
Performance Optimization for
the Origin 2000

Philip Mucci (mucci@cs.utk.edu)
Kevin London (london@cs.utk.edu)

University of Tennessee, Knoxville

http://www.cs.utk.edu/~mucci/MPPopt.html

Army Research Laboratory, Aug. 31 - Sep. 2

Outline

■ Introduction to Performance
Optimization

■ Origin Architecture
■ Performance Issues and Metrics
■ Performance Tools
■ Numerical Libraries
■ Compiler Technology

Performance

■ What is performance?
– Latency
– Bandwidth
– Efficiency
– Scalability
– Execution time

■ At what cost?

Performance Examples

■ Operation Weather Forecasting Model
– Scalability

■ Database search engine
– Latency

■ Image processing system
– Throughput

What is Optimization?

■ Finding hot spots & bottlenecks
(profiling)
– Code in the program that uses a

disproportional amount of time
– Code in the program that uses system

resources inefficiently
■ Reducing wall clock time
■ Reducing resource requirements

Types of Optimization

■ Hand-tuning
■ Preprocessor
■ Compiler
■ Parallelization

Steps of Optimization

■ Profile
■ Integrate libraries
■ Optimize compiler switches
■ Optimize blocks of code that dominate

execution time
■ Always examine correctness at every

stage!

Performance Strategies

■ Always use optimal or near optimal
algorithms.
– Be careful of resource requirements and

problem sizes.
■ Maintain realistic and consistent input

data sets/sizes during optimization.
■ Know when to stop.

Performance Strategies
■ Make the Common Case Fast (Hennessy)

■ A 20% decrease of procedure3()results in
10% increase in performance.

■ A 20% decrease of main()results in 2.6%
increase in performance

PROCEDURE TIME
main() 13%
procedure1() 17%
procedure2() 20%

procedure3() 50%

Considerations when
Optimizing

■ Machine configuration, libraries and
tools

■ Hardware and software overheads
■ Alternate algorithms
■ CPU/Resource requirements
■ Amdahl’s Law
■ Communication pattern, load balance

and granularity

How high is up?

■ Profiling reveals percentages of time
spent in CPU and I/O bound functions.

■ Correlation with representative low-
level, kernel and application
benchmarks.

■ Literature search.
■ Peak speed means nothing.
■ Example: ISIS solver package

Origin 2000 Architecture

■ Up to 64 nodes
■ Each node has 2 R10000’s running at

195 Mhz
■ Each R10000 has on chip 32K

instruction, 32K data caches
■ Each R1000 has a 4MB off-chip unified

cache.

Origin 2000 Architecture

■ Each node is connected with a
624MB/sec CrayLink

■ Shared memory support in hardware
■ Supports message passing as well
■ Variable page size (dplace)

R10000 Architecture

■ 5 independent, pipelined, execution
units

■ 1 non-blocking load/store unit
■ 2 asymmetric integer units (both add,

sub, log)
■ 2 asymmetric floating point units

R10000 Architecture

■ Dynamic and speculative execution

Locality

Spatial - If location X is being accessed,
it is likely that a location near X will be
accessed soon.

Temporal - If location X is being
accessed, it is likely that X will be
accessed again soon.

Memory Hierarchy

Registers
Cache / TLB

<Level 2 Cache>
<Level 3 Cache>

Memory
Disk

SizeSpeed

SP2 Access Times

■ Register: 0 cycles
■ Cache Hit: 1 cycle
■ Cache Miss: 8-12 cycles
■ TLB Miss: 36-56 cycles
■ Page Fault: ~100,000 cycles

Cache Performance

Cache Architecture

■ Divided into smaller units of transfer
called lines. (32-256B, 4-32 doubles)

■ Each memory address is separated into:
– Page number
– Cache line
– Byte offset

Cache Mapping

■ Two major types of mapping
– Direct Mapped

Each memory address resides in only one
cache line. (constant hit time)

– N-way Set Associative
Each memory address resides in one of N
cache lines. (variable hit time)

2 way set associative cache

distinct lines = size / line size * associativity

Every data item can live in any class
but in only 1 line (computed from its address)

Line0
Class0

Line1
Class0

Line2
Class0

Line3
Class0

Line0
Class1

Line1
Class1

Line2
Class1

Line3
Class1

Memory Access

■ Programs should be designed for
maximal cache benefit.
– Stride 1 access patterns
– Using entire cache lines
– Avoiding re-use after first reference

■ Minimize page faults and TLB misses.

Asymptotic Analysis

■ Algorithm X requires O(N log N) time on
O(N processors)

■ This ignores constants and lower order
terms!

10N > N log N for N < 1024
10N*N < 1000N log N for N < 996

Amdahl’s Law

■ The performance improvement is
limited by the fraction of time the faster
mode can be used.

Speedup = Perf. enhanced / Perf. standard
Speedup = Time sequential / Time parallel

Time parallel = Tser + Tpar

Amdahl’s Law

■ Be careful when using speedup as a
metric. Ideally, use it only when the
code is modified. Be sure to completely
analyze and documengt your
environment.

■ Problem: This ignores the overhead of
parallel reformulation.

Amdahl’s Law

■ Problem? This ignores scaling of the
problem size with number of nodes.

■ Ok, what about Scaled Speedup?
– Results will vary given the nature of the

algorithm
– Requires O() analysis of communication

and run-time operations.

Efficiency

■ A measure of code quality?

E = Time sequential / (P * Time parallel)
S = P * E

■ Sequential time is not a good reference
point. For Origin, 4 is good.

Performance Metrics

■ Wall Clock time - Time from start to
finish of our program.
– Possibly ignore set-up cost.

■ MFLOPS - Millions of floating point
operations per second.

■ MIPS - Millions of instructions per
second.

Performance Metrics

■ MFLOPS/MIPS are poor measures
because
– They are highly dependent on the

instruction set.
– They can vary inversely to performance!

– What’s most important?

EXECUTION TIME

Performance Metrics

■ For purposes of optimization, we are
interested in:
– Execution time of our code
– MFLOPS of our kernel code vs. peak in

order to determine EFFICIENCY

Performance Metrics

■ Fallacies
– MIPS is an accurate measure for comparing

performance among computers.
– MFLOPS is a consistent and useful measure

of performance.
– Synthetic benchmarks predict performance

for real programs.
– Peak performance tracks observed

performance.

(Hennessey and Patterson)

Performance Metrics

■ Our analysis will be based upon:
– Performance of a single machine
– Performance of a single (optimal) algorithm
– Execution time

Performance Metrics

For the purposes of comparing your
codes performance among different
architectures base your comparison
on time.

...Unless you are completely aware of all
the issues in performance analysis
including architecture, instruction sets,
compiler technology etc...

Issues in Performance

■ Brute speed (MHz and bus width)
■ Cycles per operation (startup +

pipelined)
■ Number of functional units on chip
■ Access to Cache, RAM and storage

(local & distributed)

Issues in Performance

■ Cache utilization
■ Register allocation
■ Loop nest optimization
■ Instruction scheduling and pipelining
■ Compiler Technology
■ Programming Model (Shared Memory,

Message Passing)

Issues in Performance
Problem Size and Precision

■ Necessity
■ Density and Locality
■ Memory, Communication and Disk I/O
■ Numerical representation

– INTEGER, REAL, REAL*8, REAL*16

Parallel Performance Issues

■ Single node performance
■ Compiler Parallelization
■ I/O and Communication
■ Mapping Problem - Load Balancing
■ Message Passing or Data Parallel

Optimizations

Performance ToolsPerformance Tools

Numerical LibrariesNumerical Libraries

Compiler TechnologyCompiler Technology

Serial Optimizations

■ Use vendor libraries.
■ Improve cache utilization.
■ Improve loop structure.
■ Use subroutine inlining.
■ Use most aggressive compiler options.

Array Optimization

■ Array Initialization
■ Array Padding
■ Stride Minimization
■ Loop Fusion
■ Floating IF’s
■ Loop Defactorization
■ Loop Peeling
■ Loop Interchange

■ Loop Collapse
■ Loop Unrolling
■ Loop Unrolling and

Sum Reduction
■ Outer Loop Unrolling

Array Allocation

■ Array’s are allocated differently in C and
FORTRAN.

1 2 3

4 5 6

7 8 9

C: 1 2 3 4 5 6 7 8 9

Fortran: 1 4 7 2 5 8 3 6 9

Array Initialization

Which to choose?
■ Static initialization requires:

– Disk space and Compile time
– Demand paging
– Extra Cache and TLB misses.
– Less run time

■ Use only for small sizes with default
initialization to 0.

Array Initialization

■ Static initialization
REAL(8) A(100,100) /10000*1.0/

■ Dynamic initialization
DO I=1, DIM1

DO J=1, DIM2

A(I,J) = 1.0

Array Padding

■ Data in COMMON blocks is allocated
contiguously

■ Watch for powers of two and know the
associativity of your cache.

■ Example: Possible miss per element on
T3E

common /xyz/ a(2048),b(2048)

Array Padding
a = a + b * c

Tuned Untuned Tuned
-O3

Untuned
-O3

Origin
2000

1064.1 1094.7 800.9 900.3

Stride Minimization

■ We must think about spatial locality.
■ Effective usage of the cache provides us

with the best possibility for a
performance gain.

■ Recently accessed data are likely to be
faster to access.

■ Tune your algorithm to minimize stride,
innermost index changes fastest.

Stride Minimization

■ Stride 1
do y = 1, 1000

do x = 1, 1000

c(x,y) = c(x,y) + a(x,y)*b(x,y)

■ Stride 1000
do y = 1, 1000

do x = 1, 1000

c(y,x) = c(y,x) + a(y,x)*b(y,x)

Stride Minimization

Loop Fusion

■ Loop overhead reduced
■ Better instruction overlap
■ Lower cache misses
■ Be aware of associativity issues with

array’s mapping to the same cache line.

Loop Fusion

■ Untuned

do i = 1, 100000

 x = x * a(i) + b(i)

 do i = 1, 100000

 x = x + a(i) / b(i)

 enddo

enddo

■ Tuned

do i = 1, 100000

x = x * a(i) + b(i)

x = x + a(i) / b(i)

enddo

Loop Fusion

Loop Interchange

■ Swapping the nested order of loops
– Minimize stride
– Reduce loop overhead where inner loop

counts are small
– Allows better compiler scheduling

Loop Interchange

■ Untuned

real*8 a(2,40,2000)

do i=1, 2000

 do j=1, 40

 do k=1, 2

 a(k,j,i) = a(k,j,i)*1.01

 enddo

 enddo

enddo

■ Tuned

real*8 a(2000,40,2)

do i=1, 2

 do j=1, 40

do k=1, 2000

 a(k,j,i) = a(k,j,i)*1.01

enddo

 enddo

enddo

Loop Interchange

Floating IF’s

■ IF statements that do not change from
iteration to iteration may be moved out
of the loop.

■ Compilers can usually do this except
when
– Loops contain calls to procedures
– Variable bounded loops
– Complex loops

Floating IF’s

■ Untuned

do i = 1, lda

 do j = 1, lda

 if (a(i) .GT. 100) then

 b(i) = a(i) - 3.7

 endif

 x = x + a(j) + b(i)

 enddo

enddo

■ Tuned

do i = 1, lda

 if (a(i) .GT. 100) then

 b(i) = a(i) - 3.7

 endif

 do j = 1, lda

 x = x + a(j) + b(i)

 enddo

enddo

Floating IF’s

Loop Defactorization

■ Loops involving multiplication by a
constant in an array.

■ Allows better instruction scheduling.
■ Facilitates use of multiply-adds.

Loop Defactorization

■ Note that floating point operations are
not always associative.

(A + B) + C != A + (B + C)

■ Be aware of your precision
■ Always verify your results with

unoptimized code first!

Loop Defactorization

■ Untuned

do i = 1, lda

 A(i) = 0.0

 do j = 1, lda

 A(i)=A(i)+B(j)*D(j)*C(i)

 enddo

enddo

■ Tuned

 do i = 1, lda

 A(i) = 0.0

 do j = 1, lda

 A(i) = A(i) + B(j) * D(j)

 enddo

 A(i) = A(i) * C(i)

 enddo

Loop Defactorization

Loop Peeling

■ For loops which access previous
elements in arrays.

■ Compiler often cannot determine that
an item doesn’t need to be loaded
every iteration.

Loop Peeling

■ Untuned

 jwrap = lda

 do i = 1, lda

 b(i) = (a(i)+a(jwrap))*0.5

 jwrap = i

 enddo

■ Tuned

b(1) = (a(1)+a(lda))*0.5

do i = 2, lda

 b(i) = (a(i)+a(i-1))*0.5

enddo

Loop Peeling

Loop Collapse

■ For multi-nested loops in which the
entire array is accessed.

■ This can reduce loop overhead and
improve compiler vectorization.

Loop Collapse

■ Untuned

 do i = 1, lda
 do j = 1, ldb

 do k = 1, ldc

 A(k,j,i) = A(k,j,i) + B(k,j,i) * C(k,j,i)

 enddo

 enddo

 enddo

Loop Collapse

■ Tuned
 do i = 1, lda*ldb*ldc

 A(i,1,1) = A(i,1,1) + B(i,1,1) * C(i,1,1)

 enddo

■ More Tuned (declarations are 1D)
 do i = 1, lda*ldb*ldc

 A(i) = A(i) + B(i) * C(i)

 enddo

Loop Collapse

Loop Unrolling

■ Data dependence delays can be
reduced or eliminated.

■ Reduce loop overhead.
■ Might be performed well by the

compiler or preprocessor. (Careful on
the T3E)

Loop Unrolling

■ Untuned

do i = 1, lda

 do j = 1, lda

 do k = 1, 4

 a(j,i) = a(j,i) + b(i,k) * c(j,k)

 enddo

 enddo

enddo

Loop Unrolling

■ Tuned (4)

do i = 1, lda

 do j = 1, lda

 a(j,i) = a(j,i) + b(i,1) * c(j,1)

 a(j,i) = a(j,i) + b(i,2) * c(j,2)

 a(j,i) = a(j,i) + b(i,3) * c(j,3)

 a(j,i) = a(j,i) + b(i,4) * c(j,4)

 enddo

enddo

Loop Unrolling

Loop Unrolling and Sum
Reductions

■ When an operation requires as input
the result of the last output.

■ Called a Data Dependency.
■ Frequently happens with multi-add

instruction inside of loops.
■ Introduce intermediate sums. Use your

registers!

Loop Unrolling and Sum
Reductions

■ Untuned

 do i = 1, lda

 do j = 1, lda

 a = a + (b(j) * c(i))

 enddo

 enddo

Loop Unrolling and Sum
Reductions

■ Tuned (4)

 do i = 1, lda

 do j = 1, lda, 4

 a1 = a1 + b(j) * c(i)

 a2 = a2 + b(j+1) * c(i)

 a3 = a3 + b(j+2) * c(i)

 a4 = a4 + b(j+3) * c(i)

 enddo

 enddo

 aa = a1 + a2 +a3 + a4

Loop Unrolling and Sum
Reductions

Outer Loop Unrolling

■ For nested loops, unrolling outer loop
may reduce loads and stores in the
inner loop.

■ Compiler may perform this optimization.

Outer Loop Unrolling

■ Untuned
– Each multiply requires two loads and one

store.

 do i = 1, lda

 do j = 1, ldb

 A(i,j) = B(i,j) * C(j) + D(j)

 enddo

 enddo

Outer Loop Unrolling

■ Tuned
– Each multiply requires 5/4 loads and one

store.

 do i = 1, lda, 4

 do j = 1, ldb

 A(i,j) = B(i,j) * C(j) + D(j)

 A(i+1,j) = B(i+1,j) * C(j) + D(j)

 A(i+2,j) = B(i+2,j) * C(j) + D(j)

 A(i+3,j) = B(i+3,j) * C(j) + D(j)

 enddo

 enddo

Outer Loop Unrolling

Loop structure

■ IF/GOTO and WHILE loops inhibit some
compiler optimizations.

■ Some optimizers and preprocessors can
perform transforms.

■ DO and for() loops are the most highly
tuned.

Strength Reduction

■ Reduce cost of mathematical operation
with no loss in precision, compiler might
do it.
– Integer multiplication/division by a

constant with shift/adds
– Exponentiation by multiplication
– Factorization and Horner’s Rule
– Floating point division by inverse

multiplication

Strength Reduction
Horner’s Rule

■ Polynomial expression can be rewritten
as a nested factorization.

Ax^5 + Bx^4 + Cx^3 + Dx^2 + Ex + F =

((((Ax + B) * x + C) * x + D) * x + E) * x + F.

■ Also uses multiply-add instructions
■ Eases dependency analysis

Strength Reduction
Horner’s Rule

Strength Reduction
Integer Division by a Power of 2

■ Shift requires less cycles than division.
■ Both dividend and divisor must both be

unsigned or positive integers.

Strength Reduction
Integer division by a Power of 2

■ Untuned

IL = 0

DO I=1,ARRAY_SIZE

 DO J=1,ARRAY_SIZE

 IL = IL + A(J)/2

 ENDDO

 ILL(I) = IL

ENDDO

■ Tuned

IL = 0

ILL = 0

DO I=1,ARRAY_SIZE

 DO J=1,ARRAY_SIZE

 IL = IL + ISHFT(A(J),-1)

 ENDDO

 ILL(I) = IL

ENDDO

Strength Reduction
 Integer division by a Power of 2

Strength Reduction
Factorization

■ Allows for better instruction scheduling.
■ Compiler can interleave loads and ALU

operations.
■ Especially benefits compilers able to do

software pipelining.

Strength Reduction
Factorization

■ Untuned
XX = X*A(I) + X*B(I) + X*C(I) + X*D(I)

■ Tuned
XX = X*(A(I) + B(I) + C(I) + D(I))

Strength Reduction
Factorization

Subexpression Elimination
Parenthesis

■ Parenthesis can help the compiler
recognize repeated expressions.

■ Some preprocessors and aggressive
compilers will do it.

Subexpression Elimination
Parenthesis

■ Untuned
XX = XX + X(I)*Y(I)+Z(I) + X(I)*Y(I)-Z(I) + X(I)*Y

(I) + Z(I)

■ Tuned
XX = XX + (X(I)*Y(I)+Z(I)) + X(I)*Y(I)-Z(I) + (X

(I)*Y(I) + Z(I))

Subexpression Elimination
Parenthesis

Subexpression Elimination
Type Considerations

■ Changes the type or precision of data.
– Reduces resource requirements.
– Avoid type conversions.
– Processor specific performance.

■ Do you really need 8 or 16 bytes of
precision?

Subexpression Elimination
Type Considerations

■ Consider which elements are used
together?
– Should you be merging your arrays?
– Should you be splitting your loops for

better locality?
– For C, are your structures packed tightly in

terms of storage and reference pattern?

Subroutine Inlining

■ Replaces a subroutine call with the
function itself.

■ Useful in loops that have a large
iteration count and functions that don’t
do a lot of work.

■ Allows better loop optimizations.
■ Most compilers can do inlining but not

that well on large applications.

Optimized Arithmetic Libraries

■ (P)BLAS: Basic Linear Algebra
Subroutines

■ (Sca)LAPACK: Linear Algebra Package
■ ESSL: Engineering and Scientific

Subroutine Library
■ NAG: Numerical Algorithms Group
■ IMSL: International Mathematical and

Statistical Lib.

Optimized Arithmetic Libraries

■ Advantages:
– Subroutines are quick to code and

understand.
– Routines provide portability.
– Routines perform well.
– Comprehensive set of routines.

SGI Origin 2000

■ MIPS R10000, 195Mhz, 5.1ns
■ 64 Integer, 64 Floating Point Registers
■ 4 Instructions per cycle
■ Up to 2 Integer, 2 Floating Point, 1

Load/Store per cycle
■ 4 outstanding cache misses
■ Out of order execution

SGI Origin 2000

■ 64 Entry TLB, variable page size
■ 32K Data, 32K Instruction, 4MB unified.
■ Data is 2-way set associative, 2-way

interleaved.
■ 32B/128B line size.

SP2

■ IBM Power 2 SC, 135Mhz
■ 32 Integer, 32 Floating Point Registers
■ 6(8) Instructions per cycle
■ 2 Integer, 2 Floating Point, 1 Branch,. 1

Conditional
■ Zero cycle branches, dual FMA

SP2

■ 256 Entry TLB
■ Primary Cache 128K Data, 32K

Instruction
■ 4 way set associative
■ 256B line size

T3E

■ Alpha 21164, 450Mhz
■ Primary Cache 8K Data, 8K Instruction
■ 96KB on-chip 3-way associative

secondary cache
■ 2 FP / 2 Int / cycle

T3E

■ Scheduling very important
■ 64 bit divides take 22-60 CP
■ Ind Mult/Add takes 4 cp, but issued

every cycle

T3E

■ Latency hiding features
– Cache bypass
– Streams
– E-registers

■ 6 queued Dcache misses/WBs to
Scache

■ Load/store merging
■ 32/64 byte line Dcache/Scache
■ 2 cycle/8-10 cycle hit Dcache/Scache

T3E Streams

■ Designed to provide automatic
prefetching for densely strided data.

■ 6 stream buffers, two 64 byte lines
each

■ Starts when 2 contiguous misses
■ Look at difference in loads

– 875MB/sec with streams
– 296MB/sec without

T3E Streams

■ Count references to memory in your
loops, make sure no more than six.

■ May need to split loops to reduce
streams.

■ To use them
setenv SCACHE_D_STREAMS 1
man intro_streams
man streams_guide

T3E E-registers

■ 512 64-bit off-chip registers for
transferring data to/from remote/local
memory

■ SHMEM library
– Local, shared, distributed, memory access

routines that use the E-registers.
man intro_shmem

■ Block copy
– 775 MB/sec vs 401 MB/sec

T3E Cache Bypass

■ Reduces memory traffic requirements.
■ Fortran

!DIR$ CACHE_BYPASS var1, var2

■ C
#pragma _CRI cache_bypass var1,
var2

■ Block copy
– 593 MB/sec vs 401 MB/sec

T3E E-registers

■ Benchlib library
– One sided data transfers from memory to

E-registers bypassing cache
– Scatter / Gather in hardware
– Nonblocking
– More complicated to use than SHMEM
– Not supported by Cray
– 592 MB/sec vs 401 MB/sec for copy

O2K Flags and Libraries
-O,-O2 - Optimize

-O3 - Maximal generic optimization, may alter semantics.

-Ofast=ip27 - SGI compiler group’s best set of flags.

-IPA=on - Enable interprocedural analysis.

-n32 - 32-bit object, best performer.

-INLINE:<func1>,<func2> - Inline all calls to func1 and func2.

-LNO - Enable the loop nest optimizer.

-feedback - Record information about the programs execution behavior
to be used by IPA, LNO.

-lcomplib.sgimath -lfastm - Include BLAS, FFTs, Convolutions,
EISPACK, LINPACK, LAPACK, Sparse Solvers and the fast math library.

dplace - program to change the page size of your executable. This
reduces TLB, page faults and increase MPI performance.

SP2 Flags and Libraries
-O,-O2 - Optimize

-O3 - Maximum optimization, may alter semantics.

-qarch=pwr2, -qtune=pwr2 - Tune for Power2.

-qcache=size=128k,line=256 - Tune Cache for Power2SC.

-qstrict - Turn off semantic altering optimizations.

-qhot - Turn on addition loop and memory optimization, Fortran only.

-Pv,-Pv! - Invoke the VAST preprocessor before compiling. (C)

-Pk,-Pk! - Invoke the KAP preprocessor before compiling. (C)

-qhsflt - Don’t round floating floating point numbers and don’t range
check floating point to integer conversions.

-inline=<func1>,<func2> - Inline all calls to func1 and func2.

-qalign=4k - Align large arrays and structures to a 4k boundary.

-lesslp2 - Link in the Engineering and Scientific Subroutine Library.

-eagerlimit 16384 with poe executables.

T3E Flags and Libraries
-O,-O2 - Optimize

-O3 - Maximum optimization, may alter semantics.

-apad - Pad arrays to avoid cache line conflicts

-unroll2 - Apply aggressive unrolling

-pipeline2 - Software pipelining

-split2 - Apply loop splitting.

-Wl”-Dallocate(alignsz)=64b” Align common blocks on cache line
boundary

-lmfastv - Fastest vectorized intrinsics library

-lsci - Include library with BLAS, LAPACK and ESSL routines

-inlinefrom=<> - Specifies source file or directory of functions to inline

-inline2 - Aggressively inline function calls.

Timers

■ time <command> returns 3 kinds.
– Real time: Time from start to finish
– User: CPU time spent executing your code
– System: CPU time spent executing system

calls

■ timex on the SGI.
■ Warning! The definition of CPU time is

different on different machines.

Timers

■ Sample output for csh users:
 1 2 3 4 5 6 7

1.150u 0.020s 0:01.76 66.4 15+3981k 24+10io 0pf+0w

1) User (ksh)
2) System (ksh)
3) Real (ksh)
4) Percent of time spent on behalf of this process, not including

waiting.
5) 15K shared, 3981K unshared
6) 24 input, 10 output operations
7) No page faults, no swaps.

Timers

■ Latency is not the same as resolution.
– Many calls to this function will affect your

wall clock time.

prof

■ Profiles program execution at the
procedure level

■ Available on most Unix systems, not
T3E

■ Displays the following:
– Name, percentage of CPU time
– Cumulative and average execution time
– Number of time procedure was called

prof

■ Compile your code with -p
■ After execution the CWD will contain

mon.out.(x)
■ Type prof, it will look for mon.out in the

CWD. Otherwise give it name(s) with the -m
option

■ Format of output is:

Name %Time Seconds Sumsecs #Calls msec/call

prof

■ All procedures called by the object
code, many will be foreign to the
programmer.

■ Statistics are created by sampling and
then looking up the PC and correlating
it with the address space information.

■ Phase problems may cause erroneous
results and reporting.

SpeedShop on the SGI

■ ssusage collects information about
your program’s use of machine time
and resources.

■ ssrun allows you to run experiments
on a program to collect performance
data.

■ prof analyzes the performance data
you have recorded using ssrun and
provides formatted reports.

SpeedShop on the SGI

■ Collects hardware statistics at the
subroutine level
– Build the application
– Run experiments to collect data

■ ssrun -exp <exp> <exe>

– Examine the data
■ prof <exe> <exe.ssrunfiles>

– Optimize

SpeedShop Usage
■ Usage: ssrun [-exp expt] [-mo marching-orders] [-purify]
 [-v | -verbose] [-hang] [-x display window]
 [-name target-name] a.out [a.out-arguments]

■ Defined experiments are:
 usertime, pcsamp, fpcsamp, pcsampx, fpcsampx, ideal, prof_hwc,

gi_hwc, cy_hwc, ic_hwc, isc_hwc, dc_hwc, dsc_hwc, tlb_hwc, gfp_hwc,
fgi_hwc, fcy_hwc, fic_hwc, fisc_hwc, fdc_hwc, fdsc_hwc, ftlb_hwc,
fgfp_hwc, heap, fpe.

Ideal Experiment

 Prof run at: Fri Jan 30 01:59:32 1998
 Command line: prof nn0.ideal.21088
 --
 3954782081: Total number of cycles
 20.28093s: Total execution time
 2730104514: Total number of instructions executed
 1.449: Ratio of cycles / instruction
 195: Clock rate in MHz

 R10000: Target processor modeled

Procedures sorted in descending order of cycles executed.
Unexecuted procedures are not listed. Procedures
beginning with *DF* are dummy functions and represent
init, fini and stub sections.

 cycles(%) cum % secs instrns calls procedure(dso:file)
3951360680(99.91) 99.91 20.26 2726084981 1 main(nn0.pixie:nn0.c)
1617034(0.04) 99.95 0.01 1850963 5001 doprnt

Pcsamp Experiment

--
Profile listing generated Fri Jan 30 02:06:07 1998
 with: prof nn0.pcsamp.21081
--
samples time CPU FPU Clock N-cpu S-interval Countsize
 1270 13s R10000 R10010 195.0MHz 1 10.0ms 2(bytes)
Each sample covers 4 bytes for every 10.0ms (0.08% of 12.7000s)
--
samples time(%) cum time(%) procedure (dso:file)
 1268 13s(99.8) 13s(99.8) main (nn0:nn0.c)
 1 0.01s(0.1) 13s(99.9) _doprnt

Example of UserTime

--
Profile listing generated Fri Jan 30 02:11:45 1998
 with: prof nn0.usertime.21077
--
 Total Time (secs) : 3.81
 Total Samples : 127
 Stack backtrace failed: 0
 Sample interval (ms) : 30
 CPU : R10000
 FPU : R10010
 Clock : 195.0MHz
 Number of CPUs : 1
--
index %Samples self descendents total name
(1) 100.0% 3.78 0.03 127 main
(2) 0.8% 0.00 0.03 1 _gettimeofday

(3) 0.8% 0.03 0.00 1 _BSD_getime

tprof for the SP2

■ Reports CPU usage for programs and
system. i.e.
– All other processes while your program was

executing
– Each subroutine of the program
– Kernel and Idle time
– Each line of the program

■ We are interested in source statement
profiling.

tprof for the SP2

■ Also based on sampling, which may cause
erroneous reports.

■ Compile using -qlist and -g
■ tprof <program> <args>
■ Leaves a number of files in the CWD preceded by __.

__h.<file>.c - Hot line profile

__t.<subroutine>_<file>.c - Subroutine profile
__t.main_<file>.c - Executable profile

PAT for the T3E

■ Performance analysis tool is a low-
overhead method for
– Estimating time in functions
– Determining load balance
– Generating and viewing trace files
– Timing individual calls
– Displaying hardware performance counter

information

PAT for the T3E

■ Uses the UNICOS/mk profil()
system call to gather information by
periodically sampling and examining the
program counter.

■ Works on C, C++ and Fortran
executables

■ No recompiling necessary
■ Just link with -lpat

Apprentice for the T3E

■ Graphical interface for identifying
bottlenecks.

% f90 -eA <file>.f -lapp

% cc -happrentice <file>.c -lapp

% a.out

% apprentice app.rif

apprenti

Additional Material

http://www.cs.utk.edu/~mucci/MPPopt.html

■ Slides
■ Optimization Guides
■ Papers
■ Pointers
■ Compiler Benchmarks

References

http://www.nersc.gov

http://www.mhpcc.gov

http://www-jics.cs.utk.edu

http://www.tc.cornell.edu

http://www.netlib.org

http://www.ncsa.uiuc.edu

http://www.cray.com

http://www.psc.edu

References

Hennessey and Patterson: Computer Architecture, A
Quantitative Approach

Dongarra et al: MPI, The Complete Reference
Dongarra et al: PVM, Parallel Virtual Machine
Vipin Kumer et al: Introduction to Parallel Computing
IBM: Optimization and Tuning Guide for Fortran, C, C++

