
Performance Optimization for 
the Origin 2000

Philip Mucci (mucci@cs.utk.edu)
Kevin London (london@cs.utk.edu)

University of Tennessee, Knoxville

http://www.cs.utk.edu/~mucci/MPPopt.html 

Army Research Laboratory, Aug. 31 - Sep. 2



Outline

■ Introduction to Performance 
Optimization

■ Origin Architecture
■ Performance Issues and Metrics
■ Performance Tools
■ Numerical Libraries
■ Compiler Technology



Performance

■ What is performance? 
– Latency
– Bandwidth
– Efficiency
– Scalability
– Execution time

■ At what cost?



Performance Examples

■ Operation Weather Forecasting Model
– Scalability

■ Database search engine
– Latency

■ Image processing system
– Throughput



What is Optimization?

■ Finding hot spots & bottlenecks 
(profiling)
– Code in the program that uses a 

disproportional amount of time
– Code in the program that uses system 

resources inefficiently
■ Reducing wall clock time
■ Reducing resource requirements



Types of Optimization

■ Hand-tuning
■ Preprocessor
■ Compiler
■ Parallelization



Steps of Optimization

■ Profile
■ Integrate libraries
■ Optimize compiler switches 
■ Optimize blocks of code that dominate 

execution time
■ Always examine correctness at every 

stage!



Performance Strategies

■ Always use optimal or near optimal 
algorithms.
– Be careful of resource requirements and 

problem sizes.
■ Maintain realistic and consistent input 

data sets/sizes during optimization.
■ Know when to stop. 



Performance Strategies
■ Make the Common Case Fast (Hennessy)

■ A 20% decrease of procedure3()results in 
10% increase in performance.

■ A 20% decrease of main()results in 2.6% 
increase in performance

PROCEDURE TIME
main() 13%
procedure1() 17%
procedure2() 20%

procedure3() 50%



Considerations when 
Optimizing

■ Machine configuration, libraries and 
tools

■ Hardware and software overheads
■ Alternate algorithms 
■ CPU/Resource requirements
■ Amdahl’s Law
■ Communication pattern, load balance 

and granularity



How high is up?

■ Profiling reveals percentages of time 
spent in CPU and I/O bound functions.

■ Correlation with representative low-
level, kernel and application 
benchmarks.

■ Literature search.
■ Peak speed means nothing.
■ Example: ISIS solver package



Origin 2000 Architecture

■ Up to 64 nodes
■ Each node has 2 R10000’s running at 

195 Mhz
■ Each R10000 has on chip 32K 

instruction, 32K data caches
■ Each R1000 has a 4MB off-chip unified 

cache.



Origin 2000 Architecture

■ Each node is connected with a 
624MB/sec CrayLink

■ Shared memory support in hardware
■ Supports message passing as well
■ Variable page size (dplace)



R10000 Architecture

■ 5 independent, pipelined, execution 
units

■ 1 non-blocking load/store unit
■ 2 asymmetric integer units (both add, 

sub, log)
■ 2 asymmetric floating point units



R10000 Architecture

■ Dynamic and speculative execution



Locality

Spatial - If location X is being accessed, 
it is likely that a location near X will be 
accessed soon.

Temporal - If location X is being 
accessed, it is likely that X will be 
accessed again soon.



Memory Hierarchy

Registers
Cache / TLB

<Level 2 Cache>
<Level 3 Cache>

Memory
Disk

SizeSpeed



SP2 Access Times

■ Register: 0 cycles
■ Cache Hit: 1 cycle
■ Cache Miss: 8-12 cycles
■ TLB Miss: 36-56 cycles
■ Page Fault: ~100,000 cycles



Cache Performance



Cache Architecture

■ Divided into smaller units of transfer 
called lines. (32-256B, 4-32 doubles)

■ Each memory address is separated into:
– Page number
– Cache line
– Byte offset



Cache Mapping

■ Two major types of mapping
– Direct Mapped

Each memory address resides in only one 
cache line. (constant hit time)

– N-way Set Associative
Each memory address resides in one of N 
cache lines. (variable hit time)



2 way set associative cache

distinct lines = size / line size * associativity

Every data item can live in any class 
but in only 1 line (computed from its address)

Line0
Class0

Line1
Class0

Line2
Class0

Line3
Class0

Line0
Class1

Line1
Class1

Line2
Class1

Line3
Class1



Memory Access

■ Programs should be designed for 
maximal cache benefit.
– Stride 1 access patterns
– Using entire cache lines
– Avoiding re-use after first reference

■ Minimize page faults and TLB misses.



Asymptotic Analysis

■ Algorithm X requires O(N log N) time on 
O(N processors)

■ This ignores constants and lower order 
terms!

10N > N log N for N < 1024
10N*N < 1000N log N for N < 996



Amdahl’s Law

■ The performance improvement is 
limited by the fraction of time the faster 
mode can be used.

Speedup = Perf. enhanced / Perf. standard
Speedup = Time sequential / Time parallel

Time parallel = Tser + Tpar



Amdahl’s Law

■ Be careful when using speedup as a 
metric. Ideally, use it only when the 
code is modified. Be sure to completely 
analyze and documengt your 
environment.

■ Problem: This ignores the overhead of 
parallel reformulation.



Amdahl’s Law

■ Problem? This ignores scaling of the 
problem size with number of nodes.

■ Ok, what about Scaled Speedup?
– Results will vary given the nature of the 

algorithm
– Requires O() analysis of communication 

and run-time operations.



Efficiency

■ A measure of code quality?

E = Time sequential / ( P * Time parallel)
S = P * E

■ Sequential time is not a good reference 
point. For Origin, 4 is good.



Performance Metrics

■ Wall Clock time - Time from start to 
finish of our program. 
– Possibly ignore set-up cost. 

■ MFLOPS - Millions of floating point 
operations per second.

■ MIPS - Millions of instructions per 
second. 



Performance Metrics

■ MFLOPS/MIPS are poor measures 
because
– They are highly dependent on the 

instruction set.
– They can vary inversely to performance!

– What’s most important? 

EXECUTION TIME 



Performance Metrics

■ For purposes of optimization, we are 
interested in:
– Execution time of our code 
– MFLOPS of our kernel code vs. peak in 

order to determine EFFICIENCY



Performance Metrics

■ Fallacies
– MIPS is an accurate measure for comparing 

performance among computers. 
– MFLOPS is a consistent and useful measure 

of performance.
– Synthetic benchmarks predict performance 

for real programs.
– Peak performance tracks observed 

performance.

(Hennessey and Patterson)



Performance Metrics

■ Our analysis will be based upon:
– Performance of a single machine
– Performance of a single (optimal) algorithm
– Execution time



Performance Metrics

For the purposes of comparing your 
codes performance among different 
architectures base your comparison 
on time.

...Unless you are completely aware of all 
the issues in performance analysis 
including architecture, instruction sets, 
compiler technology etc...



Issues in Performance

■ Brute speed (MHz and bus width)
■ Cycles per operation (startup + 

pipelined)
■ Number of functional units on chip
■ Access to Cache, RAM and storage 

(local & distributed)



Issues in Performance

■ Cache utilization
■ Register allocation
■ Loop nest optimization
■ Instruction scheduling and pipelining
■ Compiler Technology
■ Programming Model (Shared Memory, 

Message Passing)



Issues in Performance
Problem Size and Precision

■ Necessity
■ Density and Locality 
■ Memory, Communication and Disk I/O
■ Numerical representation

– INTEGER, REAL, REAL*8, REAL*16



Parallel Performance Issues

■ Single node performance
■ Compiler Parallelization
■ I/O and Communication
■ Mapping Problem - Load Balancing
■ Message Passing or Data Parallel 

Optimizations



Performance ToolsPerformance Tools



Numerical LibrariesNumerical Libraries



Compiler TechnologyCompiler Technology



Serial Optimizations

■ Use vendor libraries.
■ Improve cache utilization.
■ Improve loop structure.
■ Use subroutine inlining. 
■ Use most aggressive compiler options.



Array Optimization

■ Array Initialization
■ Array Padding
■ Stride Minimization
■ Loop Fusion
■ Floating IF’s
■ Loop Defactorization
■ Loop Peeling
■ Loop Interchange

■ Loop Collapse
■ Loop Unrolling
■ Loop Unrolling and 

Sum Reduction
■ Outer Loop Unrolling



Array Allocation

■ Array’s are allocated differently in C and 
FORTRAN. 

1 2 3

4 5 6

7 8 9

C: 1 2 3 4 5 6 7 8 9

Fortran: 1 4 7 2 5 8 3 6 9



Array Initialization

Which to choose?
■ Static initialization requires:

– Disk space and Compile time
– Demand paging
– Extra Cache and TLB misses.
– Less run time

■  Use only for small sizes with default 
initialization to 0.



Array Initialization

■ Static initialization
REAL(8) A(100,100) /10000*1.0/

■ Dynamic initialization
DO I=1, DIM1

DO J=1, DIM2

A(I,J) = 1.0



Array Padding

■ Data in COMMON blocks is allocated 
contiguously 

■ Watch for powers of two and know the 
associativity of your cache.

■ Example: Possible miss per element on 
T3E 

common /xyz/ a(2048),b(2048)



Array Padding
a = a + b * c

Tuned Untuned Tuned
-O3

Untuned
-O3

Origin
2000

1064.1 1094.7 800.9 900.3



Stride Minimization

■ We must think about spatial locality.
■ Effective usage of the cache provides us 

with the best possibility for a 
performance gain.

■ Recently accessed data are likely to be 
faster to access.

■ Tune your algorithm to minimize stride, 
innermost index changes fastest.



Stride Minimization

■ Stride 1
do y = 1, 1000

do x = 1, 1000

c(x,y) = c(x,y) + a(x,y)*b(x,y)

  

■ Stride 1000
do y = 1, 1000

do x = 1, 1000

c(y,x) = c(y,x) + a(y,x)*b(y,x)



Stride Minimization



Loop Fusion

■ Loop overhead reduced
■ Better instruction overlap
■ Lower cache misses
■ Be aware of associativity issues with 

array’s mapping to the same cache line.



Loop Fusion

■ Untuned

do i = 1, 100000

  x = x * a(i) + b(i)

  do i = 1, 100000

    x = x + a(i) / b(i)

  enddo

enddo

■ Tuned

do i = 1, 100000

x = x * a(i) + b(i)

x = x + a(i) / b(i)

enddo



Loop Fusion



Loop Interchange

■ Swapping the nested order of loops
– Minimize stride
– Reduce loop overhead where inner loop 

counts are small
– Allows better compiler scheduling



Loop Interchange

■ Untuned

real*8 a(2,40,2000)

do i=1, 2000

 do j=1, 40

   do k=1, 2

     a(k,j,i) = a(k,j,i)*1.01

   enddo

 enddo

enddo

■ Tuned

real*8 a(2000,40,2)

do i=1, 2

 do j=1, 40

do k=1, 2000

     a(k,j,i) = a(k,j,i)*1.01

enddo

 enddo

enddo



Loop Interchange



Floating IF’s

■ IF statements that do not change from 
iteration to iteration may be moved out 
of the loop.

■ Compilers can usually do this except 
when
– Loops contain calls to procedures
– Variable bounded loops
– Complex loops



Floating IF’s

■ Untuned

do i = 1, lda

  do j = 1, lda

    if (a(i) .GT. 100) then

      b(i) = a(i) - 3.7

    endif

      x = x + a(j) + b(i)

  enddo

enddo

■ Tuned

do i = 1, lda

  if (a(i) .GT. 100) then

    b(i) = a(i) - 3.7

  endif

  do j = 1, lda

     x = x + a(j) + b(i)

  enddo

enddo



Floating IF’s



Loop Defactorization

■ Loops involving multiplication by a 
constant in an array.

■ Allows better instruction scheduling.
■ Facilitates use of multiply-adds.



Loop Defactorization

■ Note that floating point operations are 
not always associative. 

(A + B) + C   != A + (B + C)

■ Be aware of your precision
■ Always verify your results with 

unoptimized code first!



Loop Defactorization

■ Untuned

do i = 1, lda

   A(i) = 0.0

   do j = 1, lda

     A(i)=A(i)+B(j)*D(j)*C(i)

   enddo

enddo

■ Tuned

 do i = 1, lda

   A(i) = 0.0

   do j = 1, lda

     A(i) = A(i) + B(j) * D(j)

   enddo

   A(i) = A(i) * C(i)

 enddo



Loop Defactorization



Loop Peeling

■ For loops which access previous 
elements in arrays. 

■ Compiler often cannot determine that 
an item doesn’t need to be loaded  
every iteration.



Loop Peeling

■ Untuned

 jwrap = lda

 do i = 1, lda

   b(i) = (a(i)+a(jwrap))*0.5

   jwrap = i

 enddo

■ Tuned

b(1) = (a(1)+a(lda))*0.5

do i = 2, lda

   b(i) = (a(i)+a(i-1))*0.5

enddo



Loop Peeling



Loop Collapse

■ For multi-nested loops in which the 
entire array is accessed.

■ This can reduce loop overhead and 
improve compiler vectorization.



Loop Collapse

■ Untuned
  
  do i = 1, lda
    do j = 1, ldb

       do k = 1, ldc

          A(k,j,i) = A(k,j,i) + B(k,j,i) * C(k,j,i)

       enddo

    enddo

 enddo



Loop Collapse

■ Tuned
 do i = 1, lda*ldb*ldc

    A(i,1,1) = A(i,1,1) + B(i,1,1) * C(i,1,1)

 enddo

■ More Tuned (declarations are 1D)
 do i = 1, lda*ldb*ldc

    A(i) = A(i) + B(i) * C(i)

 enddo



Loop Collapse



Loop Unrolling

■ Data dependence delays can be 
reduced or eliminated.

■ Reduce loop overhead.
■ Might be performed well by the 

compiler or preprocessor. (Careful on 
the T3E)



Loop Unrolling

■ Untuned
 

do i = 1, lda

   do j = 1, lda

      do k = 1, 4

         a(j,i) = a(j,i) + b(i,k) * c(j,k)

      enddo

   enddo

enddo



Loop Unrolling

■ Tuned (4)

do i = 1, lda

   do j = 1, lda

      a(j,i) = a(j,i) +  b(i,1) * c(j,1)

      a(j,i) = a(j,i) +  b(i,2) * c(j,2)

      a(j,i) = a(j,i) +  b(i,3) * c(j,3)

      a(j,i) = a(j,i) +  b(i,4) * c(j,4)

   enddo

enddo



Loop Unrolling



Loop Unrolling and Sum 
Reductions

■ When an operation requires as input 
the result of the last output.

■ Called a Data Dependency.
■ Frequently happens with multi-add 

instruction inside of loops.
■ Introduce intermediate sums. Use your 

registers!



Loop Unrolling and Sum 
Reductions

■ Untuned
 

 do i = 1, lda

    do j = 1, lda

       a = a + (b(j) * c(i))

    enddo

 enddo



Loop Unrolling and Sum 
Reductions

■ Tuned (4)
 

 do i = 1, lda

    do j = 1, lda, 4

       a1 = a1 + b(j) * c(i)

       a2 = a2 + b(j+1) * c(i)

       a3 = a3 + b(j+2) * c(i)

       a4 = a4 + b(j+3) * c(i)

    enddo

 enddo

 aa = a1 + a2 +a3 + a4



Loop Unrolling and Sum 
Reductions



Outer Loop Unrolling

■ For nested loops, unrolling outer loop 
may reduce loads and stores in the 
inner loop.

■ Compiler may perform this optimization.



Outer Loop Unrolling

■ Untuned
– Each multiply requires two loads and one 

store.

 do i = 1, lda

    do j = 1, ldb

       A(i,j) = B(i,j) * C(j) + D(j)

    enddo

 enddo



Outer Loop Unrolling

■ Tuned
– Each multiply requires 5/4 loads and one 

store.

 do i = 1, lda, 4

    do j = 1, ldb

       A(i,j)   = B(i,j) * C(j) + D(j)

       A(i+1,j) = B(i+1,j) * C(j) + D(j)

       A(i+2,j) = B(i+2,j) * C(j) + D(j)

       A(i+3,j) = B(i+3,j) * C(j) + D(j)

    enddo

 enddo



Outer Loop Unrolling



Loop structure

■ IF/GOTO and WHILE loops inhibit some 
compiler optimizations.

■ Some optimizers and preprocessors can 
perform transforms.

■ DO and for() loops are the most highly 
tuned.



Strength Reduction

■ Reduce cost of mathematical operation 
with no loss in precision, compiler might 
do it.
– Integer multiplication/division by a 

constant with shift/adds
– Exponentiation by multiplication
– Factorization and Horner’s Rule
– Floating point division by inverse 

multiplication



Strength Reduction
Horner’s Rule

■ Polynomial expression can be rewritten 
as a nested factorization.

Ax^5 + Bx^4 + Cx^3 + Dx^2 + Ex + F =

((((Ax + B) * x + C) * x + D) * x + E) * x + F.

■ Also uses multiply-add instructions
■ Eases dependency analysis



Strength Reduction
Horner’s Rule



Strength Reduction
Integer Division by a Power of 2

■ Shift requires less cycles than division.
■ Both dividend and divisor must both be 

unsigned or positive integers.



Strength Reduction
Integer division by a Power of 2

■ Untuned

IL = 0

DO I=1,ARRAY_SIZE

  DO J=1,ARRAY_SIZE

    IL = IL + A(J)/2

  ENDDO

  ILL(I) = IL

ENDDO

■ Tuned

IL = 0

ILL = 0

DO I=1,ARRAY_SIZE

  DO J=1,ARRAY_SIZE

    IL = IL + ISHFT(A(J),-1)

  ENDDO

  ILL(I) = IL

ENDDO



Strength Reduction
 Integer division by a Power of 2



Strength Reduction
Factorization

■ Allows for better instruction scheduling.
■ Compiler can interleave loads and ALU 

operations.
■ Especially benefits compilers able to do 

software pipelining.



Strength Reduction
Factorization

■ Untuned
XX = X*A(I) + X*B(I) + X*C(I) + X*D(I)

■ Tuned
XX = X*(A(I) + B(I) + C(I) + D(I))



Strength Reduction
Factorization



Subexpression Elimination
Parenthesis

■ Parenthesis can help the compiler 
recognize repeated expressions.

■ Some preprocessors and aggressive 
compilers will do it.



Subexpression Elimination
Parenthesis

■ Untuned
XX = XX + X(I)*Y(I)+Z(I) + X(I)*Y(I)-Z(I) + X(I)*Y

(I) + Z(I)

■ Tuned
XX = XX + (X(I)*Y(I)+Z(I)) + X(I)*Y(I)-Z(I) + (X

(I)*Y(I) + Z(I))



Subexpression Elimination
Parenthesis



Subexpression Elimination
Type Considerations

■ Changes the type or precision of data.
– Reduces resource requirements.
– Avoid type conversions.
– Processor specific performance.

■ Do you really need 8 or 16 bytes of 
precision?



Subexpression Elimination
Type Considerations

■ Consider which elements are used 
together?
– Should you be merging your arrays?
– Should you be splitting your loops for 

better locality?
– For C, are your structures packed tightly in 

terms of storage and reference pattern?



Subroutine Inlining

■ Replaces a subroutine call with the 
function itself.

■ Useful in loops that have a large 
iteration count and functions that don’t 
do a lot of work.

■ Allows better loop optimizations.
■ Most compilers can do inlining but not 

that well on large applications.



Optimized Arithmetic Libraries

■ (P)BLAS: Basic Linear Algebra 
Subroutines

■ (Sca)LAPACK: Linear Algebra Package
■ ESSL: Engineering and Scientific 

Subroutine Library
■ NAG: Numerical Algorithms Group
■ IMSL: International Mathematical and 

Statistical Lib.



Optimized Arithmetic Libraries

■ Advantages:
– Subroutines are quick to code and 

understand.
– Routines provide portability.
– Routines perform well.
– Comprehensive set of routines.



SGI Origin 2000

■ MIPS R10000, 195Mhz, 5.1ns
■ 64 Integer, 64 Floating Point Registers
■ 4 Instructions per cycle
■ Up to 2 Integer, 2 Floating Point, 1 

Load/Store per cycle
■ 4 outstanding cache misses
■ Out of order execution



SGI Origin 2000

■ 64 Entry TLB, variable page size
■ 32K Data, 32K Instruction, 4MB unified.
■ Data is 2-way set associative, 2-way 

interleaved.
■ 32B/128B line size.



SP2

■ IBM Power 2 SC, 135Mhz
■ 32 Integer, 32 Floating Point Registers
■ 6(8) Instructions per cycle
■ 2 Integer, 2 Floating Point, 1 Branch,. 1 

Conditional
■ Zero cycle branches, dual FMA



SP2

■ 256 Entry TLB
■ Primary Cache 128K Data, 32K 

Instruction
■ 4 way set associative
■ 256B line size



T3E

■ Alpha 21164, 450Mhz
■ Primary Cache 8K Data, 8K Instruction
■ 96KB on-chip 3-way associative 

secondary cache
■ 2 FP / 2 Int / cycle



T3E

■ Scheduling very important
■ 64 bit divides take 22-60 CP
■ Ind Mult/Add takes 4 cp, but issued 

every cycle



T3E

■ Latency hiding features
– Cache bypass
– Streams
– E-registers

■ 6 queued Dcache misses/WBs to 
Scache

■ Load/store merging
■ 32/64 byte line Dcache/Scache
■ 2 cycle/8-10 cycle hit Dcache/Scache



T3E Streams

■ Designed to provide automatic 
prefetching for densely strided data.

■ 6 stream buffers, two 64 byte lines 
each

■ Starts when 2 contiguous misses
■ Look at difference in loads 

– 875MB/sec with streams
– 296MB/sec without



T3E Streams

■ Count references to memory in your 
loops, make sure no more than six.

■ May need to split loops to reduce 
streams.

■ To use them
setenv SCACHE_D_STREAMS 1
man intro_streams
man streams_guide



T3E E-registers

■ 512 64-bit off-chip registers for 
transferring data to/from remote/local 
memory

■ SHMEM library
– Local, shared, distributed, memory access 

routines that use the E-registers.
man intro_shmem

■ Block copy
– 775 MB/sec vs 401 MB/sec



T3E Cache Bypass

■ Reduces memory traffic requirements.
■ Fortran 

!DIR$ CACHE_BYPASS var1, var2

■ C
#pragma _CRI cache_bypass var1, 
var2

■ Block copy
– 593 MB/sec vs 401 MB/sec



T3E E-registers

■ Benchlib library
– One sided data transfers from memory to 

E-registers bypassing cache
– Scatter / Gather in hardware
– Nonblocking 
– More complicated to use than SHMEM
– Not supported by Cray
– 592 MB/sec vs 401 MB/sec for copy



O2K Flags and Libraries
-O,-O2 - Optimize

-O3 - Maximal generic optimization, may alter semantics.

-Ofast=ip27 - SGI compiler group’s best set of flags.

-IPA=on - Enable interprocedural analysis.

-n32 - 32-bit object, best performer.

-INLINE:<func1>,<func2> - Inline all calls to func1 and func2.

-LNO - Enable the loop nest optimizer.

-feedback - Record information about the programs execution behavior 
to be used by IPA, LNO.

-lcomplib.sgimath -lfastm - Include BLAS, FFTs, Convolutions, 
EISPACK, LINPACK, LAPACK, Sparse Solvers and the fast math library.

dplace - program to change the page size of your executable. This 
reduces TLB, page faults and increase MPI performance.



SP2 Flags and Libraries
-O,-O2 - Optimize

-O3 - Maximum optimization, may alter semantics.

-qarch=pwr2, -qtune=pwr2 - Tune for Power2.

-qcache=size=128k,line=256 - Tune Cache for Power2SC.

-qstrict - Turn off semantic altering optimizations.

-qhot - Turn on addition loop and memory optimization, Fortran only.

-Pv,-Pv! - Invoke the VAST preprocessor before compiling. (C)

-Pk,-Pk! - Invoke the KAP preprocessor before compiling. (C)

-qhsflt - Don’t round floating floating point numbers and don’t range 
check floating point to integer conversions.

-inline=<func1>,<func2> - Inline all calls to func1 and func2.

-qalign=4k - Align large arrays and structures to a 4k boundary.

-lesslp2 - Link in the Engineering and Scientific Subroutine Library.

-eagerlimit 16384 with poe executables.

 



T3E Flags and Libraries
-O,-O2 - Optimize

-O3 - Maximum optimization, may alter semantics.

-apad - Pad arrays to avoid cache line conflicts

-unroll2 - Apply aggressive unrolling

-pipeline2 - Software pipelining

-split2 - Apply loop splitting.

-Wl”-Dallocate(alignsz)=64b” Align common blocks on cache line 
boundary

-lmfastv - Fastest vectorized intrinsics library

-lsci - Include library with BLAS, LAPACK and ESSL routines

-inlinefrom=<> - Specifies source file or directory of functions to inline

-inline2 - Aggressively inline function calls.



Timers

■ time <command> returns 3 kinds.
– Real time: Time from start to finish
– User: CPU time spent executing your code
– System:  CPU time spent executing system 

calls

■ timex on the SGI.
■ Warning! The definition of CPU time is 

different on different machines.  



Timers

■ Sample output for csh users:
       1      2      3       4    5        6      7

1.150u 0.020s 0:01.76 66.4 15+3981k 24+10io 0pf+0w

1) User (ksh)
2) System (ksh)
3) Real (ksh)
4) Percent of time spent on behalf of this process, not including 

waiting.
5) 15K shared, 3981K unshared
6) 24 input, 10 output operations
7) No page faults, no swaps.



Timers

■ Latency is not the same as resolution.
– Many calls to this function will affect your 

wall clock time.



prof

■ Profiles program execution at the 
procedure level

■ Available on most Unix systems, not 
T3E

■ Displays the following:
– Name, percentage of CPU time
– Cumulative and average execution time
– Number of time procedure was called



prof

■ Compile your code with -p
■ After execution the CWD will contain 

mon.out.(x)
■ Type prof, it will look for mon.out in the 

CWD. Otherwise give it name(s) with the -m 
option

■ Format of output is:

Name %Time Seconds Sumsecs #Calls msec/call



prof

■ All procedures called by the object 
code, many will be foreign to the 
programmer.

■ Statistics are created by sampling and 
then looking up the PC and correlating 
it with the address space information.

■  Phase problems may cause erroneous 
results and reporting.



SpeedShop on the SGI

■ ssusage collects information about 
your program’s use of machine time 
and resources.

■ ssrun allows you to run experiments 
on a program to collect performance 
data.

■ prof analyzes the performance data 
you have recorded using ssrun and 
provides formatted reports.



SpeedShop on the SGI

■ Collects hardware statistics at the 
subroutine level
– Build the application
– Run experiments to collect data

■ ssrun -exp <exp> <exe>

– Examine the data
■ prof <exe> <exe.ssrunfiles>

– Optimize



SpeedShop Usage
■ Usage: ssrun [-exp expt] [-mo marching-orders] [-purify]
        [-v | -verbose] [-hang] [-x display window]
        [-name target-name] a.out [a.out-arguments]
    
■ Defined experiments are:
        usertime, pcsamp, fpcsamp, pcsampx, fpcsampx, ideal, prof_hwc, 

gi_hwc, cy_hwc, ic_hwc, isc_hwc, dc_hwc, dsc_hwc, tlb_hwc, gfp_hwc, 
fgi_hwc, fcy_hwc, fic_hwc, fisc_hwc, fdc_hwc, fdsc_hwc, ftlb_hwc, 
fgfp_hwc, heap, fpe.



Ideal Experiment

 Prof run at: Fri Jan 30 01:59:32 1998
 Command line: prof nn0.ideal.21088
 --------------------------------------------------------
 3954782081: Total number of cycles
  20.28093s: Total execution time
 2730104514: Total number of instructions executed
      1.449: Ratio of cycles / instruction
              195: Clock rate in MHz

    R10000: Target processor modeled
---------------------------------------------------------
Procedures sorted in descending order of cycles executed.
Unexecuted procedures are not listed. Procedures
beginning with *DF* are dummy functions and represent
init, fini and stub sections.
---------------------------------------------------------
        cycles(%)  cum %     secs    instrns calls procedure(dso:file)
3951360680(99.91)  99.91    20.26 2726084981     1 main(nn0.pixie:nn0.c)
1617034( 0.04)     99.95     0.01    1850963  5001 doprnt



Pcsamp Experiment

------------------------------------------------------------------
Profile listing generated Fri Jan 30 02:06:07 1998
    with:       prof nn0.pcsamp.21081
------------------------------------------------------------------
samples   time    CPU    FPU   Clock   N-cpu  S-interval Countsize
   1270    13s R10000 R10010 195.0MHz   1     10.0ms     2(bytes)
Each sample covers 4 bytes for every 10.0ms ( 0.08% of 12.7000s)
------------------------------------------------------------------
samples   time(%)      cum time(%)      procedure (dso:file)
   1268    13s( 99.8)   13s( 99.8)           main (nn0:nn0.c)
      1  0.01s(  0.1)   13s( 99.9)        _doprnt 



Example of UserTime

----------------------------------------------------------------
Profile listing generated Fri Jan 30 02:11:45 1998
    with:       prof nn0.usertime.21077
----------------------------------------------------------------
        Total Time (secs)     : 3.81
        Total Samples         : 127
        Stack backtrace failed: 0
        Sample interval (ms)  : 30
        CPU                   : R10000
        FPU                   : R10010
        Clock                 : 195.0MHz
        Number of CPUs        : 1
----------------------------------------------------------------
index  %Samples  self    descendents  total        name
(1)    100.0%    3.78        0.03     127          main
(2)      0.8%    0.00        0.03       1          _gettimeofday

(3)      0.8%    0.03        0.00       1          _BSD_getime 



tprof for the SP2

■ Reports CPU usage for programs and 
system. i.e.
– All other processes while your program was 

executing
– Each subroutine of the program
– Kernel and Idle time
– Each line of the program

■ We are interested in source statement 
profiling.



tprof for the SP2

■ Also based on sampling, which may cause 
erroneous reports.

■ Compile using -qlist and -g
■ tprof <program> <args>
■ Leaves a number of files in the CWD preceded by __.

__h.<file>.c - Hot line profile

__t.<subroutine>_<file>.c - Subroutine profile
__t.main_<file>.c - Executable profile



PAT for the T3E

■ Performance analysis tool is a low-
overhead method for
– Estimating time in functions
– Determining load balance
– Generating and viewing trace files
– Timing individual calls
– Displaying hardware performance counter 

information



PAT for the T3E

■ Uses the UNICOS/mk profil() 
system call to gather information by 
periodically sampling and examining the 
program counter.

■ Works on C, C++ and Fortran 
executables

■ No recompiling necessary
■ Just link with -lpat



Apprentice for the T3E

■ Graphical interface for identifying 
bottlenecks.

% f90 -eA <file>.f -lapp

% cc -happrentice <file>.c -lapp

% a.out

% apprentice app.rif



apprenti



Additional Material

http://www.cs.utk.edu/~mucci/MPPopt.html

■ Slides 
■ Optimization Guides
■ Papers
■ Pointers
■ Compiler Benchmarks



References

http://www.nersc.gov

http://www.mhpcc.gov

http://www-jics.cs.utk.edu

http://www.tc.cornell.edu

http://www.netlib.org

http://www.ncsa.uiuc.edu

http://www.cray.com

http://www.psc.edu
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