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Complex loops
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Block copy
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—-lcomplib.sgimath -1fastm - Include BLAS, FFTs, Convolutions,
EISPACK, LINPACK, LAPACK, Sparse Solvers and the fast math library.

dplace - program to change the page size of your executable. This
reduces TLB, page faults and increase MPI performance.



Tune Cache for Power2SC.
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d memory optimization, Fortran only.
ST preprocessor before compiling. (C)

preprocessor before compiling. (C)

—ghsflt - Don't round floating floating point numbers and don’t range
check floating point to integer conversions.

—inline=<funcl>, <func2> - Inline all calls to funcl and func2.

~Pk, -Pk! - Invoke t

-galign=4k - Align large arrays and structures to a 4k boundary.
—-lesslp?2 - Link in the Engineering and Scientific Subroutine Library.
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—1sci - Include library with BLAS, LAPACK and ESSL routines
-inlinefrom=<> - Specifies source file or directory of functions to inline
-inline?2 - Aggressively inline function calls.
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(3) 0.8% 0.03 0.00 1 _BSD getime
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