s,
! *

Vector Processors

A4

Seymour Cray introduced the Cray 1 in 1976.
Dominated HPC in the 1980s

Perform operations on vectors of data
Vector pipelining (called chaining)

Examples: Cray T90, Convex C-4, Cray SV1,
Cray SX-6, Cray X1, POWER5?

A4

A4

A4

A4

RISC

Reduced Instruction Set Computer
Designed in the 1980s

Goals
> Decrease the number of clocks per instruction (CPI)
> Pipeline instructions as much as possible

Features

> No microcode
Relatively few instructions all the same length
Only load and store instructions access memory
Execution of branch delay slots
More registers than CISC processors

A4

A4

A4

A4

A4

A4

A4

A4

Philip Mucci

RISC (cort.)

> Additional features
> Branch predicition

> Superscalar processors
o Static scheduling
 Dynamic scheduling

> Qut-of-order execution
> Speculative execution

> Examples: MIPS R10K/12K/14K, Alpha21264, Sun
UltraSparc-3, IBM Power3/Power4

Philip Mucci

VLIW

> Very Long Instruction Word

> Explicitly designed for instruction level
parallelism (ILP)

> Software determines which instructions can be
performed in parallel, bundles this information
and the instructions, and passes the bundle to
the hardware.

> Example: Intel-HP Itanium

Architecture Chainges inthe 1990s

> 64-bit addresses

> Optimization of conditional branches via conditional
execution (e.g., conditional move)

> Optimization of cache performance via prefetch
> Support for multimedia and DSP instructions
> Faster integer and floating-point operations

> Reducing branch costs with dynamic hardware
prediction

Philip Mucci

Pipelining

> Overlapping the execution of multiple instructions
> Assembly line metaphor
> Simple pipeline stages

> Instruction fetch cycle (IF)
Instruction decode/register fetch cycle (ID)
Execution/effective address cycle (EX)

Memory access/branch completion cycle (MEM)
Write-back cycle (WB)

A 4

A4

A4

A 4

Philip Mucci

Pipeline with MLiticyde Operations

[
L

Pipeline Hazards

> Situations that prevent the next instruction in the pipeline
from executing during its designated clock cycle and
thus cause pipeline stalls

> Types of hazards

> Structural hazard — resource conflict when the hardware
cannot support all instructions simultaneously

> Data hazard —when an instruction depends on the results of
a previous instruction

> Control hazard — caused by branches and other instructions
that change the PC

Philip Mucci

Memory Herarchy Design

> Exploits principle of locality — programs tend to reuse data and
instructions they have used recently

> Temporal locality — recently accessed items like to be
accessed in the near future

> Spatial locality — items whose addresses are near each other
likely to accessed close together in time

> Take advantage of cost-performance of memory technologies
> Fast memory is more expensive.

> Goal: Provide a memory system with cost almost as low as the
cheapest level of memory and speed almost as fast as the
fastest level.

Philip Mucci

Typical Memory Herarchy

Register Cache Memory Disk
reference reference reference reference
Size: 500 bytes 64 KB 512 MB 100 GB

Speed: 0.25ns 1 ns 100 ns 5 ms

Philip Mucci

Memory Tedhndoges

> Main memory usually built from dynamic random access
memory (DRAM) chips.

> DRAM must be “refreshed”

> Caches usually built from faster but more expensive
static random access memory (SRAM) chips.

> cycle time — minimum time between requests to memory

> Cycle time of SRAMs is 8 to 6 times faster than DRAMs,
but they are also 8 to 16 times more expensive.

Philip Mucci

Memory Technodoges (cornt.)

> Two times that are important in measuring memory
performance:

> Access time is the time from when a read or write is
requested until it arrives at its destination.

> Cycle time is the minimum time between requests to
memory.

> Since SRAM does not need to be refreshed, it has no
different between access time and cycle time.

> Simple DRAM results in each memory transaction
requiring the sum of access time plus cycle time.

Philip Mucci

Memory Interleaving

> Multiple banks of memory organized so that sequential
words are located in different banks

> Multiple banks can be accessed simultaneously.
> Reduces effective cycle time

> Bank stall or bank contention — when the memory
access pattern is such that the same banks are
repeatedly accessed

Philip Mucci

e g WS

Cache Charactenistics

> Number of caches
Cache sizes

Cache line size
Associativity
Replacement policy
Write strategy

A4

A4

A4

A4

A4

Philip Mucci

Cache Characteristics (cort.)

> A cache line is the smallest unit of memory that can be
transferred to and form main memory.

> Usually between 32 and 128 bytes
> Inan n-way associative cache, any cache line from
memory can map to any of the nlocations in a set.
> 1-way set associative cache is called direct mapped

> A fully associative cache is one in which a cache line can be
placed anywhere in cache.

Philip Mucci

Cache Hits and Misses

> When the CPU finds a requested data item in the cache, a cache
hit occurs.

> If the CPU does not find the data item it needs in the cache, a
cache miss occurs.

> Upon a cache miss, a cache line is retrieved from main memory
(or a higher level of cache) and placed in the cache.

> The cache miss rate is the fraction of cache accesses that
result in a miss.

> The time required for a cache miss, called the cache miss
penalty, depends on both the latency and bandwidth of the
memory.

> The cycles during which the CPU is stalled waiting for memory
access are called memory stall cycles.

Philip Mucci

Types of Cache Misses

Types of cache misses can be classified as follows:
2) compulsory —the very first access to a cache line

3) capacity — when the cache cannot contain all the
cache lines needed during execution of a program

4) conflict—In a (less than fully) set associative or direct
mapped cache, a conflict miss occurs when a block
must be discarded and later retrieved because too
many cache lines mapped to the same set.

Philip Mucci

Mutiple Levels of Cache

> Using multiple levels of cache allows a small fast cache to keep pace with the
CPU, while slower larger caches can be used to reduce the miss penalty since
the next level cache can be used to capture many accesses that would go to
main memory.

> The local miss rate is large for higher level caches because the first level
cache benefits the most from data locality. Thus a global miss rate that
indicates what fraction of the memory access that leave the CPU go all the way
to memory is a more useful measure. Let us define these terms as follows:
> local miss rate — the number of misses in a cache divided by the total number of
memory access to this cache

> global miss rate — the number of misses in a cache divided by the total number of
memory accesses generated by the CPU (Note: for the first level cache, this is the
same as the local miss rate)

Philip Mucci

Nonblocking Caches

> Pipelined computers that allow out-of-order execution can
continue fetching instructions from the instruction cache while
waiting on a data cache miss. A non-blocking cache design
allows the data cache to continue to supply cache hits during a
miss, called “hit under miss”, or “hit under multiple miss” if
multiple misses can be overlapped. Hit under miss significantly
increases the complexity of the cache controller, with the
complexity increasing as the number of outstanding misses
allowed increases. Out-of-order processors with hit under miss
are generally capable of hiding the miss penalty of an L1 data
cache miss that hits in the L2 cache, but are not capable of
hiding a significant portion of the L2 miss penalty.

Philip Mucci

Cache Replacement Pdlicy

> Possible policies

> Least Recently Used (LRU)
> Random

> Round robin

> LRU performs better than random or round
robin but is more difficult to implement.

Philip Mucci

Cache Whte Strategy

> When a store instruction writes data into a cache-
resident line, one of following policies is usually used:

> Whrite through: The data are written to both the cache line in
the cache and to main memory.

> Write back: The data are written only to the cache line in the
cache. The modified cache line is written to memory only
when necessary (e.g., when it is replaced by another cache
line.

Philip Mucci

Cache Contention on SVIPs

> When two or more CPUs alternately and repeatedly
update the same cache line
> memory contention

e when two or more CPUs update the same variable
o correcting it involves an algorithm change

> false sharing
» when CPUs update distinct variables that occupy the same cache line
o correcting it involves modification of data structure layout

Philip Mucci

Virtua Menory

> A page is the smallest contiguous block of
memory that the operating systems allocates to
your program.

> The operating system creates a virtual address
space for each process, keeping unneeded
pages on disk and loading them into main
memory as needed.

TheTLB

> For every memory access, the operating system
translates the virtual address to a physical address.

> To keep latency low, the most recently used address
translations are cached in the Translation Lookaside
Buffer (TLB).

> When the program refers to a virtual address that is not
cached in the TLB, a TLB miss occurs.

> If a referenced page is not in physical memory, a page
fault occurs.

Philip Mucci

"H .t,"i. at,'ﬂ ot |
= u, i

il
CFrigp - C s _—‘] Chmp-Clijp
Fahric | S I s = aric

= |$ =N

EiCEL-NCH i : 1 MG MM
. L (| h | i
{20 | ——N¥ I = :t o1

¥ wi
[M 1 | =.|-= mtiuricisne Dy el vy 1 hit7) Lok =‘- | £

Philip Mucci

Node Design

.3 GHz processor
32 KB Level 1 cache
\ Multi-Ghip Module (WS
Level 2 cache
1440 KB total

1 Level 3 cache
- 512 MB total
L3 8 MB ea-

Four MCMs comprise one
—1| node of a regatta system.

}

%

Philip Mucci

POANER4 L1 Cache

L1 cache

32 KB of data and 64 KB of instruction cache for each
processor

Fetches 128 byte lines

Uses FIFO replacement policy rather than touch. Thus,
blocking for cache reuse is not advisable.

Uses eight pre-fetching streams. Use the
—ghot —qcache=auto —garch=pwr4

—qtune=pwr4 compiler options to perform loop optimizations
that improve cache use.

Philip Mucci

PONER4 |2 Cache

L2 cache
Total of 1440 KB shared between the two processors on a chip
Use “least recently touched” replacement policy

For applications with memory requirements >1GB/process,
placement of processes on processors may impact cache
performance.

If you are blocking for cache size, you should block for L2
cache. To leave it to the compiler use —garch=pwr4,
-qtune=pwr4, —qcache=auto, and -ghot. Implied with —O4

Philip Mucci

PONER4 L3 Cache

L3 cache

32MB 8-way set associative caches combined in pairs
or quadruplets to create a 64MB or 128MB address-
interleaved cache

Shared between the eight processors on an MCM

Access times vary depending on location of the data to
be retrieved

Philip Mucci

PONER4 Cache: Performance

Cache Line Size Bandwidth Latency
(Bytes) (Bytes/cycle) | (Cycles)

Level 1 128 16 4
(32 KB)
Level 2 128 32 13
(1440 KB)
Level 3 512 5.33 125
(32 MB)

Philip Mucci

POWNER4 Hardware Deata Prefetch

> Hardware for prefetching data cache lines from memory, L3
cache, and L2 cache transparently in the L1 data cache

> Prefetch streamis a sequence of loads from storage that
references at least two or more contiguous data cache lines in
either ascending or descending order.

> Eight streams per processor are supported.

> Triggered by data cache line misses and paced by loads to the
stream

> Steams must be reinitialized at page boundaries.

Philip Mucci

POMNERA vs. POMERS

> 1.3 GHz POWER 4 clock rate compared to 375 MHz for
POWER3

> But performance of floating-point intensive applications
IS typically only two to three times faster.

> More difficult to approach peak performance on
POWER4 than on POWERS because of

> Increased FPU pipeline depth
> Reduced L1 cache size
> Higher latency (in terms of cycles) of the higher level caches

Philip Mucci

e g WS

Performance Optimization
Issues

Philip Mucci

WWhat to Timeg?

> User time — amount of time spent performing
the work of a program

> System time — amount of time spent in the
operating system supporting the execution of
the program

> CPU time — sum of user time and system time
(also called virtual time)

> Wall clock time — elapsed time from when
execution starts until it stops

Howto Tine

» Use the most accurate lowest overhead timers
available on the system.

> PAPI timers attempt to do this
> Time on a dedicated system or light loaded

system or using a queueing system that gives
you dedicated resources.

> CPU time is important for non-dedicated
systems.

Parallel Performance - Speedup and Scalahlity

> Speedup is the ratio of the running time on a single
processor to the parallel running time on N processors.

Speedup = T(1)/T(N)
> An application is scalable if the speedup on N
processors is close to N.

> With scaled speedup, an application is said to be
scalable if, when the number of processors and the
problem size are increased by a factor of N, the running
time remains the same.

Philip Mucci

Factors thet Lirit Scalability

» Amdahl's Law
» Communication Overhead
» Load Imbalance

Philip Mucci

Amoahl’s Law

> Suppose an application has a portion S that
must be run serially.

> Assume Ts Is the time required by the serial
region, and Tp is the time required by the
region that can be parallelized.

> Then

Speedup(N) = (Ts+Tp)/(Ts+Tp/n) <=T(1)/Ts

Conmunication Overhead

Suppose communication cost is logarithmic in N.
Then

Speedup(N) = T(1)/(Ts+Tp/N + ¢ Ig N)
= O(1/lg N)

Load Imbalance

A4

Load imbalance is the time that some processors in the
system are idle due to

> insufficient parallelism
> unequal size tasks

Examples of the latter
> Adapting to “interesting parts of a domain”
> Tree-structured computations
> Fundamentally unstructured problems

Algorithm needs to balance load

AV 4

A4

Philip Mucci

Importance of Qptimization

Example: Speed up from Static Compiler
Optimization on Itanium-l in 2002 (Specint) .
i

18 +

16

fll =

[[
[LN
aoa+ IPoEFIGD

Philip Mucci

Steps in Cptimizing Code

> Optimize compiler switches
> Integrate high-performance libraries
> Profile code to determine where most time is being spent

> Optimize blocks of code that dominate execution time by
using performance data to determine why the
bottlenecks exist

> Always examine correctness at every stage!

Philip Mucci

e g WS

Compiler Optimizations

Philip Mucci

Role of the Comller

> Transform higher-level abstract representation of a
program into code for a particular instruction set

architecture (ISA)
> Goals

> Correct compiled program
> Efficient compiled program
> Fast compilation

> Debugging and performance analysis support

Philip Mucci

Conpller Structure

Dependencies Function

Transform language to
common intermediate
form

Language dependent,
machine independent

Somewhat language
dependent, largely
machine independent

e.g.,loop
transformations and
procedure inlining

Including global and
local optimizations
plus register
allocation

Some machine
dependencies (e.g.,
register number and type)

Detailed instruction
selection and machine
dependent

Language independent,
highly machine dependent

Philip Mucci

Conpiler Qperation

> Compilers typically consist of two to four passes, or
phases, with higher optimization having more passes.

> Transformations made in previous passes are not
revisited.

> Phase-ordering problem: compiler must order some
transformation before others —e.g.,

> Choose which procedure calls to expand inline before the
exact size of the procedure is known

> Eliminate common subexpressions before register allocation
Is known

Philip Mucci

Classes of Comaler Cptimzations

> High-level optimizations

Local optimizations

Global optimizations

> Register allocation

> Processor-dependent optimizations
> Loop optimizations

> Interprocedural optimization

A4

A4

Hghlevel Otirizations

> At or near the source level
> Processor-independent

> Example

> Procedure inlining: replace procedure call by
procedure body

Philip Mucci

. ";._: = .

Local Optirizations

> Optimize code only within a basic block

> Examples

> Common subexpression elimination — replace multiple
instances of the same computation with one computation
with results stored in temporary

> Constant propagation — Replace all instances of a variable
that is assigned a constant with the constant

> Stack height reduction — rearrange expression tree to
minimize resources needed for expression evaluation

Philip Mucci

Gobal Qptirrizations

A4

Extension of local optimizations across branches
Transformations aimed at optimizing loops

Examples

> Global common subexpression elimination — same as local
but across branches

> Copy propagation — replace all instances of a variable A that
is assigned X (i.e., A=X) with X

> Code motion —move code that computes the same value
each iteration outside the loop

> Induction variable elimination — simplify/eliminate array
addressing calculations within loops

A4

A4

Philip Mucci

Regster Allocation

> Associates registers with operands

> Central role in speeding up code and making other
optimization useful

> NP-complete problem

> Heuristics work best with at least 16 general-purpose
registers and additional registers for floating-point.

> More effective for stack-allocated objects than for global
variables

> Variables that are aliased (i.e., that have more than one
way to refer to them) cannot be placed in registers.

Philip Mucci

Processor-dependent Gatimzations

> Take advantage of specific architectural
features

> Examples:

> Strength reduction — e.q., replace multiply by a
constant with adds and shifts

> Pipeline scheduling — reorder instructions to improve
pipeline performance

Philip Mucci

Singe Loop Transformations

> Induction variable optimization
> Prefetching

> Test promotion in loops

> Loop peeling

> Loop fusion

> Loop fission

> Copying

> Block and copy

> Loop unrolling

> Software pipelining

> Loop invariant code motion
> Array padding

> Optimizing reductions

Philip Mucci

Loop Urralling

> (Generates multiple copies of the code for the
loop body

> Reduces number of branches and groups more
instructions together to enable more efficient
Instruction pipelining

» Best candidates are innermost loops with
limited control flow.

> Often combined with data prefetching

Saoftware Pipdlining

> Applies instruction scheduling, allowing instructions
within a loop to “wrap around” and execute in a different
iteration of the loop

> Reduces the impact of long-latency operations, resulting
In faster loop execution

> Enables prefetching of data to reduce the impact of
cache misses

> Often used with together with loop unrolling

Philip Mucci

Nested Loop Optirrizations

> Performed at higher levels of optimization
and/or with special options

> Tricky and time-consuming for the compiler to
get right
> Can significantly speed up performance but

may slow down performance.

> Time code carefully to make sure these optimizations
improve performance.

Philip Mucci

Nested Loop Optirrizations (cort.)

A4

Loop interchange
Outer loop unrolling
Unroll and jam
Blocking

Block and copy

A4

A4

A4

A4

Interprocedural Qaimzation (IPO)

> Looks at all routines and tries to make
optimizations across routine boundaries,
including but not limited to inlining and cloning

> Inlining — replacing a subprogram call with the
replicated code of the subprogram

> Cloning — optimizes logic in the copied routine
for the particular call

Qpimzation Levels

-00, -01, -02, -03, -04, etc.

> No standardization across compilers

> Increasing levels apply increasingly
sophisticated optimizations but also increase
compilation time.

> Higher levels of optimization may cause the
program to produce different results.

IBM XL Fortran OQptimization Levels

The -g option tells the compiler to include information in the
executable to enable effective debugging. It doesn't
Inhibit optimization at all, so we recommend that you
include it during the program development phase.

The -0 flag is the main compiler optimization flag and can
be specified with several levels of optimization. -O and
-O2 are currently equivalent.

Philip Mucci

IBM XL Fortran Optimization Levels (cont.)

At -02, the XL Fortran compiler' ®ptimization is highly reliable and
usually improves performance, often quite dramatically. -O2
avoids optimization techniques that could alter program
semantics.

-O3 provides an increased level of optimization but can result in the
reordering of associative floating-point operations or operations
that may cause runtime exceptions and thus can slightly alter
numerical results. This can be prevented thorugh the use of the
-qstrict option together with -O3. -O3 is often used together with
-ghot, -garch, and -qtune.

Philip Mucci

IBM XL Fortran Optimization Levels (cont.)

-O4 provides more aggressive optimization and implies the
following options:

> -qhot

> -gipa

> -03

> -garch=auto
> -qtune=auto
> -gcache=auto

-O5 imples the same optimizations as -O4 with the addition of
-qipa=level=2.

Philip Mucci

IBM XL Fortran - Recommended Gations

For production codes, we recommend

xIf_r -O3 -gstrict -garch=pwr3 -qtune=pw3

when compiling for POWERS systems, or

xlf_r -O3 -gstrict -qarch=pwr4 -qtune=pwr4

when compiling for POWER4 systems.

If compiling on the same machine on which the code will be run,
you can use

xlf_r -O3 -gstrict -qarch=auto -gtune=auto

By removing the -gstrict option, you may obtain more optimization,
but you should carefully validate the results of your program if
you compile without -gstrict.

Philip Mucci

-ghot[=[no]vector | arraypad[=n]]

> Performs higher-order transformations to maximize the efficiency
of loops and array language

> Supported for all languages

> Can pad arrays for more efficient cache usage
> Optimized handling of F90 array constructs

> Can generate calls to vector intrinsic functions

> Can see performance improvement if program spends
substantial time in certain types of nested loop patterns

> Use —qreport=hotlist to have compiler generate a report about
loops it has transformed.

7

Philip Mucci

Tips for Getting the Most out of
-chot

> Try using —ghot along with —O2 or —Q3 for all of your code
(should have neutral effect when no opportunities exist)

> If you encounter unacceptably long compile times or if
performance degrades, try using —ghot=novector, or —qgstrict or —
qcompact along with —ghot.

> If necessary, deactivate —ghot selectively, allowing it to improve
some of your code.

> If your hot loops are not transformed as you expect, try using
assertive directivesw such as INDEPENDENT or CNCALL or
prescriptive directives such as UNROLL or PREFETCH.

Philip Mucci

-apa

> Performs interprocedural analysis (IPA)

> Can be specificied on the compile step only or on both compile
and link steps

> Whole program mode expands the scope of optimization to an
entire program unit (executable or shared library)

> -gipa[=level=n | inline= | fine tuning]
level=0: Simple interprocedural optimization
;evel=1: Inlining and global data mapping
level=2: Global alias analysis specialization, interprocedural data flow
inline=: Precise user control of inlining

Philip Mucci

_qarch

> Specifies the type of processor on which the compiled code will
be run and produces an executable that may contain machine
instructions specific to that processor. This

> Allows the compiler to take advantage of processor-specific
instructions that can improve performance at the cost of
generating code that may not run on other processor types The

> Default for this option is -qarch=comm, which will produce an
executable that is runnable on any POWER or POWERPC
processor

> -garch=auto option tells the compiler to produce an executable
with machine instructions specific to the processor on which it
was compiled.

Philip Mucci

_q[u’e

> Tells the compiler to perform optimizations for the specified
processor

> Processor-specific optimizations include instruction selection
and scheduling, setting up pipelining, and taking into account the
cache hierarchy to take advantage of the specified processor' s
hardware.

> Unlike the -garch option, the -qtune option does not produce
processor-specific code, but the performance of the code on a
different processor may be worse than if it were compiled with
the appropriate -gtune argument or even with no -qtune option
at all.

> -gtune=auto tells the compiler to produce a program tuned for
the processor on which it was compiled.

Philip Mucci

> Specifies the cache configuration of the processor on which the
program will be run.
> Only available with the Fortran compiler

> Can only be used in combination with the -ghot option.

> As with -qtune, a code compiled with this option will run correctly
on a different processor but its performance may be worse than
if it were compiled with an appropriate -qcache option.

> -qcache=auto tells the compiler to produce an executable for
the cache configuration of the processor on which it was
compiled.

Philip Mucci

HP/Conpaq Fortran Debugging Options

-gO
Prevents symbolic debugging information from
appearing in the object file.

-g‘]

Produces traceback information (showing pc to
line correlation) in the object file, substantially
Increasing its size. This is the default.

HP/Conpaq Fortran Debugging Options (cort.)

-2 or -

Produces traceback and symbolic debugging
information in the object file. Unless an explicit
optimization level has been specified, these
options set the -O0 option, which turns off all
compiler optimizations and makes debugging
more accurate.

HP/Conpaq Fortran Debugging Options (cort.)

-g3

Produces traceback and symbolic debugging
information in the object file, but does not set
an optimization level. This option can produce
additional debugging information describing the
effects of optimizations, but debugger
Inaccuracies can occur as a result of the
optimizations that have been performed.

HP/Conpaq Fortran Optimization Levels

-00
Disables all optimizations.
-O1

Enables local optimizations and recognition of common subex-
pressions. Optimizations include integer multiplication and
division expansion using shifts.

-02
Enables global optimization and all -O1 optimizations. This includes
code motion, strength reduction and test replacement, split

lifetime analysis, code scheduling, and inlining of arithmetic
statement functions.

Philip Mucci

HP/Conpaq Fortran Optimization Levels (cort.)

-03

Enables global optimizations that improve speed at the cost
of increased code size, and all -O2 optimizations.
Optimizations include prefetching, loop unrolling, and
code replication to eliminate branches.

-0O4 or-O

Enables inline expansion of small procedures, software
pipelining, and all -O3 optimizations. This is the default.

Philip Mucci

HP/Conpaq Fortran Optimization Levels (cort.)

-05

Enables loop transformation optimizations, all -O4
optimizations, and other optimizations,
including byte-vectorization, and insertion of
additional NOPs (No Operations) for alignment
of multi-issue sequences.

HP/Conpaq Fortran — Recommended Gpations

> For production codes, we recommend the following
options if you are compiling on the same machine on
which the code will be run:

-arch=host -tune=host -O

> Avoid using the -fast option unless you understand the
options that -fast sets. For example, the -fast option sets
the -assume noaccuracy_sensitive and -math_library
fast options, which can change the calculated results of
a program.

Philip Mucci

-arch

The -arch option determines for which version of the Alpha
architecture the compiler will generate instructions.
arch -generic

generates instructions that are appropriate for most Alpha processors. This is
the default.

arch -host

generates instructions for machine the compiler is running on
arch -ev6

generates instructions for eve processors (21264 chips)
arch -eve7

generates instructions for eve7 processors (21264A chips)
arch -ev68

generates instructions for eve8 processors (21264C chips)

Philip Mucci

-tune

The -tune option selects processor-specific instruction tuning.
Regardless of the setting of the -tune option, the generated code
will run correctly on all implementations of the Alpha
architecture. Tuning for a specific implementation can improve
run-time performance, but code tuned for a specific target may
run more slowing that generic code on another target.

-fune generic

Selects instruction tuning that is appropriate for all
implementations of the Alpha architecture. This is the default.

-tune host

Selects instruction tuning that is appropriate for the machine the
compilation is occurring on.

Philip Mucci

fast
> The -fast option Sets the following command options that can
improve run-time performance:

-align dcommons
-arch host
-assume noaccuracy_sensitive
-math_library fast
-04
-tune host

> For 90 and 195, -fast also sets -align sequence, -assume
bigarrays, and -assume nozsize.

Philip Mucci

-assUTe noaccuracy sensitive

> Reorders floating-point operations, based on
algebraic identities (inverses, associativity, and
distribution) to improve performance.

> The default is
-assume accuracy_sensitive

Philip Mucci

‘meth library fast

> Specifies that the compiler is to select the version of the
math library routine which provides the highest
execution per- formance for certain mathematical
intrinsic functions, such as EXP and SQRT

> For certain ranges of input values, the selected routine
may not provide a result as accurate as -math_library
accurate (the default setting) provides.

Philip Mucci

SE MPSaro Fartran Coniler Deloug Options

-gO

No debugging information is provided.

'92! -0

Information for symbolic debugging is provided and
optimization is disabled.

-93
Information for symbolic debugging of fully optimized code
Is produced. The debugging information produced may

be inaccurate. This option can be used in conjunction
withthe -0, -01,-02, and —O3 options.

Philip Mucci

SE MPSaro Fortran Compller Qatimization Levels

-00

No optimization. This is the default.
-O1

Local optimization

-02, -0

Extensive optimization

-03

Aggressive optimization. Optimizations performed at this level may
generate results that differ from those obtained when -02 is
specified. Vector versions of certain single-precision and double-
precision intrinsic procedures are used at this level.

Philip Mucci

-Oast

> Maximizes performance for the target platform ipxx processor

type.
> To determine your default platform ipxx designation, use the
hinv command.

> The optimizations performed may differ from release to release
and among the supported platforms.

> The optimizations always enable the full instruction set of the
target platform.

> Although the optimizations are generally safe, they may affect
floating-point accuracy due to operator reassociation.

Philip Mucci

Profile Guided Optirization (PGO)

>

>

Also called profile-directed feedback optimization

Uses feedback file(s) to allow the compiler to use profiling data
from execution(s) to improve optimizations

IBM
fdpr command and —fdpr compiler option
-qpdf1 and —gpdf2 compiler options
HP/Compaq Fortran options
-gen_feedback
-feedback
-cord
SGI MIPSpro Fortran 90 compiler
—fb_create, -fb, and —fb_opt options

Philip Mucci

Tuned Numerical Libraries

Philip Mucci

Tuned Numencal Libranes

> BLAS

> LAPACK

> ScaLAPACK

> IBM ESSL, PESSL, and MASS
> HP/Compag CXML

> SGI SCSL

> SuperLU

» PETSc

> ARPACK

Philip Mucci

BLAS

A4

Basic Linear Algebra Subroutines

Basic vector and matrix operations
> Level 1 — vector operations
> Level 2 — matrix-vector operations
> Level 3 — matrix-matrix operations

Almost all vendors provide highly tuned BLAS libraries.
More information — http://www.netlib.org/blas/

A4

AV 4

AV 4

Philip Mucci

LAPACK

> Linear Algebra PACKage

> Dense linear algebra routines for shared-memory parallel
computers

> Systems of linear equations

> Linear least squares

> Eigenvalue problems

> Singular value problems
> Call Level 2 and Level3 wherever possible
> Efficient use of the memory hierarchy

> Most vendors provide at least a subset of LAPACK routines in
their math libraries.

> More information — http://www.netlib.org/lapack/

Philip Mucci

SCalL APACK

> Scalable Linear Algebra PACKage

> Dense linear algebra routines for distributed memory
parallel computers

> Uses it own communication package called BLACS
(Basic Linear Algebra Communication Subprograms)

> BLAGS can be built with MPI or PVM

» Subset of ScaLAPACK included in some vendor math
libraries

> More information — http://www.netlib.org/scalapack/

Philip Mucci

IBM Engineering and Sdientific Subroutine Library
(ESS)

> ESSL provides mathematical subroutines for the following areas:
> Linear algebra and matrix operations (including BLAS and LAPACK)
> Eigensystem analysis (including LAPACK routines)
> Fourier transforms, convolutions and correlations, and related computations
> Sorting and searching
> Interpolation
> Numerical quadrature
> Random number generation

> Significant optimizations have been done in ESSL to effectively
use the cache and memory hierarchy and minimize memory
bandwidth requirements.

Philip Mucci

IBMESSL (cort.)

> ESSL routines are callable from application programs written in
Fortran, C, and C++. In order to use ESSL, you must link to one

of the ESSL runtime libraries. For example,

XIf -0 executable_name myprog.f —lessl

> ESSL includes both serial and SMP versions of the library. If the
-lesslsmp argument is used, the multithreaded versions will be
loaded if they are available. use either the XL Fortran
XLSMPOPTS or the OMP_NUM_THREADS environment
variable to specify the number of threads.

Philip Mucci

IBMESSL (cort.)

> The SMP version of ESSL is thread-safe. A thread-safe
serial version is also provided. To use the thread-safe
serial version with threaded programs, link using
-lessl_r.

Philip Mucci

IBMParallel ESSL (PESSL)

Distributed memory version of ESSL that provides
subroutines for the following areas:

> Subset of Level 2 and Level 3 Parallel BLAS (PBLAS)
> Dense and sparse linear systems

> Subset of ScaLAPACK (dense and banded)

> Sparse systems

> Subset of ScaLAPACK eigensystem analysis and singular value
analysis

> Fourier transforms
> Random number generation

Philip Mucci

IBMPESSL (cort.)

> PESSL routines are callable from application programs
written in Fortran, C, and C++.

> PESSL is not thread safe; however, PESSL is thread
tolerant and can therefore be called from a single thread
of a multithreaded application. Multiple simultaneous
calls to PESSL from different threads of a single process
can cause unpredictable results.

Philip Mucci

IBMPESSL (cort.)

PESSL provides two run-time libraries:

> The PESSL SMP library is provided for use with the MPI
threads library on POWER SMP processors. To use this
library, link using

-Iblacs -lesslsmp -Ipessismp

> The PESSL serial library is provided for use with the MPI
signal handling library on all types of nodes. To use this
library, link using

-Iblacs -lessl -Ipessl.

Philip Mucci

IBMPESSL (cort.)

> Sample programs using PESSL can be found in
the /usr/lpp/pessl.rte.common directory on your
IBM POWER3/4.

IBM Methemetical Acceleration SUoSystem (MASS)

> Provides high-performance versions of a subset of
Fortran intrinsic functions.

> Sactrifices a small amount of accuracy to allow for faster
execution. Compared to the standard mathematical
library, libm.a, the MASS library results differ at most
only in the last bit.

> There are two basic types of functions available for each
operation:
> A single instance function
> A vector function

Philip Mucci

IBVIMASS (cort.)

> To use the scalar library, link using -Imass ahead of -Im,
.9
XIf progf.f -o progf -Imass
CC progc.c -0 progf -Imass -Im
> To use the vector library, link using -lmassv, e.g.,
XIf progf.f -o progf -Imassv
CC progc.c -0 progf -Imassv -Im
(-lmassv is the POWER3/POWERA4 library. For the

POWERS3-specific library, use -Imassv3. For the

POWERA4-specific library, use -Imassv4.

Philip Mucci

IBVIMASS (cort.)

> The Fortran source library libmassv.f has been provided
for use on non-IBM systems where the MASS libraries
are not available. The recommended procedure for
writing a portable code that is vectorized for using the
fast MASS vector libraries, is to write in ANSI standard
language and use the vector functions defined by
libmassv.f. Then, to prepare to run on a system other
than an IBM system, compile the application source
code together with the libmassv.f source.

Philip Mucci

Gl s,
! *

HP/Conpag Extended Veth Library (CXML)

> Provides a comprehensive set of mathematical library
routines callable from Fortran and other languages.

> Included with Compaq Fortran for Tru64 UNIX systems

> To specify the CXML routines library when linking, use
the -lcxml option.

> On Tru64 UNIX systems, selected key CXML routines
have been parallelized using OpenMP. To link with the
parallel version of the CXML library, use —lcxmlp.

Philip Mucci

SAE Saentific Computing Software Library (SCHL)

> Gomprehensive collection of scientific and mathematical
functions that have been optimized for SGI systems,
both IRIX/MIPS and Lunix/IA64.

> Callable from Fortran, C, and C++
> Includes BLAS and LAPACK

> Also includes
> Sparse direct solvers
> Sparse iterative solvers
> Signal processing routines

> Provides shared memory parallelism

Philip Mucci

e g WS

Slper LU

General purpose library for the direct solution of large,
sparse, nonsymmetric systems of linear equations on high
performance machines

> Routines perform an LU decomposition with partial pivoting
and triangular system solves through forward and back
substitution.

> Routines are also provided to equilibrate the system,
estimate the condition number, calculate the relative
backward error, and estimate error bounds for the refined
solutions.

> Serial, shared memory, and distributed memory versions
> http://www.cs.berkeley/edu/~demmel/SuperLU.html

> Being installed and supported on DoD HPC Center systems
as part of PET CE project

Philip Mucci

PETSC

> Large suite of data structures and routines for both uni- and
parallel-processor scientific computing

> Intended especially for the numerical solution of large-scale
problems modeled by partial differential equations

> Includes scalable parallel preconditions and Krylov subspace
methods for solving sparse linear systems, as well as parallel
nonlinear equation solvers and parallel ODE solvers

> hitp:/www-unix.mcs.anl.gov/petsc/petsc-2/

> Being installed on DoD HPC Center systems as part of PET
CE project

Philip Mucci

ARPACK

> Collection of Fortran77 subroutines designed to solve
large-scale eigenvalue problems

> Designed to compute a few eigenvalues and
corresponding eigenvectors of a general n by n
matrix A

> http://www.caam.rice.edu/software/ARPACK

> Being installed on DoD HPC Center systems as part
of PET CE project

Philip Mucci

e g WS

Hand Tuning

Philip Mucci

Ceneral Tuning Gudelines

> Use local variables, preferably automatic variables, as
much as possible

> Tuning loops

> Keep the size of do loops manageable

> Access data sequentially (i.e, with unit stride)
Move loop invariant IF statements outside loops
Avoid subroutine and function calls in loops
Simplify array subscripts
Use local INTEGER loop variables
Avoid use of |/O statements in loops

A4

A4

A4

A4

A4

Philip Mucci

CGenera Tuning Guidelines (cont.)

> Avoid mixed data type arithmetic expressions

> Use the smallest floating point precision possible for
your code (not necessarily on IBM systems)

> Avoid using EQUIVALENCE statements

> Use module variables rather than common blocks for
global storage

> Avoid unnecessary use of pointers
> Do not excessively hand optimize your code

> Avoid using many small functions or use interprocedural
optimization

Philip Mucci

Tuning for the Cache and Menmory Subsystem

Stride minimization

Encouragement of data prefetch streaming (on
IBM POWER3/POWER4 systems)

A4

A4

A4

Avoidance of cache set associativity constraints
Data cache blocking

A4

>

Tuning to Maximze the Efficency of Conputational
Units

Unrolling inner loops to increase the number of
iIndependent computations in each iteration to
keep the pipelines full

Unrolling outer loops to increase the ratio of
computation to load and store instructions so
that loop performance is limited by computation
rather than data movement

Encouragement of Data Prefetch Steaming (POMERY)

> Situations where tuning can more fully exploit the hardware
prefetch engine:

> There are too few or too many streams in a performance-
critical loop.

> The length of the streams in a performance-critical loop is too
short.

> Loop fusion and fission

> Midpoint bisectin of a loop doubles the number of streams but
halves its vector length.

> Increasing the number of streams from one to eight can improve
data bandwidth out of L3cache and memory by up to 70
percent.

Philip Mucci

Avoidance of Cache Assodativity Constraints

> Avoid leading array dimensions that are multiples of large
powers of 2.

> Example:
real*8 a(2048,75)

doi=1,75
a(100,)) =a(100,i)*1.15
enddo

Assuming a 2-way set associative L1 data cache, how should a
be re-dimensioned to avoid cache thrashing?

Philip Mucci

Data Cache Blocking

If arrays are too big to fit into cache, process them in blocks

that do fit in cache.

Four scenarios:

3.

4,

All arrays are stride 1 and no data reuse =>no benefit
to blocking

Some arrays are not stride 1 and no data reuse
=>moderate benefit

All arrays are stride 1 and much data reuse =>
moderate beneift

Some arrays are not stride 1 and much data reuse
(e.g., matrix multiply) => blocking essential

Philip Mucci

Metnx MUtiply

DOI=1N
DOJ=1,N
DOK=1,N
C(LJ)) = CLI)H+AK)*B(K,J)
ENDDO
ENDDO
ENDDO

Philip Mucci

Vitrnx Multiply with Blocking
DO I = 1,N,NB
DO JJ = 1,N,NB
DO KK = 1,N,NB
DO I = IILMIN(N,II+NB-1)
DO J = JJ,MIN(N,JJ+NB-1)
DO K = KK, MIN(N,KK+NB-1)
C(1,)) = C(LD+A(LK)*B(K.,J)
ENDDO
ENDDO
ENDDO
ENDDO
ENDDO

Philip Mucci

Metrix Muitiply with Blooking (cort.)

» Size of the blocks is NBxNB

> Three such blocks should fit in L2 cache (on
IBM POWER4)

> Try different values of NB and measure the
performance, or observe hardware counter
data, to determine the optimal value

Cuter Loop Unrdlling

> Goal: Increase the F:M (floating-point to memory
operation) ratio

> Example:
DOJ=1N
DOI=1N
A(lJ) = A(LJ) + X(I) * Y(J)
ENDDO
ENDDO
Unrolling by two will require half as many loads of X.

Philip Mucci

Cuter Loop Unralling (etc.)

DOJ=1N,2
TO=Y(J)
T1=Y(J+1)
DOI=1,N
A(l,J) = A(l,J) + X(I) * TO
A(l,J+1) = A(l,J+1) + X(I) * T1
ENDO
ENDDO

Deta Alignment

> For optimal performance, make sure your data are
aligned naturally.

> A natural bounaay is a memory address that is a multiple
of the data item’s size.
> e.9., a REAL (KIND=8) data item is naturally aligned if its
starting address is a multiple of 8.
> Most compilers naturally align individual data items
when they can, but

» EQUIVALENCE statements can cause data items to become
unaligned, and

> Compilers may have trouble aligning data within common

Philip Mucci

Data Alignment (cont.)

> Within each common block, derived type, or record
structure, carefully specify the order and sizes of data
declarations to ensure naturally aligned data.

> Start with the largest size numeric items first, followed by
smaller size numeric items, followed by nonnumeric
(character) data.

> HP/Compagq Fortran —align option
> |BM xIf —qalign option

> Pay attention to compiler and runtime warnings about
unaligned data.

Philip Mucci

Accessing Arrays Efficiently

> The fastest array access occurs when contiguous access to the
entire array or most of an array occurs.

> Rather than explicit loops for array access, use Fortran 90/95
array syniax.

> Access multidimensional arrays in natural storage order, which
Is column-major order (where the leftmost subscript varies most
rapidly) for Fortran.

> Use padding when necessary to avoid leftmost array dimensions
that are a power of 2.

> Whenever possible, use Fortran 90/95 array intrinsic procedures
rather than creating your own routines.

Philip Mucci

Passing Airay Arguents Efficiently

> Passing an assumed-shape array or an array pointer to
an explicit-shape array can slow performance because
the compiler needs to create an array temporary for the
entire array (because the passed array may not be
contiguous and the receivng explicit-shape array must
be contiguous).

> Amount of slowdown depends on the array size.

Philip Mucci

Test Promotion in Loops (if-do interchange)

> Branches in code can greatly reduce performance since
they interfere with pipelining.

> Consider the following example:

DOI=1N
IF (A. GT. 0) THEN
X(1) = X(1) + 1
ELSE
X(I) = 0.0
ENDIF
ENDDO

Philip Mucci

Test Pronation in Loops (cont.)

> Exchanging the if and do constructs causes the if test to
be evaluated only once:

IF (A. GT. 0.0) THEN
DOI=1N
X(1) = X(I) + 1.0
ENDDO
ELSE
DOI=1N
X(1) = 0.0
ENDDO
ENDIF

Philip Mucci

Loop Pedling

> Consider the if tests in the following loop to
handle the boundary conditions:

DOI=1N
IF (I .EQ. 1) THEN
X(1)= 0
ELSEIF (I .EQ. N) THEN
X(l) = N
ELSE
X(1) = X(I) + Y(I)
ENDIF
ENDDO

Philip Mucci

Loop Peeling (cort.)

> The If tests can be eliminated by “peeling off”
the edge values:

X(1) =0
DO I =2, N-1
X(1) = X(I) + Y(I)
ENDDO
X(N) = N

Philip Mucci

. ";._: = .

L.oop Fusion and Hssion

> Which is better, assuming n is large and that the temp array is
not used following these two loops?

DOI=1N

TEMP(l) = X(I) + Y()
ENDDO
DOI=1N

Z(l) = W(l) + TEMP()
ENDDO

or
DOI=1N
Z(1) = W(I) + X()*Y()
ENDDO

Philip Mucci

Efficent I/O
> Use unformatted files whenever possible

> Write whole arrays or strings instead of individual
elements
> Each itemin an I/O list generates its own calling sequence.
> Use Fortran 90/95 array syntax rather than implied DO loops
> Write array data in natural storage order

> If you cannot use natural order, it may be more efficient to
reorder the data in memory before performing the I/0O

> Use buffered I/O if possible
> For MPI programs, use MPI-1O if possible.

Philip Mucci

Large Page Szes

> Increasing the page size (if permitted by the operating
system) may reduce TLB misses.

> SGIIRIX
> MIPSpro —bigp_on option

» PAGESIZE _DATA, PAGESIZE _STACK, PAGESIZE _TEXT
environment variables

> Choices — 16, 256, 1024, 4096,16384 KB
IBM POWER4 - 4KB (default), 16MB

> http://www-1.ibm.com/servers/aix/whitepapers/large_page.html

A4

Philip Mucci

Communication Performance

Philip Mucci

Factors Affecting Communication Performance

Platform/architecture related
Network related

Application related

MPI implementation related
IBM specific

A4

A4

A4

A4

A4

Platform/Architecture Related Factors

> Network adapters — type, latency, bandwidth

> Operating system characteristics
> Multithreading
> Interrupt handling

Network Related Factars

» Hardware - ethernet, FDDI, switch, intermediate
hardware (routers)

> Protocols - TCP/IP, UDP/IP, other

> Configuration, routing, etc

> Network tuning options ("no" command)
> Network contention / saturation

Application Related Factors

> Algorithm efficiency and scalability

> Communication to computation ratios
> Load balance

> Memory usage patterns

> /0

> Message size used

> Types of MPI routines used - blocking, non-blocking,
point-to-point, collective communications

Philip Mucci

VP! Inplementation Related Factors

> Message buffering
> Message passing protocols - eager, rendezvous, other
> Sender-Receiver synchronization - polling, interrupt

> Routine internals - efficiency of algorithm used to
implement a given routine

Philip Mucci

IBM Specific Factors

Type of SP switch and switch adapter
Communications network used
Number of MPI tasks on an SMP node

» Per-task communications bandwidth decreases when more
than one MPI task is running on an SMP node.

> Aggregate bandwidth increases with the number of MPI
tasks until saturation is reached, and then stays steady or
may decrease

Use of the MP_SHARED MEMORY environment variable

> Shared memory mechanism minimizes the degradation in
per task communication bandwidth as the number of tasks
on a node increases.

7

7

7

A4

Philip Mucci

Vessage Bufffering

> Storage of data between the time a send operation
begins and when the matching receive operation
completes

> What should be done with a send operation when the
matching receive is not posted

> Buffer space can be provided by the system, or by the
user.

> System buffering occurs transparently to the user and is
determined by the implementation.

> User provided buffer space is explicitly declared and
managed by the program developer.

Philip Mucci

Message Buffering (cont.)

> MPI standard is purposely vague.
> Implementations differ.

> E.Q., Standard send operation can be implemented in
any of the following ways:
> Buffer at the sending side
> Buffer at the receiving side
> Not buffer at all

> Buffer under some conditions and not others — e.g., eager vs.
rendezvous protocols

Philip Mucci

System Bufffering

> Advantages

> Offers the possibility for improving performance by permitting
communications to be asynchronous

> E.Q., a system buffered send operation can complete even
though a matching receive operation has not been posted.
The data which are to be sent can be copied and held by the
system until the receive occurs, allowing the sending process
to do work instead of waiting.

Philip Mucci

System Buifering (cort.)

> Main disadvantage - robustness

> Buffer space is always a finite resource. Buffer exhaustion/overflow can
cause program failure or stalling.

> Itis not always obvious to the programmer just exactly how (or even
whether) an MPI implementation uses buffering. This can make it easy to
write programs that fail due to buffer depletion.

> Implementations differ on how buffering is performed. A program that runs
successfully under one set of conditions may fail under another set.

> A correct MPI program does not rely upon system buffer space. Programs
that do are called unsafe, even though they may run and produce correct
results under most conditions.

Philip Mucci

VPl Message Passing Pratocols

> An MPI message passing protocol describes the internal
methods and policies an MPl implementation employs to
accomplish message delivery.

> Message passing protocols are not defined by the MPI standard,
but are left up to implementors, and will vary.

> MPIl implementations can use a combination of protocols for the
same MPI routine. For example, a standard send might use
eager protocol for a small message, and rendezvous protocol for
larger messages.

> MPI message passing protocols often work in conjunction with
message buffering.

Philip Mucci

Two Conmon Message Passing Protocals

> Eager - asynchronous protocol that allows a
send operation to complete without
acknowledgement from a matching receive

> Rendezvous - synchronous protocol that
requires an acknowledgement

Eager Pratocal

> Assumption by the sending process that the receiving process
can store the message if it is sent

> Responsibility of the receiving process to buffer the message
upon its arrival, especially if the receive operation has not been
posted

> Assumption may be based upon the implementation' guarantee
of a certain amount of available buffer space on the receive
process

> Generally used for smaller message size (message size may be
limited by the number of MPI tasks)

Philip Mucci

Eager Pratocdl - Advantages

> Reduces synchronization delays - send process
does not need acknowledgement from receive
process that it's OK to send message.

> Simplifies programming - only need to use
MPI_Send

Eager Pratocdl - Disadvantages

> Not scalable - significant buffering may be required to
provide space for messages from an arbitrary number of
senders

> Can cause memory exhaustion and program termination
when receive process buffer is exceeded

> Buffer "wastage" - allocated even if only a few messages
are sent

> May consume CPU cycles by the receive process side to
pull messages from the network and/or copy the data
Into buffer space

Philip Mucci

Rendezvous Protocd

> Used when assumptions about the receiving process buffer
space can' be made, or when the limits of the eager protocol are
exceeded

> Requires some type of "handshaking" between the sender and
the receiver processes. For example:
1. Sender process sends message envelope to destination process

2. Envelope received and stored by destination process

3. When buffer space is available, destination process replies to sender that
requested data can be sent

4. Sender process receives reply from destination process and then sends data
5. Destination process receives data

Philip Mucci

Rendezvous Pratocdl - Advantages

> Scalable compared to eager protocol

> Robust - prevents memory exhaustion and
termination on receive process

> Only required to buffer small message
envelopes

> Possibility for eliminating a data copy - user
space to user space direct

Philip Mucci

Rendezvous Pratocdl - Disaovantages

> Inherent synchronization delays due to
necessary handshaking between sender and
receiver

> More programming complexity - may need to
use non-blocking sends with waits/tests to
prevent program from blocking while waiting on
the OK from receive process

Sender-Recaiver Synchronization

> Synchronous MPI communication operations, such as those using a
rendezvous protocol, require synchronization of the sending task and the
receiving task.

> The MPI standard does not define how this synchronization should be
accomplished. Some questions left up to MPI implementors:

> How does a receive task know if a task is requesting to send?
> How often should a receive task check for incoming messages?

> After issuing a non-blocking send, how should a CPU bound process yield
its cycle time to complete the send operation?

> MPI implementations typically rely upon two different modes to accomplish
sender-receiver synchronization: polling or interrupt.

Philip Mucci

Paling vs. Intermupt

7

Polling Mode

> The user MPI task will be interrupted by the system to check
for and service communication events at regular
(implementation defined) intervals. If a communication event
occurs while the user task is busy doing other work, it must
wait.

Interrupt Mode

> The user MPI task will be interrupted by the system for
communication events when they occur.

> Usually a cost associated with interrupts

A4

Philip Mucci

Paling vs. Interrupt - Performance

> Applications that have the following characteristics may see
performance improvements when using with interrupt mode:

> Applications that use nonblocking send or receive operations for
communication.

> Applications that have non-synchronized sets of send or receive pairs. In
other words, the send from node0 is issued at a different point in time with
respect to the matching receive in node1.

> Applications that do not issue waits for nonblocking send or receive
operations immediately after the send or receive, but rather do some
computation prior to issuing the waits.

Philip Mucci

Message Sze

> Can be a very significant contributor to MPI application
performance

> In most cases, increasing the message size will yield
better performance.

> For communication intensive applications, algorithm
modifications that take advantage of message size
"‘economies of scale" may be worth the effort.

> Performance can often improve significantly within a
relatively small range of message sizes.

Philip Mucci

Paint-to-paint Comunications

> MPI provides many ways to send and receive messages.

> Send routines (match any receive, probe; non-blocking
can match any completion/testing)
> Blocking - standard, buffered, ready, synchronous
> Non-blocking - standard, buffered, ready, synchronous
> Persistent - standard, buffered, ready, synchronous

Philip Mucci

Paint-to-point Communications (cort.)

> Receive routines (match any send)
> Blocking
> Non-blocking
> Persistent
> Probe routines(match any send)
> Blocking
> Non-blocking
> Completion / Testing routines (match any non-
blocking send/receive)
> Blocking - one, some, any, all
> Non-blocking - one, some, any, all

Philip Mucci

Pant-to-point Comunications - Performance

> Performance can vary depending on which
routines are used and how they are
implemented.

> (General observations
> Non-blocking operations perform best.

> Greatest performance gains occur within the small to
mid-size message range.

Philip Mucci

Parsstent Conmunications

> Can be used to reduce communications overhead in
applications that repeatedly call the same point-to-point
message passing routines with the same arguments

> Example of application that might benefit is an iterative, data
decomposition algorithm that exchanges border elements
with its neighbors

> Minimize the software overhead associated with
redundant message setup

> Persistent communication routines are non-blocking.

Philip Mucci

Cdllective Conmunications

> Require the participation of all tasks within the communicator

> Inter-task synchronization and load balance are critical to
performance.

> The same operations can alternately be accomplished by
ordinary send-receive operations.

> The MPI-1 standard specifies blocking collective communication
routines only.

> MPI-2 defines corresponding non-blocking routines, which may
provide better performance for some applications.

Philip Mucci

Cdlective Communications - Inplementation

» The MPI standard does not define how collective communication
operations should be implemented.

> Implementations will vary in how efficiently their collective
communication routines are implemented:

> The algorithms used to implement collective communication routines are
generally hidden from the user.

> For critical applications, it may be useful to compare hand- coded methods
against vendor collective communication routines.

> For critical applications, it may also be useful to compare different
implementations on the same platform, or implementations on different
platforms.

Philip Mucci

Derived Datatypes

> Allow the programmer to create arbitrary, contiguous
and non-contiguous structures from the MPI primitive
datatypes

> Useful for constructing messages that contain values
with different datatypes (e.qg., an integer count followed
by a sequence of real numbers) and for sending
noncontiguous data (e.g., a sub-block of a matrix)

> Can eliminate the overhead of sending and receiving
multiple small messages

Philip Mucci

Derived Datatypes - Perfommance

> For non-contiguous data, the MP| standard specifies that the
"gaps’ in the data structure should not be sent. It leaves it up to
iImplementors however, whether or not the actual data to be sent
are:

> first copied into a buffer and then sent as a contiguous
message, which must be "unpacked” on the receiving side

> sent directly from the application buffer to the receive
process, where it may be buffered or not.

> Using non-contiguous datatypes may actually result in
performance degradation. In these cases, the programmer may
consider packing and unpacking the data "by hand".

Philip Mucci

Network Contention

> Occurs when the volume of data being communicated
between MPI tasks saturates the bandwidth of the
network

> Results in an overall decrease of communications
performance for all tasks

> Not much a user can do about this situation except be
aware of it, especially if running on a system with other
users running communication intensive applications.

Philip Mucci

SE M Performance Tips

> Sometimes desirable to avoid buffering (see next slide)

> Avoid derived data types
> May disable unbuffered or single copy data transfer
optimizations
> Avoid use of wild cards for large process counts
> Consider replacing MPI send/recv calls with MPI-2

MPI_Put/MPI_Get calls in latency sensitive sections of
an application

Philip Mucci

e g WS

SE MPI—Avaiding Message Buffering — Single Copy
Vethod

To use the unbuffered pathway

>

>

Link using —64
The MPI data type on the sender side must be a contiguous
fype.

Sender and receiver MPI processes must reside on the
same host.

The sender data must be globally accessible.

Set MPI_BUFFER_MAX to the message length in bytes
beyond which the single copy method should be tried - e..g,
2048

Philip Mucci

SGE VP —Buffered vs. Unbuffered

MPI_Send/MPI_Recv bandwidth improvement using unbuffered
instead of buffered (from the SGI MPI| Programmer’s Manual)

Message 02000 03000
lengh

8KB 1.2 1.1
1MB 1.2 1.2
10MB 1,8 D 1.6

Philip Mucci

SE MPI Callective Qperations

> MPI_Alltoall and MPI_Barrier optimized to avoid
message buffering when using shared memory

> MPI_Allreduce and MP|_Bcast not optimized for
shared memory

SA VP Ervronmant Vanables

> Use of the following environment variables may improve
MPI performance in some situations (type “man mpi” for
more information):

> MPI_BAR_DISSEM

> MPI_DSM_PLACEMENT
> MPI_DSM_PPM

> MPI_BUFFER_MAX

> MPI_XPMEM_ON

> MPI_DSM_MUSTRUN

> MPI_DSM_PLACEMENT
> MPI_DSM_PPM

> MPI_DSM_TOPOLOGY

Philip Mucci

OpenMP Performance

Philip Mucci

What is GpenMP?

Three components:
> Set of compiler directives for
— creating teams of threads
— sharing the work among threads
— synchronizing the threads
> Library routines for setting and querying thread attributes

> Environment variables for controlling run-time behavior
of the parallel program

Philip Mucci

e g WS

Paraldismin QoenVPP

> The parallel region is the construct for creating
multiple threads in an OpenMP program.

» A team of threads is created at run time for a
parallel region.

Spedifying Parallel Regions

Fortran l SOMP
PARALLEL [clause [clause..]]
! Block of
code executed by all threads

lSOMP END PARALLEL

C and C++

#pragma omp parallel [clause[clause...]] {
*

Coniling and Linking

MIPSpro: compile & link with —mp option
Fortran:
£f90 [options]-mp —-03 prog.ft
—freeform needed for free form source

—cpp nheededwhenusing #ifdef s
C/C++:

cc —mp -03 prog.c
CC —mp -03 prog.C
AIX/ XL Fortran: use —gsmp option

Philip Mucci

Work sharing in QoenVP

Two ways to specify parallel work:
— Explicitly coded in parallel regions
— Work-sharing constructs
» DO and for constructs: parallel loops
» sections
» Single
SPMD type of parallelism supported

Work and Data Partitioning
Loop parallelization

> distribute the work among the threads, without explicitly
distributing the data

> scheduling determines which thread accesses which
data

> communication between threads is implicit, through data
sharing

> synchronization via parallel constructs or explicitly
inserted into the code

Philip Mucci

e g WS

Work Sharing Construdts

DO and for : parallelizes a loop, dividing the iterations
among the threads

sections : defines a sequence of contiguous blocks, the
beginning of each bock being marked by a section
directive. The block within each section is assigned to one
thread

single: assigns a block of a parallel region to a single
thread

Philip Mucci

Deta Sooping

> Work-sharing and parallel directives
accept data scoping clauses.

> Scope clauses apply to the static extent of the
directive and to variables passed as actual
arguments.

» The shared clause applied to a variable
means that all threads will access the single
copy of that variable created in the master
thread.

Deta Sooping (cort.)

» The private clause applied to a variable
means that a volatile copy of the variable is
cloned for each thread.

QpenVP Scheduiing

Static

> threads are statically assigned chunks of size chunk in a

round-robin fashion. The default for chunk is ceiling(N/p)
where Nis the number of iterations and p is the number of
Processors

Dynamic

> threads are dynamically assigned chunks of size chunk, i.e.,
when a thread is ready to receive new work, it is assigned the
next pending chunk. Default value for chunk is 1.

Philip Mucci

QpenMP Scheduling (cont.)

Gulided

> a variant of dynamic scheduling in which the size of the chunk
decreases exponentially from chunk to 1. Default value for
chunk is ceiling(N/p)

Runtime

> indicates that the schedule type and chunk are specified
by the environment variable OMP_SCHEDULE. A
chunk cannot be specified with runt ime.

> Example of run-time specified scheduling
> setenv OMP_SCHEDULE “dynamic,2”

Philip Mucci

Message Passing versus Shared Venory

> Process versus thread address space

> Threads have shared address space, but the thread
stack holds thread-private data.

> Processes have separate address spaces.

> For message passing, e.g., MPI, all data are explicitly
communicated, no data are shared.

> For OpenMP, threads in a parallel region reference both
private and shared data.

> Synchronization: explicit or embedded in communication

Philip Mucci

QpenMP Loop Parallelization

Identify the loops that are bottleneck to
performance

Parallelize the loops, and ensure that
— no data races are created

— cache friendliness is preserved
— page locality is achieved

— synchronization and scheduling overheads
are minimized

Clstadles to Loop Parallelization

Data dependencies among iterations caused by
shared variables

Input/Output operations inside the loop

Calls to thread-unsafe code, e.g., the intrinsic
function rt c

Branches out of the loop
Insufficient work in the loop body

The auto-parallelizer can help in identifying these
obstacles.

Autometic Paralldization

Some compilers have an option that will automatically
parallelize your code.

The auto-parallelizer will insert OpenMP directdives into
your code if a loop can be parallelized. If not, it will tell
you why not.

“Safe” parallelization implies there are no dependencies.
Only loops can be parallelized automatically.

Should be considered, at best, as a first step toward
parallelizing your code.

The next steps should be inserting your own directives and
tuning the parallel sections.

Philip Mucci

Gl s,
! *

Strateges for Using Auto-parallelization

Run the auto-parallelizer on source files and
example the listing.

For loops that don’t automatically parallelize, try
to eliminate inhibiting dependencies by
modifying the source code.

Use the listing to implement parallelization by
hand using OpenMP directives.

MPSao Auto-paralldizer (APO)

The MIPSpro auto-parallelizer (APO) can be used both for
automatically parallelizing loops and for determining the
reasons which prevent a loop from being parallelized.

The auto-parallelizer is activated using command line
option apotothe £90, £77, cc, and CC compilers.

Other auto-parallelizer options: 1ist and mplist

Philip Mucci

MPSpro APO Usage

Example:
£f90 —apo list —-mplist myprog.ft
apo 1list enables APO and generates the file

myprog . 1list which describes which loops have
been parallelized, which have not, and why not

mplist generates the parallelized source program
myprog.w2f.f (myprog.w2c. c forC)
equivalent to the original code myprog. £

Philip Mucci

MPSaro GoenlVP BExanple

cvpav analyzes files created by compiling
with the option —apo keep

Try out the tutorial examples:

cp —-r /
usr/demos/ProMP/omp_tutorial
make

cvpav —-f omp_demo.f

Philip Mucci

Data Races

> Parallelizing a loop with data dependencies causes data
races. unordered or interfering accesses by multiple
threads to shared variables, which make the values of
these variables different from the values assumed in a

serial execution.

> A program with data races produces unpredictable
results, which depend on thread scheduling and speed.

Philip Mucci

Deta Dependenaes Exanyle

Carried dependence on a shared array, e.g., recurrence:

const 1nt n = 4096;

int a[n], 1;

for (1 = 0; 1 < n-1; 1++) {
ali] = ali+1l];

}
Non-trivial to eliminate, the auto-parallelizer cannot do it

Philip Mucci

Paralelizing the Recurrence
Idea: Segregate the even and odd indices

// Update even indices from odd

#define N 16384 #pragma omp parallel for
int a[N], work[N+1]; for (1 = 0; 1 < N-1; 1+=2)

// Save border element
work [N]= a[0];
// Update odd indices with even

// Save & shift even
fpragma omp parallel for

indices
#pragma omp parallel for for (1 =1; 1 < N-1; i+=2)
for (1 = 2; 1 < N; 1+=2) {
{ ali] = work[il;
work[1-1] = ali];)
} // Set border element

Philip Mucci

Conmon GpenMP Performance Prodlens

> Parallel startup costs

> Small loops

> Load imbalances

> Many references to shared variables
> Low cache affinity

> Costly remote memory references in NUMA
machines

> Unnecessary synchronization

Parallelization Tradedffs

> To Increase parallel fraction of work when
parallelizing loops, it is best to parallelize the
outermost loop of a nested loop

> However, doing so may require loop
transformations such as loop interchanges,
which can destroy cache friendliness, e.g.,
defeat cache blocking

Scheduling Tradedffs

» Static loop scheduling in large chunks per
thread promotes cache and page locality
but may not achieve load balancing.

> Dynamic and interleaved scheduling
achieve good load balancing but may
cause poor locality of data references.

Loop Fusion

> Increases the work in the loop body

> Better serial programs: fusion promotes
software pipelining and reduces the frequency
of branches

> Better OpenMP programs:

> fusion reduces synchronization and scheduling
overhead

> fewer parallel regions and work-sharing constructs

Philip Mucci

Pronmoting Loop Fusion
> Loop fusion inhibited by statements between loops that

may have dependencies with data accessed by the
loops

> Promote fusion: rearrange the code to get loops that are
not separated by statements creating data dependencies

> Use one parallel do construct for several adjacent
loops; may leave it to the compiler to actually perform
fusion

Philip Mucci

Performance Tuning— Data Locality

On NUMA platforms, it may be important to know
> where threads are running
> what data are in their local memories
> the cost of remote memory references
OpenMP itself provides no mechanisms for controlling
> the binding of threads to particular processors
> the placement of data in particular memories

Often system-specific mechanisms for addressing these
problems

> additional directives for data placement
> ways to control where individual threads are running

7

A4

A4

Philip Mucci

Cache Hiendliness
For both serial loops and parallel loops

> locality of references

— spatial locality: use adjacent cache lines and all items in
a cache line

— temporal locality: reuse same cache line; may employ
techniques such as cache blocking

For parallel loops

> low cache contention

— avoid the sharing of cache lines among different objects;
may resort to array padding or increasing the rank of an

array

Philip Mucci

Cache Hiendiness far Parallel Progras

Contention is an issue specific to parallel
loops, e.g., false sharing of cache lines

cache friendliness =
high locality of references
+
low contention

Page Level Locality

An ideal application has full page locality. pages
accessed by a processor are on the same node
as the processor, and no page is accessed by
more than one processor (no page sharing)

Twofold benefit:

» low memory latency
» scalability of memory bandwidth

Page Level Locality (cont.)

The benefits brought about by page locality are
more important for programs that are not cache
friendly

We look at several data placement strategies for
improving page locality
» System based placement
» data initialization and directives

» combination of system and program directed
data placement

IRIX Page Placement

IRIX has two page placement policies:

first-touch: the process which first references a
virtual address causes that address to be
mapped to a page on the node where the
Process runs

round-robin: pages allocated to a job are
selected from nodes traversed in round-robin
order

In addition, IRIX supports fixed page

IRIX Page Placemeant (cort.)

Fixed page placement: pages are placed in memory
by the program using compiler directives or system calls

IRIX uses first-touch, unless fixed placement
is specified or

setenv _DSM PLACEMENT ROUND_ROBIN
or
setenv _DSM ROUND ROBIN

Philip Mucci

.‘1.'-:_ :

IRIX Page Migration

IRIX allows to migrate pages between nodes,
to adjust the page placement

A page is migrated based on the affinity of data
accesses to that page, which is derived at run-
time from the per-process cache-miss pattern.

Page migration follows the page affinity with a
delay whose magnitude depends on the

aggressiveness of migration.

IRIX Page Mgration (cont.)

Page Migration:
» makes initial data placement less important,
e.g., allows sequential data initialization

» Improves locality of a computation whose data
access pattern changes during the
computations

» 1S useful for programs that have stable affinity
for long time intervals

IRIX Page Migration (cort.)
To enable data migration, except for explicitly
placed data
setenv _DSM_MIGRATION ON
To enable migration of all data
setenv _DSM_MIGRATION ALL_ON
To set the aggressiveness of migration

setenv _DSM_MIGRATION_LEVEL
n

where n is an integer between 0 (least aggressive,

Philip Mucci

Avaid Synchranization and Scheduling Overheads

> Partition in few parallel regions

Make the code loop fusion friendly
Use the nowait clause where possible
Avoid single and critical sections

Use static scheduling unless dynamic load
balancing is needed

AV 4

A4

A4

AV 4

Pertormance Analysis Tools

Philip Mucci

Defintions — Prafiling

Profiling
Recording of summary information during execution
inclusive, exclusive time, # calls, hardware statistics, ...

Reflects performance behavior of program entities
functions, loops, basic blocks
user-defined “semantic” entities

Very good for low-cost performance assessment
Helps to expose performance bottlenecks and hotspots

Implemented through
sampling: periodic OS interrupts or hardware counter traps
instrumentation: direct insertion of measurement code

Philip Mucci

Defintions— Traaing
Tracing
Recording of information about significant points (events) during
program execution

entering/exiting code region (function, loop, block, ...
thread/process interactions (e.g., send/receive message)

Save information in event record

timestamp
CPU identifier, thread identifier
Event type and event-specific information

Event trace is a time-sequenced stream of event records
Can be used to reconstruct dynamic program behavior
Typically requires code instrumentation

Philip Mucci

Avallable Profiling Tools

prof, gprof

PAPI (profiling based on timers or on any PAPI hardware
counter metric)

Dynaprof (requires dyninst or DPCL)

GuideView (OpenMP) (being phased out)

Vampir (MPI)

TAU (OpenMP, MPI, MPI/OpenMP)

SvPablo

HPCView

Vprof

Vendor specmc tools (e. g SGI IRIX perfex and ssrun, IBM

Philip Mucci L

praf, gorof
Available on many Unix platforms (e.g., IBM AlX, Sun
Solaris, HP/Compagq Tru64)

Produces “flat” profile (prof) or “call graph” profile (gprof)

Compile with special flag or set environment variable or
rewrite executable to enable instrumentation and
produce profile data file

Collect profile data by periodically sampling the program
counter during execution and/or calling monitoring
routines

See
man prof
man gprof

Philip Mucci

prof Profile of FSPX Benchmark

$time cumulative self calls ms/call tot/call name

21.71 18.93 18.93 6080 3.11 3.11 flux_
19.99 36.36 17.43 9124 1.91 3.91 proflux_
8.26 43.56 7.20 6080 1.18 1.18 pde_
8.11 50.63 7.07 6080 1.16 4.17 phase_
7.96 57.57 6.94 100061386 0.00 0.00 cplintg
7.46 64.08 6.51 100061388 0.00 0.00 cpsintg_
6.05 69.36 5.28 49807360 0.00 0.00 tsofx_
5.60 74 .24 4.88 49807362 0.00 0.00 tlofx
4.07 77.79 3.55 62202877 0.00 0.00 cpl_
2.44 79.92 2.13 37371906 0.00 0.00 cps_
1.67 81.38 1.46 37371904 0.00 0.00 hl_
1.43 82.63 1.25 37371904 0.00 0.00 hs_
1.07 83.56 0.93 24903681 0.00 0.00 elqgds_
0.89 84.34 0.78 37371904 0.00 0.00 aks_

Philip Mucci

IBM Prafiling Utllities

In addition to man pages, see the AIX 5
Performance Management Guide

prof

gprof
tprof

SA Profiling Utlities

SSrun
Collects Speedshop and Workshop performance data

Types of experiments: totaltime, usertime, pcsamp, ideal,
hardware counter

prof

Analyzes and displays SpeedShop performance data
generated by ssrun

perfex
Runs program and collects hardware counter data

Philip Mucci

HP/Conpag Profiling Uilities
prof

Displays profiling data from —p or pixie
pixie
Instruction-counting profiler
gprof
Displays profiling data from —pg or hiprof
hiprof
Creates instrumented version of program for call-graph profiling
uprofile
Profiles a program with Alpha on-chip performance counters

Philip Mucci

Overviewof PAPI

Performance Application Programming Interface

The purpose of the PAPI project is to design, standardize
and implement a portable and efficient APl to access the
hardware performance monitor counters found on most
modern microprocessors.

Parallel Tools Consortium project

Being installed and supported at the DoD HPC Centers as
part of PET CE004

Philip Mucci

PAPI Counter Interfaces

PAPI provides three interfaces to the underlying
counter hardware:

The low level interface manages hardware events in user
defined groups called EventSets.

The high level interface simply provides the ability to start,
stop and read the counters for a specified list of
events.

Graphical tools to visualize information.

Philip Mucci

PAP! Inplementation

Portable PAPI High Level

Layer

Machine
Specific

Philip Mucci

PAPI Preset Bvents

Proposed standard set of events deemed most
relevant for application performance tuning

Defined in papiStdEventDefs.h

Mapped to native events on a given platform

Run tests/avail to see list of PAPI preset events
available on a platform

Philip Mucci

e g WS

Highlevel Interface

Meant for application programmers wanting
coarse-grained measurements

Not thread safe
Calls the lower level API

Allows only PAPI preset events

Easier to use and less setup (additional code)
than low-level

Hghlevd AP

C interface Fortran interface
PAPI_start_counters PAPIF_start_counters
PAPI|_read_counters PAPIF_read_counters
PAPI|_stop_counters PAPIF_stop_counters
PAP|_accum_counters PAPIF_accum_counters
PAP|_num_counters PAPIF_num_counters
PAPI_flips PAPIF_flips

PAPI_ipc PAPIF_ipc

Philip Mucci

PAPI flips

int PAPI_flips(float *real_time, float *proc_time, long_long *flpins,
float *mflops)
Only two calls needed, PAPI_flips before and after the code you want to
monitor
real_time is the wall-clocktime between the two calls

proc_time is the “virtual” time or time the process was actually executing
between the two calls (not as fine grained as real_time but better for longer

measurements)
flpins is the total floating point instructions executed between the two calls

mflops is the Mflop/s rating between the two calls

Philip Mucci

LonHevd Interface

Increased efficiency and functionality over the
high level PAPI interface

About 40 functions

Obtain information about the executable and the
hardware

Thread-safe

Fully programmable
Callbacks on counter overflow

Callbacks on Counter Overflow

PAPI provides the ability to call user-defined
handlers when a specified event exceeds a
specified threshold.

For systems that do not support interrupt on
counter overflow at the operating system level,
PAPI sets up a high resolution interval timer
and installs a timer interrupt handler.

Statistical Profiling

PAPI provides support for execution profiling
based on any counter event.

The PAPI_profil() call creates a histogram of
overflow counts for a specified region of the
application code.

PAPI profil

int PAPI_profil(unsigned short *buf, unsigned int
bufsiz, unsigned long offset, unsigned scale, int
EventSet, int EventCode, int threshold, int flags)

*buf — buffer of bufsiz bytes in which the histogram
counts are stored

coffset — start address of the region to be profiled

escale — contraction factor that indicates how much
smaller the histogram buffer is than the region to be
profiled

Philip Mucci

What is DynaProf?

A portable tool to instrument a running executable
with Probes that monitor application
performance.

Simple command line interface.
Open Source Software

A work in progress...

DynaProf Methodology

Make collection of run-time performance data
easy by:
Avoiding instrumentation and recompilation
Using the same tool with different probes
Providing useful and meaningful probe data
Providing different kinds of probes
Allowing custom probes

Philip Mucci

\\hy the “Dynel™?

Instrumentation is selectively inserted directly into
the program’s address space.

Why is this a better way?
No perturbation of compiler optimizations

Complete language independence
Multiple Insert/Remove instrumentation cycles

Philip Mucci

DynaProf Design

GUI, command line & script driven user interface

Uses GNU readline for command line editing and
command completion.
Instrumentation is done using:

Dyninst on Linux, Solaris and IRIX
DPCL on AIX

Philip Mucci

DynaProf Commands

load <executable>

list [module pattern]

use <probe> [probe args]

Instr module <module> [probe args]

Instr function <module> <function> [probe args]
stop

continue

run [args]

Info

unload

Philip Mucci

Dynarof Probes

papiprobe
wallclockprobe
perfometerprobe

DynaPraf Probe Design

Can be written in any compiled language

Probes export 3 functions with a standardized
interface.

Easy to roll your own (<1day)

Supports separate probes for
MPI1/OpenMP/Pthreads

Future development

GUI development

Additional probes
Perfex probe
Vprof probe
TAU probe

Better support for parallel applications

Philip Mucci

KAP/Pro Toolset

http://www.kai.com/

Set of tools for developing parallel scientific software using
OpenMP

Components
Guide OpenMP compiler
Assure OpenMP debugger
GuideView performance analyzer
Utilities for translating older directives to OpenMP

Licensed at ERDC MSRC and ARL MSRC
Being phased out by Intel/KSL

GuceView
Intuitive, color-coded display of parallel performance

bottlenecks

Regions of code are identified where improving local
performance will have the greatest impact on overall
performance.

Configuration file Gvproperties.txt controls GUI features
(fonts, colors, window sizes and locations, etc.)

Online help system under Help menu

Use kmp_set_parallel_name to name parallel regions so
that name will be displayed by GuideView

Philip Mucci

Guce Instrumentation Qptions

-WGnoopenmp

Enable profiling but no OpenMP
-WGprof

Activates profiling for Vampir and GuideView; implies ~-WGstats
-WGprof_leafprune=<integer>

Sets the minimum size of procedures to retain in Vampir or
GuideView profiles to <integer> lines

Use to reduce instrumentation overhead and tracefile size

Philip Mucci

GQuceView— QoenMP Prdfile

e i Gyida [
R SW = P gl erly s e]

-] = R fAEaheE AL H! | FI | epalAu Tttt 1aak 11 -I-J
“'-:. -\. B ?@ ;:I

e oken Vi RPR

|— I_ Hudsann u - Eztimiatad Speadup
:I' n.ro u :II.III...
- BRI T TR AT T

Iuwer dpeedun curss

o __ IURAT S QAR U ..'. So I’ted by

m

et
CE
£1 0%
lirg

i 7
e G e _:ﬁ::s pid e LU LT Overhead to flnd
: el #@ R S
E. 1 : Unsorted view b a &0 " s Achial spnnrll.m |mportant
- - = s upgRy speednpy P R L LR 3
—-';—'T- B PUN'a liesr kpnnuug. ShOWS d|ffe rent a SARSAASTSEeASTe]
M3 R om " s o specing Whele Pregram)'Ima Distributlons
Ui i Ui 4 performance for s
s ..' 4 250 MHzvss
Whele Program Tme Digachigrocess D L TR | ey
a (TRIH] (LML} I'I.I'I'i'l u.uul %
. i MapvalenZiryd bk, A
~ & 70N kK2 5 unknowi o sad e
. & e s 1 22 0a1 = fulal line
.4y n.nan n.nan n:nan \/ n.nan 4 T maralicd Crfaa e iy e
s Finqesta & o A el
p mEwn
[M.l Inks B N.0A & SRgUANHA]
1 parnlell O Ul s sonuenieal awh;
& omoun 4 H .0 & spehennlzad
O uuy s keck
B 008 . a] 0:0 =, beswiar
|z n.ans. se rel T ik Lk | RIS | L
B ouuus. s i : M 000 5 peradul udtn
[0,003, ke O nar=s pararl
& nanschs
[R T R 1T T TN
r.00 2, pArlat wh.
E LLUL 5. parad ol

Philip Mucci

< KAL GuideYiew

File WYrnw ‘'Winluw Oplisez Grogplecy Help

[z

whole program speadups astimates

% __ Upper apeedugs cume
__ lywer speadup cunre
- x 12 B run'a uppar gpasdop
GuideView
t - . ® n'a aclual specdugp
. = sclect reference min
4, FD apai_kpta.B.atat — |

u 3] 12 1k

whole program tima distributions

20l MHs role
Jruns 3 shuwam

|E4RF 118102

i agan_kpta.datat
Fri Maw 7 1524527 1907
117.4 2. total iwe

18 parallcl 9 borvier regiona
VY Of 3 PG e 3300

PR N

.1 = zEyuantial
0.0 g. epguantial owh,
0.0 o, oynchranized
0.2 2 locha
o 3, baniera
Jich i, innbodanie
N7 = parallel nvh.
ARG & parallel

T .

Vanmr
http://www.pallas.com/e/products/vampir/index.htm

Primarily a tracing tool but also generates and
displays profiling statistics

Version 3 will support OpenMP and mixed
MPI/OpenMP

Version 3.x will use PAPI to access hardware
counter data

Licensed at ERDC MSRC, ARL MSRC, and ARSC

Vampir Statistics Display (also available in text form)

~pplu LIS
Lo o_ingua.y I lalumain
bl== W -iver_claar
=) e rood
b —iner_stm -
TSR —dmer_vlup
W oo W e Code
B cichanas 1 FASEr
rochminge i
eachanp &
exchanga b
cxchang: b
[| it _rnmn
W jacld
B jacu
L2 rorm
H'I_AI I &dee
| HI_Zairie-
B F[_Zoass
[Conm rank
H'l _l b _mize
HFIL_Fitmlize
IPI_[nlt
B PL [rooy
H'l _Herae
B WSl
IF[_Halt
ncLgbbotz
mrkedin
Junbope
B Lhz_resalte
B proc grad
[| read_input.
ot
zathu
s oo-f
Sr_r=vs £ Sror=vs 2 srhygprr

Lz Lo e

Philip Mucci

Vanmpirr: Timeline Diagram

= WA P

ARNL s

Functions

: . Process 1 Soe TR NE oy o
=11 23 : L [o

O rg a n |Zed I nto ::::::: j .-ll-l:l; e = "\ h I '____:-‘ : .:fll:l-:ﬁlul'litiﬂljtlll

Frocess g slfiE 15 5 5

Frocess 3 SiE

Frovess i sljiE
Fraeess T sReLa (1

Coloring by group | rzs ¥8

Froexs 3 ppkEs
1 Frosess |1 00

Message lines -

Progesy 18 2,0 rhz

CaN b6 C0l0red | e
by tag or Size | reeess s etm e R —

Philip Mucci

Vampir: Timeline Diagram (Message Info)

YAMPIR

FH0L ms U] ms A ms
Process 01 ([JHE rhs Bk

o Application
Proeess 1 (4 2 rhs ; BCaleulation

Process & [{IF 20 rhs ; ' BZetup

. B ommunicrn
Process 3 2§44 4 :
WAk, Rl

Frocess 4 QOb rhs Iu ¥ 16.bpv: Source Yiew Frocess ¥
PrncESS 5 [\.rhs :]5 rhs L |1'|'I'1.||TI.“HIT"|F'H—| |.|.'II!¢I']|FI'I]FI_.'|.I“: e 147, ol |

136 T2 a2t = ez, 1],k
Process 6 [E 2o rhs 147 hNIC s = gis 4k
146 RRICLRUEET 404K
Process ;/ =B 1141 BulApur 1 s k]
111 wral din

Mrocess 0 [F5E :;; FHH B

140
Procesz 1 (056 1l T0-ny-uz,

14 :
Process 10 T0E B W Eme

- . : 115 — A :
Process 11 ZERE i lu.¥ 16 bpv: Source Yiew Process B
: gtrarscs HER -] LMl p L DR 15k, O |

MProcess |2 [A5E rhs

== 48| - IERROR 3
Proecss 13 ¢ — ; 180 el
Ielentfled Message 187

L ol I T L L T T

Process 11 n Megzaqe sent from Process 7 to Frocess b 20 [P

_— r - = il . . 0
Frocess 10 I communicator: 0, ypa: 1 155 I (s, 15 Hicn

15- - |length: 21120 15E £ HPI WalT? M, 3TTUE, IERROF: |
- F 157
101~ - | 2ent 2L 80B 430 ma, receivad &t 007921 ma o .

r |Data rate: 2.227 MBytes'zec 1l my - 1ny
f 1L =1 k=1]"ny + |

— 1L UL T TE RN Lo B
[Cloze | 1 yitaccs? Pk] M [Lip oty

1R 7 Joter k] = W17 I 1

< Philip Mucci : VT 249

Vampir: Profile Statistics Displays

W ART-1E
ne runnom: Dlod (80325 T14])

AN

1k niE T
'.ur '|| -
LY TRy ('

AN _Fene
AP _Erast
«IHI_Mvalk
wAHI_allredurk
WIHl Zend
=Pl Flnalize
Al Irpay

191,721 my
1712501 mis

I1.RdR =
.44 in=
EH S

AP _Comm_sice |19RH04 us

Lakubdinn:cd oIk — A EE 1|

1" caeat I'rase2y 1 HHZI!!-! d |I'\I:H!-I !-!-J |"|'\CH:-!'!!-'1 I"roGe195 I' Hﬂil!!-ll'.l |Hll:- !-
L CRIN] 3200 ms 0 s

Aggregated
r i i n I-"-:-:r:i:-l I-'r:- |’."55 |"I|'||"' 55 'Il:l H'-:u:rss.ﬂ F'I'G-!FH I";i!im 14 I-'rnn:s.s '||1. l-:l_:lt:l TDSF.'I
p Of | g no [IE]

information: execution time, # caIIs, inclusive/exclusive
Available for all/any group (activity)

Available for all routines (symbols)
select in timeline diagram

Philip Mucci

Vampir: Communication Statistics Displays

Bytes sept/recewed for collective Byte and message count,
operations min/max/avg message length and

WM T

|'+.1u-r.u'|.t-;--.-:-:-:-|-...-| Ape sHon SkaH eHea (o0 —2 2T A5 | m| n/maX/avg bandW|dth
— I for each process pair

".-'l. 1I’IIE

1 LmJIh
T
111
G0
1k

Philip Mucci

Vanmpir: Other Features

Applicatlan

b Dynamic global call

M Coammunicatian graph tree

W Calculation

— AN
lu.W.16.0pv: Gslebal Gall Tres

el

Parallelism display

Powertul filtering and trace
comparison features

diagrams highly customizable
(through context menus)

Philip Mucci

Vanmir: Process Displays

WS AR

1B DRy At Ghart Frosaad 15 03,0000 -3.81 78

Calzula ienpdd A 1S

IR "L71rs.

T A Rl RCKCRAT 1%

Y AMPIR —
55 15 Gall Breakcdown [s350r)

|0 W16 bpy: Froce
JAEi |0 [

T THT

B

Activity chart

Closa i ASCI smallar (largar

Call tree

mHPI
Appllcation
Wl oulatinn 2
mZelup d
wi'erfy o
H .

ECrmimiunidzalien

000 Iz LWl ik g b e T =

e [o |
Iu W 16 bpy: Timeline Pracess 15

Timeline

Vampir (NAS Parallel Benchmark — LU)
e

Fila Global Displays Prooess Displays Pralorancas Edbes

Callgraph display

luiv: dore

lupze: Elchal Time line (100413 - 1:(A181 = [L547)
1:lIl].ﬂ 1:0DB 1:0.0

| P ’IIIIIIII IIIIIIII i ”” AL A A

lwpy: Call Tamn Prooees [

—ddimit comre (1 & 1E_“ECE ey
E:nl'l_mm:} A L S T T |

11017

L-|

GAPI Tgpes =Lrocld? (9 - (O_656 m4d
AP I_Compam_vroinkld 1 ¢ & L0 w=]
IMH | _Chumn_=i ~awEd 81 ; B30 |JH::
riodedim (1 = 51 O pod
=3 aAd_fnpert. [1 ;7 O, 14 £
*HPI Cinmn =icedd §1 @ $.190 mal
I II Phoast_diyme= (1 ¢ L AER as)
| LanHl_Hrestld 043 ¢ |, 08 el
oo wrid (1 = BR_O pu:)
—rncighbars 011 64,9 pnr
| 2 mubel oy irewivtdeers 91 @ P40 el

I Ill I |I|I Frootcocff (1 @ 750 pod
| —apathyper [1 + 84,0 pRd
=3 ge by ree iatbsor=e Llagoer 1L - O_206 41
Lacwact. [1.900 1 4, 20U nn?
—apuliv (1 5 %8l =0
Licwact (AFS1E @ 2GLEGE =)
=g [1 @ 1,68 E:I
Lopachawe 3 02 = 1556 9
E':-I"IF"T ol L3 | EM R)

5 1o D PR R R l:l.‘”']!! mH]
PAPT bhpilf2 62 = Z_348 mu)
= ARt et [0 1 d, 120
arha (361 - 173 =)
L cwclenge 3 ffab2 & 1,385 53
I el B0 : O 2dR RmD
E}I‘FI Ircoowd d SBRE ¢ A1 97 wul

||.-I.Il'|| |-4.|‘$.||:| \H‘I‘ flrﬂ

'IJ]I].E
il B 1 i lnmh:ﬂgn1
¥l ||
jecid

13”. I _BR LD OG0 0 allide &)
0 --- [- - e lZnaim bk 03 ¢ 5575 ||u':l
'—}HF"I_ﬁllrc-:Ltc-:{} LE s 505 ms)

e :
lacu Close| = Serch| »| Print| Faldfniold| +] &l 1 #SCI1 W Inclu:

|I|I|||| IHI l'llll IIII ..
||| | | || ||| 2 4M1T, > Communications

Philip Mucci ~_display oo
K .% '."..__I-_ !

Vampir v3.x: Hardware Counter Data

— W W FIR — Glabal Conrilear Tinreline 3 |_
sweppdd=dxd byt (33275 5 — 34211 5 = 0236 5)
:H.Iélh = !IEL:1 = !I-il.l:!:-:-s : :IEI-?'J':: Sed.0 b
: : : T [
; ; ; [| | | ; 1280 b
Processin _| : : : . i
0707 M ; : Ll TR R e) LD R
l WA kAR Tirnceliree: Pooes s o _|
awe e padexhd bart
Provess 1 ' | B9340 4 59,30 5 e R I £0.2| v
Z33.94E M k1Pl 5 : :
plicatinzn E E E
Pracezs } | | oo EEAEeIET e gt g = I
I 151441 14 i i

— ASEA M | . i | L i
12540 M L S i : .
; [| i

— | oo —_— :

- Pracess:l oy —— ! . 1
e SR | 04347 K : : PAPI_TAT_INE [rounts]

4741 W . . .

120 b I—| i i i

TFiAl W : : :

0.l ; I . ' ;
PR3k ' ' P&PL_FP_INE [rounts)

Philip Mucci

VProf

Philip Mucci

TAU

Tuning and Analysis Utilities

http://www.cs.uoregon.edu/research/paracomp/tau/
Portable profiling and tracing toolkit for performance analysis
of parallel programs
Fortran 77/90, C, C++, Java
OpenMP, Pthreads, MPI, mixed mode

In use at DOE ASCI Labs and at NCSA

Being installed and supported at DoD HPC Centers as part of
PET CE project

TAU Performance System Architecture

Iostrumented
S purce Pre. Souree Chject Exefntable Binary Rewrite
3 Code provessor Code - mpiler Code bl Code I::::I peraile
% H "lr FRTHE
2 [——1| Machine
-‘

PROFILE _{:;?"(;\ Eun Time Tabrary Modiles _
3 1 1
= Profile Fuanctinag Stafisfice
&) (GFroups Darebase
= Profiling Event Traces
= Funcion Hardware Lser-L evel

Callstack Conntfers Timers

'E Hucy — AR Tracc TIEFEE rq]])ﬁfﬁ ‘er
3 JRacy H MI Report Logs ERLVETL \ :
= EPILOG |

Philip Mucci

TAU Instrumentation

Manually using TAU instrumentation API

Automatically using
Program Database Toolkit (PDT)
MPI profiling library
Opari OpenMP rewriting tool
Uses PAPI to access hardware counter data

Philip Mucci

Program Datalbase Todlkit (PDT)

Program code analysis framework for developing source-based
tools

High-level interface to source code information

Integrated toolkit for source code parsing, database creation, and
database query

commercial grade front end parsers
portable IL analyzer, database format, and access API
open software approach for tool development
Target and integrate multiple source languages
Use in TAU to build automated performance instrumentation tools

Philip Mucci

PDT Conmponents

Edison Design Group (EDG): C, C++
Mutek Solutions Ltd.: F77, F90
creates an intermediate-language (IL) tree

processes the intermediate language (IL) tree
creates “program database” (PDB) formatted file
(Bernd Mohr, ZAM, Germany)

C++ program atabase tilities and = onversion ools plication
nvironment

processes and merges PDB files
C++ library to access the PDB for PDT applications

Philip Mucci

PDT Status

Program Database Toolkit (Version 2.2, web download)
EDG C++ front end (Version 2.45.2)
Mutek Fortran 90 front end (Version 2.4.1)
C++ and Fortran 90 IL Analyzer
DUCTAPE library
Standard C++ system header files (KCC Version 4.0f)

PDT-constructed tools
TAU instrumentor (C/C++/F90)
Program analysis support for SILOON and CHASM

SGl, IBM, Compagq, SUN, HP, Linux (IA32/I1A64),
Apple, Windows, Cray T3E, Hitachi

Philip Mucci

CPARI: Basic Usage (f90)
Reset OPARI state information
rm —f opari.rc
Call OPARI for each input source file
oparli fi1lel.f90

oparli f£i11leN.£f£90
Generate OPARI runtime table, compile it with ANSI C

oparl —-table opari.tab.c
cc —Cc opari.tab.c

Compile modified files * . mod . £90 using OpenMP

Link the resulting object files, the OPARI runtime table
opari.tab.o andthe TAU POMP RTL

Philip Mucci

TAU Analysis

Profile analysis
pprof

parallel profiler with text-based display

racy
graphical interface to pprof (Tcl/Tk)

jracy
Java implementation of Racy
Trace analysis and visualization
Trace merging and clock adjustment (if necessary)
Trace format conversion (ALOG, SDDF, Vampir)
Vampir (Pallas) trace visualization
Paraver (CEPBA) trace visualization

Philip Mucci

TAU Poraf Display

TR R LR B LN G R, R FT N R

BEuntf¥erg Filleg Tanalz Edit Searcoh Mnle Help

=eadi-z Prolflle "_les ir o-o™ll=.m
=dL G LEUHIL=1 g Al
#Time Fwr™ n=sivweE Tr—Tnsiw= =ra - Efn b= Trr™ 1sivwFE
mean arl o nea 1l el |l
AT | = =11 2C= z 12 A9l =33267
== S.RRT TrInLSET e =751 F AR TaRE
B .l <4 s Lo B Tty B Tt Sl
44 .5 O, =0l ML B b= S b I X TS 25T
41 . L2 <3E rla == ST . 4=l
b B B, A AR L TR L T I T1=R00 (1]}
A W Sl DL) ou,1d. 1494 = A W e
162 s S ' I] . biZ = _30as
S0 a1 D] L I o 077
AL oA h,!'l‘—:'] 'Ll | 1+1 .- T =
T o, o9 o,3=. = - ERNI
2.5 4, 95C E S o ST . S=iE
N oA S 1 A0k
(T S4E Sh= z 2= 2 A49e.5-
0.1 1=l 247 — 4701 - =47
NI 13- 1=- BrZEC . =
111 = 10+ ’ - TILAT R
(I 0, HEE = z = SIRESL
.1 9= == = z o1z
(] =ZiE <44 z FO=EF q4570
110 =1 =1 | ST . Ll
0.0 1= = — = | WS
O < s Z 17T _233E
o 7 EH T T nEaE
(R = 2 = = -5 5
0.0 L z — - R |
O = Z Z . 1007
o n.11F n_ESs i -1 =57
(R (L s) (L) z = b i N
.1 0,12 0.3=2 — = 5572
(] 0Lz (NI R z = 191
110 1,10 o1 - . 1~

=

NeErTS_ .

HFD L _ o

Jame

spplu
arosT_c npn T
Saibi= a2 1
auts
IFPI_F=z-(1
sl
'l -
~h=
jar: e
vk 21
Jaco
IFI_bL.=2ti1)

S h . T imm

Kl L- _L¢)
setiw

=l Taded

LR T

read D opus
rI_L-=st)]
===aT

HFI_lr unel]
ML Tiaaliz=r,
=et -

B oTe] ple
KL -
ainmoor
IFI_E=r~iev 1]
'l!l!l‘l-.'

ML F=gwal
=rchs-ze_ 5
=chs-ze_G
FI1_1 y:n_1a -

=i

A

o

-
A L

Srreasel

Jracy (NAS Parallel Benchmark — LU)

Nl oplicne Weodow. A o

Mesn
o o N
el 4,000

n: nOde acc 200 I T
ace 20 N e

C: context

profile
across a_ll

b pl onx Awrrnwas Froa

WPl e
maan I o
epeyt g [).
ot i) [<. 7o £
o 2,000 T . 5ox

t: thread

=

e wirdews llelp

W Heow)

B WP _Send]

B e Tepe commemil)

B WPL T cmnti niist]
B P Tppe sirun()
JAIT_ WeaR)

P Weinnei

A

Larast_inputs

EEEEEEEEEN

PRI EEARTY

Individual

= L77lmpc W -daeT | elp

1=

L e L

JoR | el
e [bt _ it
&7, a5 I . 1 ange J
qd, b0 [|yt o
At o [1)K
2.4 T s
oy o x N a7k
16, 225 I s h s
< a2 m [l i
3455 M exh drce J
gl rarn
Za1x o waid

LN PN A amm

1-Level Callpath Implementation in TAU
TAU maintains a performance event (routine) callstack
Profiled routine (child) looks in callstack for parent
Previous profiled performance event is the parent
A created first time parent calls
TAU records parentin a for child

String representing 1-level callpath used as its key
“a()=>b()” : name for time spent in “b” when called by “@”

Map returns pointer to callpath profile structure
1-level callpath is profiled using this profiling data

Build upon TAU’s performance mapping technology
Measurement is independent of instrumentation
Use to configure TAU

Philip Mucci

jracy (Callpeth Profiles)

Callpath
profile

across all

Moan I N . mmp
nc, b (00— [| [I |
no b 100 1 | L [1IR |
oo b 20,0 I . mnin ___ __
R —— - Bt e T
Flu rpuione =iz ol
Fia Catzae “Windewes Halp
T-orer E-1H =ntal rorec komol kaolzr omcCcE.l Tars
F7.00% I brast_|mpits = rhs LT 13,1 11,533 a0 L1z Talii Toans_iapise o The
14275 s beast nputs - buks baomE W o3m o oam mneeneen
13.8% Eaat |nputs == Lita i e ' . i
T2.H3 % bl:.'.lﬂ_il'lpl.l'l“'_.' -}]:H:|d il:: Eljff ::l:ll; :'!-:::: g IF:'. bome_iapicr = dmzu
10081 % 0 Leaal_impuly =s jaeu i ot et e - gy e Toms HIm T
FEA% W richanga 1 =c RP_Facw . s 1 " s - B pmniy e
6495 [exchange_d -» MPLWail) L Lili Lol S S 14 sl o Y
3,55 0 Eppiu - IJ_-¢-§|E=t |I1|]-IT|E= 17 11 L1E] L Al e, ® PIISED ppplu mr by
1.77% | applu == KF|_Finallzey] 1 il3 i, 5 Lic] LIl 213 Blow » azchezg L '
1.4485% uwlu =5 yulpy 1.n LE] 1321 €2 1E1% T30F fay =y guzamrgw_?
195% exchange 1 = NI Sonc D dm I WL T T e e
089% | M3 =» exchange 3
DA | bilks w2 wxchanga_1
0.51% exchange_} -= MP_Send(]
0,15% Pl - arar
sath == axacl E

) 0.21%

Philip Mucci

SAE Paformance Todls

ProDev workshop (formerly CASE Vision) :

cvd, cvperf, cvstatic

ProMP: parallel analyzer: cvpav

SpeedShop: profiling execution and reporting
profile data

Perfex: per process event count statistics
dprof: address space profiling

Parfex

Provides event statistics at the process level

Reports the number of occurrences of the events
captured by the R1X000 hardware counters in
each process of a parallel program

In addition, reports information derived from the
event counts, e.g. MFLOPS, memory
bandwidth

Perfex Usage

perfex —-mp [other options] a.out

To count secondary cache misses in the data cache (event 26) and
instruction cache (event 10):

perfex —-mp —-e 26 —-e 10 a.out
To multiplex all 32 events (-a) , get time estimates (-y) and trace
exceptions (-x)
perfex —-a —-x -y a.out
Type “man perfex” for more information

Philip Mucci

Speeashop

Speedshop is a set of tools that support profiling
at the function and source line level.

Uses several methods for collecting information
— PC and call stack sampling
— basic block counting
— exception tracing

Speedshop (cort.)

Data Collection

— ssrun main data collection tool. Running it on a.out creates
the files a.out.experimentmPID and a.out.experiment.pPID

— ssusage summary of resources used, similar to the time
commands

— ssapi APl forcaliper points

Data Analysis
— prot

Philip Mucci

ssrun Sanaling BExpenments

Statistical sampling, triggered by a preset time
base or by overflow of hardware counters

—pcsamp PC sampling gives user CPU time

—usertime call stack sampling, gives user
and system CPU time

—-totaltime call stack sampling, gives
walltime

ssrun Sanaling Gations
Sampling triggered by overflow of R1X000

hardware counters

—gi_hwc Graduated instructions
—gfp_hwc Floating point instructions

—ic_hwc Missesin L1 I-cache

—dc_hwce Misses in L1 D-cache
—dsc_hwc Data misses in L2 cache
—t1lb hwc TLB misses

ssrun Usage

Select a hardware counter, say secondary cache misses (26), and
an overflow value

setenv _SPEEDSHOP_HWC_COUNTER_NUMBER 26
setenv _SPEEDSHOP_HWC_COUNTER_OVERFLOW 99

Run the experiment

ssrun —-prof_hwc a.out

Default counteris L1 I-cache misses (9) and default overflow is
2,053

Philip Mucci

ssrun ldeal and Tracing BEXpenments

Ideal Experiment: basic block counting

—ideal counts the number of times each
basic block is executed and estimates the time.

Tracing
—fpe floating point exceptions

e file open, read,write, close
~heap malloc and free

prof

Display event counts or time in routines sorted in
descending order of the counts

Source line granularity with command line option —h or
-1

For ideal and usertime experiments get call hierarchy with
—butterfly option

For ideal experiment can get architecture information with
the —archinfo option

Cut off report at top 100-p% with -quit p%

Philip Mucci

Address Space Prailing: dorof

Gives per process histograms of page accesses
Sampling with a specified time base
— the current instruction is interrupted

— the address of the operand referenced by the
interrupted instruction is recorded

Time base is either the interval timer or an R1X000
hardware counter overflow

man dprof
R1X000 counters: man r10k_ counters

Philip Mucci

doror Usage

Syntax

dprof [—-hwpc [-cntr n] [-ovil m]]
[-1itimer [-ms t]] [—-out profile_file]
a.out

Default is interval timer (—it imer) with t=100
ms

Can select hardware counter (—hwpc) which has
the defaults

n =0 is the R1X000 cycle counter
m=10000 is the counter’s overflow value

Philip Mucci

Pertformance Results

(separate presentation by
Patrick Worley, ORNL)

