timization for
2000

u/ ~ml§ci /MPPopt.html

mCCi (mucci@cs .utk.edu)
_ |!Ond0n (london@cs.utk.edu)

University of Tennessee, Knoxville
Army Research Laboratory, Aug. 31 - Sep. 2

dnce

Issues and Metrics
0ols

Numerical Libraries

Compiler Technology

Exec
At what cost?

mples

acasting Model

INng system

lization?

e

| '&tlenecks

Ry "

ram that uses a

. al amount of time
\ ~ Code in the program that uses system
resource: nﬁfﬁcient/y

Reducing wall clock time
Reducing resource requirements

Mization

1

Gl

witches
_ ocks of code that dominate

execution time
Always examine correctness at every

stage!

\

trategies
H —
r near optimal

»

Urce requirements and

- Maintain realistic and consistent input
data sets/sizes during optimization.

Know when to stop.

trategies

Fas GENES)

1'5%
17%
20%
50%

A 20% decrease of procedure3 () results in
10% increase in performance.

A 20% decrease of main () results in 2.6%
increase in performance

]

tions when
&

o

\, libraries and

%

nd software overheads
Altern II' ms
~ CPU/Resource requirements

#
Amdahl’s Law

Communication pattern, load balance
and granularity

Literature search.
Peak speed means nothing.
Example: ISIS solver package

itecture

S running at

on chip 32K
S 32K data caches

Fach R1000 has a 4MB off-chip unified
cache.

itecture

with a

pport in hardware
e passing as well

 Var size (dplace)

‘ecture

2d, execution

1b |
ad/store unit
2ger units (both add,

\ u ;'..
2 asym etr!floating point units

ture

execution

eing accessed,
near X will be

ocation X is being
it is likely that X will be
accessed again soon.

Size

<

€S

00,000 cycles

L

Caache Par o & of e at CENES-NERC

1500

= I = B 12 255 S INE
l.'-.-:h.r Lmj:hnl:-:,lt-.r

ture

Its of transfer

apping

1

>
o

dress resides in only one
\ / - Associative

stant hit time)
Each memory address resides in one of N
cache lines. (variable hit time)

'_ve cache

associativity

Line2 Line3
Class0 Class0
Line3
Class1

Every data item can live in any class
but in only 1 line (computed from its address)

se after first reference

Minimize page faults and TLB misses.

nalysis

)] Iog N) time on

»
ants and lower order

V> N log N for N < 1024
< 1000N log N for N < 996

time the faster

erf. enhanced / Perf. standard
e sequential / Time parallel
Time parallel = Tser + Tpar

1,

‘Speedup as a
use it only when the
fi Be sure to completely
locumengt your

enviro L
‘ =

Problem: This ignores the overhead of
parallel reformulation.

|

W

‘)

 scaling of the
th number of nodes.
caled Speedup?

given the nature of the
g

LA

Requires O() analysis of communication
and run-time operations.

Sequential time is not a good reference
point. For Origin, 4 is good.

Metrics
H

ne from start to
'31' .
up cost.

S of floating point
 per second.

MIPS - Millions of instructions per

second.

Metrics
H

)r measures

»

nendent on the

iInversely to performance!
= t’s most important?

EXECUTION TIME

trics

ation, we are

r code

_I code vs. peak in
ne EFFICIENCY

Peak performance tracks observed
performance.

GEESSSA R lE o)

trics

ed upon:
chine
gle (optimal) algorithm

’

Metrics

paring your
among different
your comparison

-

...Unless you are completely aware of all
the issues in performance analysis
including architecture, instruction sets,
compiler technology etc...

-

dncCe

] bus width)
ation (startup +

‘ onal units on chip

- Access to Cache, RAM and storage
(local & distributed)

gl

o

ization
~ Instruction scheduling and pipelining
* Compiler chnology
Programming Model (Shared Memory,
Message Passing)

Ince Issues
H.

'C
lizatio
Ication
] - Load Balancing

" Messac 2 Passing or Data Parallel
Optimization

Pariorszges

Nimercalttip

Corrloller el

oop Collapse
p Unrolling

Loop Unrolling and
Sum Reduction

Outer Loop Unrolling

_oop Peeling
_oop Interchange

erently in C and

C: 1 273 Zmmeemeyr S0
Fortran: 1 4 7 2 5 8 3 6 9

_ tion

on requires:
= I ompile time
1e and TLB misses.
Less run time
Use only for small sizes with default
initialization to 0.

.
i
B

\

tion

pUooar. 0/

i, 0

(1 W)

Is allocated

f two and know the
cache.

| sible miss per element on
T3E

common /xyz/ a(2048),b(2048)

Tuned Untuned Tuned Untuned
-0O3 -0O3

'zation

- spatial locality.

> of the cache provides us
St possibility for a

ay .]]
Recently accessed data are likely to be
faster to access.

Tune your algorithm to minimize stride,
innermost index changes fastest.

o 7

(’.

5socCiativity issues with

¥ e)ing to the same cache line.

do 1 = 1, 100000
SO A (1) + b (1)
X = x + a(1) / b(i)

nge

rder of loops

ad where inner loop

compilér scheduling

o j=1, 40

CiChmE— © 000

RO 1 a(k,j3,1) = a(k,3,1)*1.01
: enddo

enddo enddo

enddo enddo

ot change from
be moved out

y do this except

Loops contain calls to procedures
Variable bounded loops
Complex loops

lda
.GT. 100) then
i)y - 3.7

enddo . enddo

Ization

ication by a

ction scheduling.
multiply-adds.

Ization

operations are

I=A + (B + C)

Be aware ofgour precision

Always verify your results with
unoptimized code first!

previous

ot determine that
to be loaded

R =SEmeRele)) 0.5
lda
BN (119 * 0.5

In which the

p overhead and
torization.

* C(k,J,1)

€ (1, 15

eclarations are 1D)

enddo

VS can be

11‘ I i
oad.

rmed well by the
" preprocessor. (Careful on

L4

 combile
the T3

enddo

]

iIng and Sum
NS

c'|urires as input
output.
ta Dependency.
_ I vens with multi-add
- instruction inside of loops.
Introduce intermediate sums. Use your
registers!

o

£)

@ |

enddo
enddo
aa = al + a2 +a3 + a4

olling

iIng outer loop
res in the

m this optimization.

|[gle

loads and one

enddo

|[gle

loads and one

J
A(1+25]) S5 (Lt 2a8" * e
A(i+35%])) STHEIEFTE) * 8C (5
enddo
enddo

ure

loops inhibit some
b NS

S and preprocessors can

r() loops are the most highly

¥

Juction

_ u u
atical operation

precision, compiler might

2 on/division by a

: with s |ft/adds
Exponentiation by multiplication
Factorization and Horner’s Rule

Floating point division by inverse
multiplication

* x + F.

Also uses multiply-add instructions
Eases dependency analysis

ction
ower of 2

than division.

Ivisor must both be
Ive integers.

ction

ILL = 0
O I=1,ARRAY SIZE
PO J=1, ARRAY SIZE
N[, + ISHET (A (J),-1)
ENDDO

ENDDO

ction
ower of 2

ction

jon scheduling.
eave loads and ALU

p&eﬁts compilers able to do

software pipelining.

Elimination

| ors and aggressive
Il do it.

mination

SR) * Y

Ination

Imination

r p‘cision of data.

requirements.

\ e ecific performance.

Do you reallfneed 8 or 16 bytes of
precision?

Elimination
ations

B

e

 elements are used

&

I be merging your arrays?
uld pe splitting your loops for
better locality?
For C, are your structures packed tightly in
terms of storage and reference pattern?

nlining

> call with the

.

at have a large
_‘ . and functions that don't
~doalot ork.

Allows better loop optimizations.

Most compilers can do inlining but not
that well on large applications.

tic Libraries

ar Algebra Package
] iIng and Scientific

- Subrou ibrary

NAG: Numerical Algorithms Group

IMSL: International Mathematical and
Statistical Lib.

Libraries

q ode and

vide portability.
erform well.

Co e set of routines.

OO
H

5.1ns

~loating Point Registers
ns per cycle
__ Up to 2 Integer, 2 Floating Point, 1
~ Load/Store per cycle
4 outstadiré cache misses

Out of order execution

00

age size
, 4MB unified.
ssociative, 2-way

Ihz
oint Registers

1S per cycle
.
ating Point, 1 Branch,. 1

- loatine

~ Condi
Zero cycle branches, dual FMA

K Instruction
associative

4 cp, but issued

che misses/WBs to
Scache '

Load/store merging

32/64 byte line Dcache/Scache
2 cycle/8-10 cycle hit Dcache/Scache

AMS

‘)
utomatic

densely strided data.

0 64 byte lines

-

- Starts when 2 contiguous misses

Look at ife@nce in loads
875MB/sec with streams
296MB/sec without

N P S

2Mmory in your
e N e than six.
00ps to reduce

s

+ [fo™
setenv SCACHE D STREAMS 1

man® 10T CoE tTeams
man SWfeams gliide

'S

Jisters for
remote/local

, distributed, memory access
routin at use the E-registers.

man intro_shmem

Block copy
/75 MB/sec vs 401 MB/sec

dSS

requirements.

B lll, var?

Y
ECiCEN OFe s s varl,
VichE/.

Block copy
593 MB/sec vs 401 MB/sec

'S

rom memory to
g cache

rdware

plicated to use than SHMEM
Not supported by Cray
592 MB/sec vs 401 MB/sec for copy

ibraries

;
.
:
ord |

—-feedback -

oCH nation about the programs execution behavior
to be used by 1pPa, 0

—-lcomplib.sgimath -1fastm - Include BLAS, FFTs, Convolutions,
EISPACK, LINPACK, LAPACK, Sparse Solvers and the fast math library.

dplace - program to change the page size of your executable. This
reduces TLB, page faults and increase MPI performance.

Tune Cache for Power2SC.

] optimizations.

d memory optimization, Fortran only.
ST preprocessor before compiling. (C)

preprocessor before compiling. (C)

—ghsflt - Don't round floating floating point numbers and don’t range
check floating point to integer conversions.

—inline=<funcl>, <func2> - Inline all calls to funcl and func2.

~Pk, -Pk! - Invoke t

-galign=4k - Align large arrays and structures to a 4k boundary.
—-lesslp?2 - Link in the Engineering and Scientific Subroutine Library.

ed intrinsics library
—1sci - Include library with BLAS, LAPACK and ESSL routines
-inlinefrom=<> - Specifies source file or directory of functions to inline
-inline?2 - Aggressively inline function calls.

turns 3 kinds.

‘the SGI.

Warning! The definition of CPU time is
different on different machines.

ers.

6 I
4 1543981k 2441010 Opf+0w

behalf of this process, not including
waiting.

5) 15K shared, 3981K unshared

6) 24 input, 10 output operations

7) No page faults, no swaps.

as resolution.
will affect your

tion at the
nix systems, not

ollowing:

Name, erc“tage of CPU time
Cumulative and average execution time
Number of time procedure was called

Format of output is:

Name %Time Seconds Sumsecs #Calls msec/call

oreign to the

by sampling and

address space information.

Phase problems may cause erroneous
results and reporting.

n the SGI

of'machine time

i to run experiments
m to collect performance
data. 3

prof analyzes the performance data
you have recorded using ssrun and
provides formatted reports.

e SGI

istics at the
-

\J

" ollect data

Xp <exp> <exe>

i
Examine the data
prof <exe> <exe.ssrunfiles>

Optimize

age

-orders] [-purify]
ArglL ' S]
’)csampx, fpcsampyx, ideal, prof_hwc,

hwe, isc_hwc, dc_hwc, dsc_hwec, tlb_hwc, gfp_hwc,
wc, fisc_hwe, fdc_hwc, fdsc_hwec, ftlb_hwc,

||
instructions executed
Vi n s CEEESEE 1 On

L
e

~ssor modeled

cending order of cycles executed.
Bt 1istedt Procedures
y functions and represent

Procedure
Unexecuted
beginning with *I
init, finlERc SEs

oc

cycles (%) cum % secs instrns calls procedure(dso:file)
3951360680 (SR ERNENIC TN, 20.26 2726084981 1 main(nnO.pixie:nn0.c)
1617034 (0.04) 99.98 0.01 1850963 5001 doprnt

S—-interval Countsize
10.0ms 2 (bytes)
. 08% of 12.7000s)

procedure (dso:file)
main (nnO:nn0.c)
_doprnt

:45 1998

RGeS0

1 SSENMH 7
I
index %Samples self descendents total name
(1) 100.0% 3. 0e R 03 Lz main
(2) 0.8% 0.00 0.03 1 _gettimeofday
(3) 0.8% 0.03 0.00 1 _BSD getime

P2

I programs and

while your program was

ine of the program

Each line of the program

We are interested in source statement
profiling.

P2

ich may cause

-
and -g

. Ergs™>
er of files in the CWD preceded by __.
- ot line profile

___ L.<subroumc> il cole - Subroutine prOﬁle
__t.main <file>.c - EXecutable profile

hisf ™.

3E

tool is a low-

~

a Tor
unctions

oad balance
~ Gene g and viewing trace files
T|m|n dividual calls

Displaying hardware performance counter
information

g and examining the

orks ¢ ++ and Fortran
executables

No recompiling necessary
Just link with -1pat

e Wes. c —lapp

% apprentice app.rif

E apprenti

erial

i/MPPopt.html

Compiler Benchmarks

.uluc.edu
"EO om

http://www.psc.edu

uter Architecture, A

» plete Reference
- lel Virtual Machine
i to Parallel Computing

nd Tuning Guide for Fortran, C, C++

+in,

