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Performance

• What is performance?
– Execution time

– Throughput

– Efficiency

– Scalability

– Development cost

– Maintenance Cost



Performance Examples

• Operation Weather Forecasting Model
– Absolute execution time is key concern

– Scalability

• Database search engine
– Development cost and portability

• Image processing system
– Throughput or latency



Issues in Performance
Problem Size and Precision

• Efficiency of data representation
– Access time

– Density

– Memory/Disk

• Numerical representation
– integer, float, double



Issues in Performance
Execution time

• Brute speed (MHz and bus width)

• Cycles per operation (startup + pipelined)

• Number of arithmetic units on chip

• Access to RAM (local & distributed)

• Access to disk (local & distributed)



Issues in Performance
Execution time

• Cache utilization

• Register allocation

• Instruction scheduling and pipelining

• Compiler technology

• Programming model
– Shared memory, data parallel or SPMD.

– Message passing or MPMD.



Parallel Performance Issues

• Compiler Optimizations

• Single node performance

• I/O and Communication

• Mapping Problem - Load Balancing

• Message Passing or Data Parallel 
Optimizations



Performance Metrics

• MFLOPS - Millions of floating point 
operations per second.

• MIPS - Millions of instructions per second. 

• Execution time - Time from start to finish 
of our program. Also called Wall Clock 
time.



Performance Metrics

• MFLOPS/MIPS are poor measures because
– They are dependent on the instruction set.

– They can vary inversely to performance.

– They say nothing about what is most important: 

EXECUTION TIMEEXECUTION TIME 



Performance Metrics

• For purposes of optimization, we are 
interested in:
– Execution time of our code 

– MFLOPS of our code vs. peak rate in order to 
determine efficiency



Performance Metrics

• Fallacies
– MIPS is an accurate measure for comparing 

performance among computers. 
– MFLOPS is a consistent and useful measure of 

performance.

– Synthetic benchmarks predict performance for real 
programs.

– Peak performance tracks observed performance.

[Hennessey and Patterson]



Performance Metrics

• Our analysis will be based upon:
– Performance of a single machine

– Performance of a single (optimal) algorithm

– Execution time



Performance Metrics

For the purposes of comparing your codes 
performance among different architectures 
base your comparison on time.time.

...Unless you are completely aware of all the 
issues in performance analysis including 
architecture, instruction sets, compiler 
technology etc...



Asymptotic Analysis

• Algorithm X requires O(N log N) time on O
(N processors)

• Ignores constants and lower order terms.
10N > N log N for N < 1024

10N*N < 1000N log N for N < 996



Amdahl’s Law

• The performance improvement to be gained 
from using some faster mode of execution 
is limited by the fraction of time the faster 
mode can be used.

Speedup = Time enhanced / Time normal

Speedup = Time sequential / Time parallel

• For parallel codes, there is a sequential 
portion 1/X and a parallel portion Y/X the 
maximum speedup is S. (∞ number of PEs)



Amdahl’s Law

• Only applicable for same algorithm, starting 
conditions, problem size, data set, machine, 
etc... Fine for us.

• Problem: This ignores scaling of the 
problem size



Efficiency

• A measure of parallel algorithm / code 
quality.

E = Time sequential / ( P * Time parallel)

S = P * E



What is Optimization?

• Finding hot spots & bottlenecks 
(profiling)
– Code in the program that uses a disproportional 

amount of time

– Code in the program that uses system resources 
inefficiently

• Reducing wall clock time

• Reducing resource requirements



Types of Optimization

• Hand-tuning

• Preprocessor

• Compiler

• Parallelization



Steps of Optimization

• Debug

• Profile

• Optimize blocks of code that dominate 
execution time

• Optimize compiler switches

• Examine correctness



Performance Strategies

• Use profiling tools before you optimize.

• Always use optimal or near optimal 
algorithms.
– Be careful of requirements and problem sizes.

• The largest bottleneck should be optimized 
first.

• Maintain realistic and consistent input data 
sets/sizes during optimization.

• Know when to stop.



Performance Strategies

• The largest bottleneck should be optimized first.

• A 20% decrease of procedure3()results in 
10% increase in performance.

• A 20% decrease of main()results in 2.6% 
increase in performance

PROCEDURE TIME
main() 13%
procedure1() 17%
procedure2() 20%

procedure3() 50%



Considerations when Optimizing

Developer should be familiar with:

• Machine configuration, libraries and tools

• Hardware and Software overheads

• Algorithm and alternatives 

• CPU/Resource requirements O()notation

• Amdahl’s Law

• Communication patterns

• Load balance and granularity



Locality

Spatial - If location X is being accessed, it is 
likely that a location near X will be 
accessed soon.

Temporal - If location X is being accessed, it 
is likely that X will be accessed again soon.



Memory Hierarchy

CPU

Register

Cache / TLB

<Level 2 Cache>

<Level 3 Cache>

Memory

Disk

SizeSpeed



SP2 Access Times

• Register: 0 cycles

• Cache Hit: 1 cycle

• Cache Miss: 8-12 cycles

• TLB Miss: 36-56 cycles

• Page Fault: ~100,000 cycles



Cache Performance
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Types of Cache

• Direct Mapped

One to one correspondence between memory 
address and cache address

• N-way Set Associative
Each memory address can live in N cache 
addresses, usually it’s the LRU slot.



Memory Access

• Programs should be designed for maximal 
cache benefit.

• Minimize page faults

• Minimize large stride access to minimize 
TLB misses.



Memory Access

• Avoid repeatedly processing sequentially 
accessed data. Example for SP2: accessing 
1MB of REAL*8

1MB = 244 pages * 4096 bytes;

REAL*8 = 8 bytes

4096 / 128 bytes = 32 lines/pg

128 bytes / 8 bytes = miss every 16 elements

32 misses/pg * 8 cycles/miss = 256 cycles/pg

1MB = 256 pgs

36 cycle TLB miss per page

256 * (36 + 256) = 73728 cycles wasted



Serial Optimizations

• Use most aggressive compiler options.

• Use vendor libraries.

• Improve cache utilization.

• Improve loop structure.

• Use subroutine inlining.



Array Optimization

• Stride Minimization

• Sparse Arrays

• Array Initialization

• Loop Fusion

• Floating IF’s

• Loop Defactorization

• Loop Peeling

• Loop Interchange

• Loop Collapse

• Loop Unrolling

• Loop Unrolling and 
Sum Reduction

• Outer Loop Unrolling



Array Allocation

• Array’s are allocated differently in C and 
FORTRAN. 

1 2 3

4 5 6

7 8 9

C: 1 2 3 4 5 6 7 8 9

Fortran: 1 4 7 2 5 8 3 6 9



Array Padding

• COMMON blocks are allocated contiguously.

• Watch out for powers of two and know the 
associativity of your cache.

• Thrashing a 4MB direct mapped cache.

common /xyz/ a(1024),b(1024)

common /xyz/ a(1024),b(32),c(1024)



Stride Minimization

• Stride 1
for (I=0;I<1000;I++)

for (j=0;j<1000;j++)

c[I][j] += a[I][j]+b[I][j]

• Stride 1000
for (j=0;j<1000;j++)

for (i=0;i<1000;i++)

c[I][j] += a[i[j]+b[I][j]



Stride Minimization

• We must think about spatial locality.

• Effective usage of the cache provides us 
with the best possibility for a performance 
gain.

• Recently accessed data are likely to be 
faster to access.

• Tune your algorithm to minimize stride.



Stride Minimization

• Stride 1000 Loop
– Default: 2086 ms.

– -O3 1860 ms.

• Stride 1 Loop
– Default: 287 ms.

– -O3: 78 ms.



Array Initialization

• Static initialization
REAL(8) A(100,100) /10000*1.0/

• Dynamic initialization
DO I=1, DIM1

DO J=1, DIM2

A(I,J) = 1.0



Array Initialization

Which to choose?

• Static initialization requires:
–  Disk space

– Demand paging

– Extra Cache and TLB misses.

•  Use only for small sizes with default 
initialization to 0.



Loop Fusion

• Loop overhead reduced

• Better instruction overlap

• Lower cache misses

• Be aware of associativity issues with 
array’s mapping to the same cache line.



Loop Fusion

• Untuned

for(i=0;i<100000;i++) 

x *= a[i] + b[i];

for(i=0;i<100000;i++)

y *= a[i] + c[i];

• Tuned

for(i=0;i<100000;i++) 

{

x *= a[i] + b[i];

y *= a[i] + c[i];

}



Loop Fusion

• Untuned
Default: 55 (3) ms.

-O3 39 (1.6) ms.

• Tuned
Default: 30 (6) ms.

-O3: 16 (5) ms.



Loop Interchange

• Swapping the nested order of loops
– Minimize stride

– Reduce loop overhead where inner loop counts 
are small



Loop Interchange

• Untuned

float a[2000][40][2];

for(i=0;i<2000;i++)

  for(j=0;j<40;j++)

 for (k=0;k<2;k++)

   a[i][j][k] *= 1.01;

• Tuned

float a[2][40][2000];

for(i=0;i<2;i++)

  for(j=0;j<40;j++)

 for (k=0;k<2000;k++)

      a[i][j][k] *= 1.01;



Loop Interchange

• Untuned
– Default: 49 ms.

– -O3: 7 ms.

• Tuned
– Default: 48 ms.

– -O3: 6 ms.



Floating IF’s

• IF statements that do not change from 
iteration to iteration may be modeled out of 
the loop.

• Compilers can usually do this except when
– Loops contain calls to procedures

– Variable bounded loops that may never get 
entered

– Complex loops where invariance cannot be 
determined



Floating IF’s

• Untuned

for(i=0;i<1000;i++)

{

for (j=0;j<1000;j++)

{

   if (a[i] > 100)

      b[i] = a[i] - 
3.7;

   x = x + a[j] + b[i];

}

}  

• Tuned

for(i=0;i<1000;i++)

{

   if (a[i] > 100)

      b[i] = a[i] - 3.7;

for (j=0;J<1000;J++)

   x = x + a[j] + b[i];

}



Floating IF’s

• Untuned
– Default: 452 ms.

– -O3: 120 ms.

• Tuned
– Default: 243 ms.

– -O3: 120 ms.



Loop Defactorization

• Loops involving multiplication by a 
constant in an array.

• Allows better instruction scheduling.

• Facilitates multiply-adds.



Loop Defactorization

• Untuned

for (i=0;i<1000;i++)

{

a[i] = 0.0;

for (j=0;j<1000;j++)

   a[i]+=b[j]*d[j]*c
[i];

}

• Tuned

for (i=0;i<1000;i++)

{

a[i] = 0.0;

for (j=0;j<1000;j++)

   a[i]+=b[j]*d[j];

a[i] *= c[i];

}



Loop Defactorization

• Note that floating point operations are not 
always associative. 

(A + B) + C   != A + (B + C)

• Be aware of your precision

• Always verify your results with an 
unoptimized code.



Loop Defactorization

• Untuned
– Default: 270 ms.

– -O3:  30 ms.

• Tuned
– Default: 225 ms.

– -O3: 28 ms.



Loop Peeling

• For loops which access previous elements 
in arrays. (Cylinder coordinate system)

• Compiler cannot determine that a[jwrap] 
doesn’t need to be loaded in every iteration.



Loop Peeling

• Untuned

jwrap = ARRAY_SIZE;

for (i=0;i<ARRAY_SIZE;i++)

{

b[i]=(a[i]+a[jwrap])*0.5;

jwrap = i;

}

• Tuned

b[0]=(a[0]+a[ARRAY_SIZE])*0.5;

for (i=1;i<ARRAY_SIZE;i++)

{

b[i]=(a[i]+a[i-1])*0.5;

jwrap = i;

}



Loop Peeling

• Untuned
– Default: 26 ms.

– -O3:  7 ms.

• Tuned
– Default: 25 ms.

– -O3: 6 ms.



Loop Collapse

• For multi-nested loops in which the entire 
array is accessed.

• This can reduce loop overhead and improve 
compiler vectorization.



Loop Collapse

• Untuned

for(i=0;i<50;i++)

  for(j=0;j<80;j++)

    for(k=0;k<4;k++)

      a[i][j][k] +=   b[i][j]
[k] * c[i][j][k];

• Tuned

for(i=0;i<(50*80*4);i++)

  a[0][0][i] += b[0][0][i] 
* c[0][0][i];



Loop Collapse

• Untuned
– Default: 5.6 ms.

– -O3:  1.6 ms.

• Tuned
– Default: 3.6 ms.

– -O3: 1.4 ms.



Loop Unrolling

• Data dependence delays can be reduced or 
eliminated.

• Reduce loop overhead.

• Might be performed by the compiler or 
preprocessor. (KAP/VAST)



Loop Unrolling

Untuned

for(i=0;i<100;i++)

  for(j=0;j<100;j++)

    for(k=0;k<4;k++)

      a[i][j] += b[k][i] * c[k][j];



Loop Unrolling

Tuned

for(i=0;i<100;i++)

  for(j=0;j<100;j++)

  {

    a[i][j] += b[0][i] * c[0][j];

    a[i][j] += b[1][i] * c[1][j];

    a[i][j] += b[2][i] * c[2][j];

    a[i][j] += b[3][i] * c[3][j];
  }



Loop Unrolling

• Untuned
– Default: 224 ms.

– -O3:  25 ms.

• Tuned
– Default: 117 ms.

– -O3: 20 ms.



Loop Unrolling and Sum 
Reductions

• When an operation requires as input the 
result of the last output.

• Called a Data Dependency.

• Frequently happens with multi-add 
instruction inside of loops.

• Introduce intermediate sums. Use your 
registers!



Loop Unrolling and Sum 
Reductions

• Untuned

a=0.0;

for(i=0;i<ARRAY_SIZE;i++)

  for(j=0;j<ARRAY_SIZE;j++)

    a += b[j] + c[i];

• Tuned

a1 = a2 = a3 = a4 = 0.0;

for(i=0;i<ARRAY_SIZE;i++)

  for(j=0;j<ARRAY_SIZE;j+=4)

  {

  a1 += b[j] * c[i];

  a2 += b[j+1] * c[i];

  a3 += b[j+2] * c[i];

  a4 += b[j+3] * c[i];

  }

aa = a1 + a2 + a3 + a4;



Loop Unrolling and Sum 
Reductions

• Untuned

– Default: 39 ms.

– -O3:  12 ms.

• Tuned (2)

– Default: 33 ms.

– -O3: 6.1 ms.

• Tuned (4)

– Default: 29 ms.

– -O3: 3.6 ms.

• Tuned (8)

– Default: 28 ms.

– -O3: 3.0 ms.

• Tuned (16)

– Default: 27 ms.

– -O3: 3.3 ms.



Outer Loop Unrolling

• For nested loops, unrolling outer loop may 
reduce loads and stores in the inner loop.

• Compiler may perform this optimization.



Outer Loop Unrolling

• Untuned
– Each multiply requires two loads and one store.

for(i=0;i<ARRAY_SIZE;i++)

  for(j=0;j<ARRAY_SIZE;j++)

    a[i][j] = b[i][j] * c[j];



Outer Loop Unrolling

• Tuned
– Each multiply requires 5/4 loads and one store.

for(i=0;i<ARRAY_SIZE;i+=4)

  for(j=0;j<ARRAY_SIZE;j++)

  {

  a[i][j] = b[i][j] * c[j];

  a[i+1][j] = b[i+1][j] * c[j];

  a[i+2][j] = b[i+2][j] * c[j];

  a[i+3][j] = b[i+3][j] * c[j];

  }



Outer Loop Unrolling

• Untuned
– Default: 42 ms.

– -O3:  10 ms.

• Tuned
– Default: 32 ms.

– -O3: 10 ms.



Loop structure

• IF/GOTO and WHILE loops inhibit some 
compiler optimizations.

• Some optimizers and preprocessors can 
perform transforms.

• DO and for() loops are the most highly 
tuned.



Strength Reduction

• Reduce cost of mathematical operation with 
no loss in precision, compiler might do it.

• Integer multiplication/division by a constant 
with shift/adds

• Exponentiation by repeated multiplication

• Factorization and Horner’s Rule

• Floating point division by inverse 
multiplication



Strength Reduction
Horner’s Rule

• Polynomial expression can be rewritten as a 
nested factorization.

Ax^5 + Bx^4 + Cx^3 + Dx^2 + Ex + F =

((((Ax + B) * x + C) * x + D) * x + E) * x + F.

• Also uses multiply-add instructions

• Eases dependency analysis



Strength Reduction
Horner’s Rule

• Untuned

for(i=0;i<10000;i++)

{

  x = a[i] * pow(x,5) + 

      b[i] * pow(x,4) +

      c[i] * pow(x,3) + 

      d[i] * pow(x,2) +

      e[i] * x + f[i];

}

• Tuned

for(i=0;i<10000;i++)

{

  x = ((((a[i] * x + b[i]) *

      x + c[i]) * x + d[i]) *

      x + e[i]) * x + f[i];

}



Strength Reduction
Horner’s Rule

• Untuned
– Default: 56 ms.

– -O3:  51 ms.

• Tuned
– Default: 6 ms.

– -O3: 5 ms.



Strength Reduction
Integer Division by a Power of 2

• Shift requires less cycles than division.

• Both dividend and divisor must both be 
unsigned or positive integers.



Strength Reduction
Integer division by a Power of 2

• Untuned

IL = 0

DO I=1,ARRAY_SIZE

  DO J=1,ARRAY_SIZE

    IL = IL + A(J)/2

  ENDDO

  ILL(I) = IL

ENDDO

• Tuned

IL = 0

ILL = 0

DO I=1,ARRAY_SIZE

  DO J=1,ARRAY_SIZE

    IL = IL + ISHFT(A(J),-1)

  ENDDO

  ILL(I) = IL

ENDDO



Strength Reduction
 Integer division by a Power of 2

• Untuned
– Default: 195 ms.

– -O3:  37 ms.

• Tuned
– Default: 180 ms.

– -O3: 30 ms.



Strength Reduction
Factorization

• Allows for better instruction scheduling.

• Compiler can interleave loads and ALU 
operations.

• Especially benefits compilers able to do 
software pipelining.



Strength Reduction
Factorization

• Untuned
XX = X*A(I) + X*B(I) + X*C(I) + X*D(I)

• Tuned
XX = X*(A(I) + B(I) + C(I) + D(I))



Strength Reduction
Factorization

• Untuned
– Default: 53 ms.

– -O3:  8 ms.

• Tuned
– Default: 49 ms.

– -O3: 3 ms.



Subexpression Elimination
Parenthesis

• Parenthesis can help the compiler recognize 
repeated expressions.

• Some preprocessors and aggressive 
compilers will do it.



Subexpression Elimination
Parenthesis

• Untuned
XX = XX + X(I)*Y(I)+Z(I) + X(I)*Y(I)-Z(I) + X(I)*Y

(I) + Z(I)

• Tuned
XX = XX + (X(I)*Y(I)+Z(I)) + X(I)*Y(I)-Z(I) + (X

(I)*Y(I) + Z(I))



Subexpression Elimination
Parenthesis

• Untuned
– Default: 38 ms.

– -O3:  25 ms.

• Tuned
– Default: 33 ms.

– -O3: 20 ms.



Subexpression Elimination
Type Considerations

• Changes the type or precision of data.
– Reduces resource requirements.

– Avoid type conversions.

– Processor specific performance.

• Example convert REAL*16  to REAL*8



Subexpression Elimination
Type Considerations

• Untuned
– Default: 157 ms.

– -O3:  129 ms.

• Tuned
– Default: 35 ms.

– -O3: 13 ms.



I/O Considerations

• Memory map files.

• Match record size near multiple of cache 
line size.

• Use near power of two record size.



I/O Considerations

• I/O is orders of magnitude slower than 
memory access.

• Eliminate unnecessary I/O.

• Use best suited interface.

• Avoid copies.

• Use binary I/O



Optimized Arithmetic Libraries

• [P]BLAS: Basic Linear Algebra 
Subroutines

• [Sca]LAPACK: Linear Algebra Package

• ESSL: Engineering and Scientific 
Subroutine Library

• NAG: Numerical Algorithms Group

• IMSL: International Mathematical and 
Statistical Lib.

• Available for Fortran, C, C++ etc...



Optimized Arithmetic Libraries

• Advantages:
– Subroutines are quick to code and understand.

– Routines provide portability.

– Routines perform well.

– Comprehensive set of routines.



BLAS

• Common Matrix/Matrix, Matrix-Vector, 
Vector-Vector.

• REAL/DOUBLE/COMPLEX

• Reference version available from UT.

• Vendor version offer high performance.

• Multithreaded are sometimes available.
• http://www.netlib.org/blas/index.html



Level 1, 2 and 3 BLAS

• Level 1 BLAS    
Vector-Vector 
operations

• Level 2 BLAS  
Matrix-Vector 
operations

• Level 3 BLAS  
Matrix-Matrix 
operations

+ *

*

+ *



BLAS for Performance

• Development of blocked algorithms 
important for performance

IBM RS/6000-590 (66 MHz, 264 Mflop/s Peak)
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BLAS Performance
Title:

Creator:
gnuplot
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.



BLACS -- Introduction

• A design tool, they are a conceptual aid in design 
and coding.

• Associate widely recognized mnemonic names with 
communication operations, improve
– program readability,

– self-documenting quality of the code.

• Promote efficiency by identifying frequently 
occurring operations of linear algebra which can be 
optimized on various computers.



BLACS -- Basics
• An operation which involves more than one sender 

and one receiver is called a “scoped operation”.  
Using a 2D-grid, there are 3 natural scopes:

Scope Meaning
Row All processes in a process row

participate.
Colum
n

All processes in a process column
participate.

All All processes in the process grid
participate.



BLACS -- Basics

• Operations are matrix-based and ID-less

• Types of BLACS routines: point-to-point 
communication, broadcast, combine 
operations and support routines.



PBLAS -- Introduction
• Parallel  Basic  Linear  Algebra  Subprograms 

for distributed-memory MIMD computers

• Do both the communication and computation.

• Simplification of the parallelization: especially 
when BLAS-based,

• Modularity: gives programmer larger building 
blocks,

• Portability: machine dependencies are confined to 
the BLAS and BLACS.



Scope of the PBLAS

•  No vector rotations,

• No dedicated subprograms for banded 
matrices,

• Matrix transposition available.

• Prototype version of packed storage PBLAS
– http://www.netlib.org/scalapack/prototype/



PBLAS

• Similar to the BLAS in functionality and 
naming.

• Built on the BLAS and BLACS

• Provide global view of matrix
CALL DGEXX ( M, N, A( IA, JA ), LDA,... )

CALL PDGEXX( M, N, A, IA, JA, DESCA,... )



PBLAS -- Syntax

• Global view of the matrix operands, allowing global 
addressing of distributed matrices (hiding complex local  
indexing),

A(IA:IA+M­1,JA:JA+N­1)

 JA

IA

N_

N

MM_



PBLAS -- Storage Conventions

• An M_ -by-N_ matrix is block-partitioned into 
MB_-by-NB_ blocks and distributed according to 
the two-dimensional block-cyclic scheme

                 load balanced computations, scalability

• Locally, the scattered columns are stored 
contiguously (FORTRAN “Column Major”)
– re-use of the BLAS (leading dimension LLD_)



PBLAS -- Examples

 INTEGER   IAM, ICTXT, INFO, LDA, LDB, LDC, NMAX, NPROCS

 PARAMETER ( NMAX = 3, LDA = NMAX, LDB = NMAX, LDC = NMAX )

 INTEGER   DESCA( 9  ), DESCB( 9 ), DESCC( 9 )

 DOUBLE PRECISION  A( NMAX, NMAX ), B( NMAX, NMAX ), C( NMAX, 
NMAX )

  

 CALL BLACS_PINFO( IAM, NPROCS )

 IF( NPROCS.LT.1 ) THEN

   NPROCS = 4

   CALL BLACS_SETUP( IAM, NPROCS )

 END IF

 CALL  BLACS_GET( -1, 0, ICTXT )

 CALL  BLACS_GRIDINIT( ICTXT, ‘Row’, 2, 2 )



PBLAS -- Examples

 .  .  .

 CALL DESCINIT( DESCA, 5, 5, 2, 2, 0, 0, ICTXT, LDA, INFO )

 CALL DESCINIT( DESCB, 5, 5, 2, 2, 0, 0, ICTXT, LDB, INFO )

 CALL DESCINIT( DESCC, 5, 5, 2, 2, 0, 0, ICTXT, LDC, INFO )

 . .  .

 CALL PDGEMM( ‘No transpose’, ‘No transpose’, 4, 4, 4, 1.0D+0,

$                                A, 1, 1, DESCA, B, 1, 1, DESCB, 0.0D+0, C, 1, 1, DESCC )

  .  .  .

 CALL PBFREEBUF()

 CALL BLACS_GRIDEXIT( ICTXT )

 CALL BLACS_EXIT( 0 )



Features of PBLAS V2 ALPHA

• Software is backward compatible with 
current version 1.5.

• Improved ease-of-use:
– Previous alignment restrictions have all been 

removed.  Re-alignment is performed on-the-fly 
and only when necessary.

– General rectangular block cyclic distribution of 
the operands is supported for all routines.



Features of PBLAS V2 ALPHA

– Support for replicated operands
• Increased functionality is truly usable as illustrated 

by the packed storage ScaLAPACK prototype 
routines

• Enable the expression of currently missing 
algorithms in the ScaLAPACK dense library such as 
constrained linear least squares solvers.

• Simply the expression of complex algorithms such as 
divide and conquer algorithms (sign function).



LAPACK

• F77 routines for solving
– systems of simultaneous linear equations and 

eigenvalue problems

– matrix factorizations (LU, Cholesky, QR, SVD, 
Schur, generalized Schur)

– Related computations such as reordering and 
conditioning.

– Built on the level 1, 2 3 BLAS Single, Double, 
Complex, Double Complex

• http://www.netlib.org/lapack/index.html



LAPACK

• Most of the parallelism in the BLAS.

• Advantages of using the BLAS for 
parallelism:
– Clarity

– Modularity

– Performance

– Portability



LAPACK -- Release 3.0

• Add functionality
– divide and conquer SVD,

– error bounds for GLM and LSE,

– new expert drivers for GSEP,

– faster QRP,

– faster solver for the rank-deficient LS (xGELSY),

– divide and conquer least squares

– ...



ScaLAPACK Structure

ScaLAPACK

BLAS

LAPACK BLACS

PVM/MPI/...

PBLAS
Global
Local



LAPACK - Goals

• Efficiency
– Optimized compute and communication engines

– Block-partitioned algorithms (Level 3 BLAS) utilize memory hierarchy and yield good node 
performance

• Scalability
– as the problem size and number of processors grow

• Reliability
– Whenever possible, use LAPACK algorithms and error bounds.

• Portability
– isolate machine dependencies to BLAS and the BLACS

• Flexibility
– Modularity: Build rich set of linear algebra tools: BLAS, BLACS, PBLAS

• Ease-of-Use
– Calling interface similar to LAPACK



ScaLAPACK Implementation

• BLAS (Performance and Portability)
– Blocked data access (Level 3 BLAS) yields good local 

performance,

– Portability: standardization of efficient kernels.

• BLACS (Performance and Portability)
– Correct level of notation: communication of matrices,

– Efficiency: identify frequent linear algebra operations 
which can be optimized on various computers.
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ScaLAPCK Functionality
Problem type
Ax = b

SDrv EDrv Factor Solve Inv Cond
Est

Iter
Refin

Triangular X X X X

SPD
SPD Banded
SPD Tridiagonal

X
X
X

X X
X
X

X
X
X

X X X

General
General Banded
General Tridiagonal

X
X
X

X X
X
X

X
X
X

X X X

Least squares
GQR
GRQ

X X
X
X

X

Ax = λx or Ax = λBx SDrv Edrv Reduct Solution

Symmetric X X X X
General + X +
Generalized BSPD X X
SVD + X X +

• Timing and 
Testing routines 
for almost all

• This is a large 
component of the 
package

• Prebuilt libraries 
available for SP,  
PCA, O2K, 
PGON, ALPHA, 
HPPA, LINUX, 
Sun, RS6K  



ScaLAPACK Functionality

• Orthogonal/unitary transformation routines

• Prototype Codes
– PBLAS (version 2.0 ALPHA)

– Packed Storage routines for LLT, SEP, GSEP

– Out-of-Core Linear Solvers for LU, LLT, and QR

– Matrix Sign Function for Eigenproblems

– SuperLU and SuperLU_MT

– HPF Interface to ScaLAPACK



Parallelism in ScaLAPACK

• Level 3 BLAS block 
operations

– All the reduction routines

• Pipelining
– QR Algorithm, Triangular 

Solvers, classic factorizations

• Redundant computations
– Condition estimators 

• Static work assignment
– Bisection

• Task parallelism
– Sign function eigenvalue 

computations

• Divide and Conquer
– Tridiagonal and band solvers, 

symmetric eigenvalue problem 
and Sign function 

• Cyclic reduction
– Reduced system in the band 

solver 



Narrow Band and Tridiagonal 
Matrices

• The ScaLAPACK routines solving narrow-band 
and tridiagonal linear systems assume
– the narrow band or tridiagonal coefficient matrix to be 

distributed in a block-column fashion, and

– the dense matrix of right-hand-side vectors to be 
distributed in a block-row fashion.

• Divide-and-conquer algorithms have been 
implemented because they offer greater scope for 
exploiting parallelism than the corresponding 
adapted dense algorithms.



ScaLAPACK Documentation

• Documentation
– ScaLAPACK Users’ Guide 

http://www.netlib.org/scalapack/slug/scalapack_slug.html

– Installation Guide for ScaLAPACK

– LAPACK Working Notes

• Test Suites for ScaLAPACK, PBLAS, 
BLACS

• Example Programs 
http://www.netlib.org/scalapack/examples/

• Prebuilt ScaLAPACK libraries on netlib



ESSL

• provides 400 functions: 
– Basic Linear Algebra Subroutines (BLAS) 

– Linear System of Equations 

– Eigensystem Analysis

– Fourier Transforms 
• http://www.tc.cornell.edu/UserDoc/Software/Num/essl/



Optimized Arithmetic Libraries

•  NAG - Routines for solving
– Minimization, integral equations

– ODE’s, PDE’s, transforms, quadrature

– Linear algebra, nonlinear equations

– Curve, surface fitting, smoothing

– Statistics and estimation

– Multivariate, time-series, tabular and 
contingency analysis

– http://www.nag.com



Optimized Arithmetic Libraries

• IMSL - Over 900 routines for solving 
common mathematical and statistical tasks.

• NAG is better for optimization, IMSL better 
for statistics.

• http://www.vni.com/products/imsl/fortfunc.html



Parallel Optimization

• Two programming models.
– Message Passing

– Shared Memory

• Optimizing parallel code



Choosing a Data Distribution

• The two main issues in choosing a data layout for 
dense matrix computations are:
– load balance, or splitting the work reasonably evenly 

among the processors throughout the algorithm, and

– use of the Level 3 BLAS during computations on a 
single processor to utilize the memory hierarchy on each 
processor.



Possible Data Layouts
• 1D block and cyclic column distributions

• 1D block-cyclic column and 2D block-cyclic 
distribution used in ScaLAPACK



Two-dimensional Block-Cyclic Distribution

• Ensure good load balance --> Performance and 
scalability,

• Encompasses a large number of (but not all) data 
distribution schemes,

• Need redistribution routines to go from one 
distribution to the other.



Load Balancing

• Static
– Data/tasks are partitioned among existing 

processors.

– Problem of finding an efficient mapping

• Dynamic
– Master/Worker model

– Synchronization and data distribution problems



MPP Optimization

• Programming
– Message passing (MPI, PVM, Shmem)

– Shared memory (HPF or MP directive based)

• Algorithms
– Data or Functional Parallelism

– SIMD, MIMD

– Granularity (fine, medium, coarse)

– Master/Worker or Hostless



Parallel Performance

• Architecture is characterized by
– Number of CPU’s

– Connectivity

– I/O capability

– Single processor performance



Message Passing

• Two popular message passing API’s.
– PVM

• UT/ORNL

• Vendor

– MPI
• MPICH from MS State

• LAM from Ohio Supercomputing Center

• Vendor



Message Passing

• In general
– PVM is a message passing research vehicle.

– MPI is a production product intended for 
application engineers.

– MPI will outperform PVM.

– MPI has richer functionality

– PVM is better for applications requiring fault 
tolerance, heterogeneity and changing number of 
processes.



Message Passing

• Both PVM and MPI
– Support collective operations

– Support customized data types

– Will take advantage of shared memory

– Exist on almost every platform including
• Networks of workstations

• Windows 95 and NT

• Multiprocessor workstations



Message Passing

• Node 1 needs X bytes from node 0

• Node 0 calls a send function (X bytes from 
address A)

• Node 1 calls a receive function (X bytes 
into address B)



Message Passing

• Upon message arrival
– If node B has not posted a receive the data is 

buffered until the receive function is called.

– Else the data is copied directly to the address 
given to the receive function.



Communication Issues

• Startup time, latency or overhead

• Bandwidth

• Network contention and congestion

• Bidirectionality

• Communication API

• Dedicated Channels



Communication Issues

• Startup time and bandwidth
– Startup time is higher than the time to actually 

transfer a small message.

– Send larger messages fewer times, but try to 
keep everyone busy.

• Contention can be reduced by uniformly 
distributing messages.



Communication Issues

• To take advantage of bidirectionality, post  
receives before sending. 

• Dedicated channels
– On the SP2 make sure you use the User-Space 

communication option. This will double your 
bandwidth and half your latency.

– setenv MP_EUILIB us

• As mentioned, use MPI_Ixxx calls.
– It can handle more particles than fit in memory



Message Passing

Buffering - Temporary storage of data. 

Posting - Temporary storage of an address.

Nonblocking - Refers to an function A that initiates 
an operation B and returns to the caller before the 
completion of B.

Blocking - The function A does not return to the 
caller until the completion of operation B.

Polling/Waiting - Testing for the completion of a 
nonblocking operation.



MPI Bandwidth
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Message Passing

• It is possible for sends and receives to be
– Nonblocking(send) or Posted(receive)

– Synchronous(send)

– Buffered

– Blocking



PVM Message Passing

• In PVM, all transfers are buffered except 
for some MPP and vendor implementations.

• All sends complete when it is safe to use the 
input argument again. 
(transmitted/buffered)

• Transmission does not guarantee buffering 
or completion of the sent data by the remote 
process.



PVM Optimizations

• We are primarily interested in
PVM_PSEND PVM_PRECV

• Why? Because it avoids the cost of memory 
allocation, packing and data translation.

• In addition, PVM_PRECV allows in-place 
receives on MPP’s.



PVM Optimizations

• Avoid packing data, this implies an extra 
copy and data translation. By default PVM 
uses XDR encoding.

• If you must pack a message, use
pvm_initsend(PvmDataInPlace)

• If communicating off your machine, bypass 
the PVM daemon with  
pvm_setopt(PvmRoute,PvmRouteDirect)



PVM Optimizations

• Avoid use of the group server, roll your 
own collective operations.

pvm_joingroup()

pvm_bcast()

pvm_barrier()

pvm_reduce()

pvm_gsize()

pvm_getinst()

pvm_lvgroup()



MPI Message Passing

• MPI introduces communication modes 
dictating semantics of completion of send 
operations.
– BBuffered - When transmitted or buffered, space 

provided/limited by application, else error.

– RReady - Only if receive is posted, else error.

– SSynchronous - Only when receive begins to 
execute, else wait. Useful for debugging.



MPI Message Passing

• In addition
standard - MPI will decide if/how much outgoing 

data is buffered. If space is unavailable, 
completion will be delayed until data is 
transmitted to receiver. (Like PVM) 

IImmediate - nonblocking, returns to the caller 
ASAP. May be used with any of the above 
modes.



MPI Message Passing

• Ready sends can remove a handshake for 
large messages.

• There is only one receive mode, it matches 
any of the send modes.



MPI Optimizations

• We are primarily interested in
MPI_ISEND, MPI_IRECV, MPI_IRSEND

• Why? Because your program could be 
doing something useful while sending or 
receiving! You can hide much of the cost of 
these communication operations.



MPI Data Types

• For array transfers MPI has user defined 
data types to gather and scatter data to/from 
memory.

• Try to use MPI_TYPE_[H]VECTOR()or 
MPI_TYPE_[H]INDEXED()

• Avoid MPI_TYPE_STRUCT()



MPI Collective Communication

• Unlike PVM, with MPI you should use the 
collective operations. They are likely to be 
highly tuned for the architecture.

• These operations are very difficult to 
optimize and are often the bottlenecks in 
parallel applications.



MPI Collective Communication

MPI_Barrier()

MPI_Bcast()

MPI_Gather[v]() MPI_Scatter[v]()

MPI_Allgather[v]() 

MPI_Alltoall[v]()

MPI_Reduce()

MPI_AllReduce()

MPI_Reduce_Scatter()

MPI_Scan()



Message Passing Optimizations

• Try to keep message sizes not small

• Try to pipeline communication/computation

• Avoid data translation and data types unless 
necessary for good performance

• Avoid wildcard receives

• Align application buffers to double words 
and page sizes. Be careful of cache lines!



Message Passing Optimization
Nearest Neighbor Example 1

N slave processors available plus Master, M 
particles each having (x,y,z) coordinates.

1) Master reads and distributes all coordinates 
to N processors.

2) Each processor calculates its subset of M/N 
and sends it back to the master.

3) Master processor receives and outputs 
information.



Message Passing Optimization
Nearest Neighbor Example 2

1) Master reads and scatters M/N coordinates to N processors.

2) Each processor receives its own subset and makes a replica.

3) Each processor calculates its subset of M/N coordinates 
versus the replica.

 4) Each processor sends to the next processor its replica of 
M/N coordinates.

5) Each processor receives the replica. Goto 3) N-1 times.

6) Each processor sends its info back to the Master



Message Passing Optimization
Nearest Neighbor Example

• Example 1 works better only when
– There are a small number of particles

– You have an super efficient broadcast

• Example 2 works better more often because
– Computation is pipelined. Note that slave 

processor 0 is already busy before processor 1 
even gets its input data.



MPI Message Passing

• To test for the completion of a message use

MPI_WAITxxx and MPI_TESTxxx

where xxx is all, any, some or NULL.

• Remember you must test ISEND’s as well 
as IRECV’s before you can reuse the 
argument.



Automatic Parallelization

• Let the compiler do the work.

• Advantages
– It’s easy

• Disadvantages
– Only does loop level parallelism.

– It wants to parallelize every loop iteration in 
your code.



Automatic Parallelization

• On the SGI
f77 -pfa <prog.f>

• Tries to parallelize every loop in your code.



Data Parallelism

• Data parallelism: different processors 
running the same code on different data. 
(SPMD)

• Identify hot spots.

• Do it by hand via directives.

• Modify the code to remove dependencies.

• Make sure you get the right answers.



Data Parallelism on the SGI’s

• Insert the c$doacross directive just 
before the loop to be parallelized.

• Declare local and shared variables

• Compile with -mp option.

c$doacross local(i) share(a,n)

do i=1,n

a(i)=float(i)

end do



Data Parallelism on the SGI’s

• Directives affect only immediately 
referenced loop.

• Directives begin in column one.

• c$doacross is becoming a standard. 



Data Parallelism on the SGI’s

• Compiler generates code that runs with any 
number of threads settable at runtime.

• Set number of threads.
pagh> setenv MP_SET_NUMTHREADS 4



Task Parallelism

• Task parallelism means different 
processors are running different procedures. 

• Can be accomplished on any machine with 
data parallel directives via if statements 
inside a loop.



Task Parallelism

c$doacross local(i)

do i=1,n

 if (i=1) call sub1(...)

   if (i=2) call sub2(...)

 if (i=3) call sub3(...)

 if (i=4) call sub4(...)

end do



Limits on Parallel Speedup

• The code is I/O bound.

• The problem size is fixed.

• The problem size is too small.

• There is too much serial/scalar code.

• The algorithm is inherently serial.

• Data distribution.

• Parallel overhead.



Parallel Overhead

• Creating/Scheduling threads

• Communication

• Synchronization

• Partitioning



Parallel Overhead

• For data parallel programming we can 
estimate parallel overhead.

• Time the code with only one thread



Reducing Parallel Overhead

• Don’t parallelize ALL the loops.

• Don’t parallelize the small loops.

• Use the “if” modifier.

c$doacross if(n > 500), local(...), share(...)

do i=1,n

enddo



Reducing Parallel Overhead

• Use task parallelism.
– Lower overhead

– More code runs in parallel

– Requires a parallel algorithm



Improving Load Balance

• Change the way loop iterations are 
allocated to threads.
– Change the scheduling type

– Change the chunk size



Improving Load Balance

• Scheduling 
– setenv MP_SCHEDTYPE <type>

– c$doacross mp_schedtype=<type>

– SIMPLE - default, iterations equally and 
sequentially allocated per processor. 

– INTERLEAVE - round-robin per chunk of 
iterations. Use when some iterations do more 
work than others.



Improving Load Balance

• Scheduling 
– DYNAMIC - iterations are allocated per 

processor during run-time. When the amount of 
work is unknown.

– GSS - guided self scheduling. Each processor 
starts with a large number and finishes with a 
small number. 



Improving Load Balance

• Change the number of iterations performed 
per processor.
– setenv CHUNK 4

– c$doacross local(i) chunk_size=4



SGI Origin 2000

• MIPS R10000, 195Mhz, 5.1ns

• 64 Integer, 64 Floating Point Registers

• 4 Instructions per cycle

• Up to 2 Integer, 2 Floating Point, 1 
Load/Store per cycle

• 4 outstanding cache misses

• Out of order execution



SGI Origin 2000

• 64 Entry TLB, variable page size

• 32K Data, 32K Instruction, 4MB unified.

• 2-way set associative, LRU replacement, 2-
way interleaved, except instruction cache.

• 128B line size.

• 624MB/sec CrayLink interconnect.



SP2

• IBM Power 2 SC, 135Mhz

• 32 Integer, 32 Floating Point Registers

• 6(8) Instructions per cycle

• 2 Integer, 2 Floating Point, 1 Branch,. 1 
Conditional

• Zero cycle branches, dual FMA



SP2

• 256 Entry TLB

• Primary Cache 128K Data, 32K Instruction

• 4 way set associative

• 256B line size

• 150MB/sec interconnect



T3E

• Alpha 21164, 450Mhz

• Primary Cache 8K Data, 8K Instruction

• 96KB on-chip 3-way associative secondary 
cache

• 2 FP / 2 Int / cycle



T3E

• Scheduling very important

• 64 bit divides take 22-60 CP

• Ind Mult/Add takes 4 cp, but issued every 
cycle



T3E

• Latency hiding features
– Cache bypass

– Streams

– E-registers

• 6 queued Dcache misses/WBs to Scache

• Load/store mergeing

• 32/64 byte line Dcache/Scache

• 2 cycle/8-10 cycle hit Dcache/Scache



T3E Cache Bypass

• Reduces memory traffic requirements.

• Fortran 
!DIR$ CACHE_BYPASS var1, var2

• C
#pragma _CRI cache_bypass var1, 
var2

• Block copy
– 593 MB/sec vs 401 MB/sec



T3E Streams

• Designed to provide automatic prefetching 
for densely strided data.

• 6 stream buffers, two 64 byte lines each

• Starts when 2 contiguous misses

• Look at difference in loads 
– 875MB/sec with streams

– 296MB/sec without



T3E Streams

• Count references to memory in your loops, 
make sure no more than six.

• Stores take up streams due to WB nature of 
Scache.

• May need to split loops to reduce streams.

• To use them
setenv SCACHE_D_STREAMS 1
man intro_streams
man streams_guide



T3E E-registers

• 512 64-bit off-chip registers for transferring 
data to/from remote/local memory

• SHMEM library
– Shared, distributed, memory access routines that 

use the E-registers.

– Can work on local memory
man intro_shmem

• Block copy
– 775 MB/sec vs 401 MB/sec



T3E E-registers

• Benchlib library
– One sided data transfers from memory to E-

registers

– More complicated to use than SHMEM

– Not supported by Cray

– Nonblocking

– Scatter / Gather

• Block copy
– 592 MB/sec vs 401 MB/sec



T3E/SGI Software Pipelining

•Allows mixing of iterations from different 
loops in each iteration of the hardware loop
•More work per cycle
•Not as important for dynamically scheduled 
processors. It is turned on by default when you 
use -O3 on the R8000.
•Use -pipeline2 on the T3E.



Subroutine Inlining

• Replaces a subroutine call with the function 
itself.

• Useful in loops that have a huge iteration 
count.

• Allows parallelization.



O2K Flags and Libraries

-O,-O2 - Optimize

-O3 - Maximal generic optimization, may alter semantics.

-Ofast=ip27 - SGI compiler group’s best set of flags.

-IPA=on - Enable interprocedural analysis.

-n32 - 32-bit object, best performer.

-copt - Enable the C source-to-source optimizer.

-INLINE:<func1>,<func2> - Inline all calls to func1 and func2.

-LNO - Enable the loop nest optimizer.

-cord - Enable reordering of instructions based on feedback information.

-feedback - Record information about the programs execution behavior to be 
used by IPA, LNO and -cord.

-lcomplib.sgimath -lfastm - Include BLAS, FFTs, Convolutions, 
EISPACK, LINPACK, LAPACK, Sparse Solvers and the fast math library.



SP2 Flags and Libraries

-O,-O2 - Optimize

-O3 - Maximum optimization, may alter semantics.

-qarch=pwr2, -qtune=pwr2 - Tune for Power2.

-qcache=size=128k,line=256 - Tune Cache for Power2SC.

-qstrict - Turn off semantic altering optimizations.

-qhot - Turn on addition loop and memory optimization, Fortran only.

-Pv,-Pv! - Invoke the VAST preprocessor before compiling. (C)

-Pk,-Pk! - Invoke the KAP preprocessor before compiling. (C)

-qhsflt - Don’t round floating floating point numbers and don’t range check 
floating point to integer conversions.

-inline=<func1>,<func2> - Inline all calls to func1 and func2.

-qalign=4k - Align large arrays and structures to a 4k boundary.

-lesslp2 - Link in the Engineering and Scientific Subroutine Library. 



T3E Flags and Libraries

-O,-O2 - Optimize

-O3 - Maximum optimization, may alter semantics.

-apad - Pad arrays to avoid cache line conflicts

-unroll2 - Apply aggressive unrolling

-pipeline2 - Software pipelining

-split2 - Apply loop splitting.

-Wl”-Dallocate(alignsz)=64b” Align common blocks on cache line 
boundary

-lmfastv - Fastest vectorized intrinsics library

-lsci - Include library with BLAS, LAPACK and ESSL routines

-inlinefrom=<> - Specifies source file or directory of functions to inline

-inline2 - Aggressively inline function calls.



Timers

• time <command> returns 3 kinds.
– Real time: Time from start to finish

– User: CPU time spent executing your code

– System:  CPU time spent executing system calls

• timex on the SGI.

• Warning! The definition of CPU time is 
different on different machines.  



Timers

• Sample output for csh users:
       1      2      3       4    5        6      7

1.150u 0.020s 0:01.76 66.4 15+3981k 24+10io 0pf+0w

1) User (ksh)

2) System (ksh)

3) Real (ksh)

4) Percent of time spent on behalf of this process, not including waiting.

5) 15K shared, 3981K unshared

6) 24 input, 10 output operations

7) No page faults, no swaps.



Timers

• gettimeofday(), part of the C library 
obtains seconds and microseconds since Jan 
1, 1970.

• Resolution is hardware dependent, near 
microsecond for SP2, T3E and SGIs.

• Latency is not the same as resolution.
– Many calls to this function will affect wall clock 

time.



Timers

• mclock() returns machine ticks as REAL*4 of 
the current process. Includes all children

• SP2 also has rtc() and irtc() taken directly 
from hardware.

• rtc() returns REAL*8 of seconds since initial 
value.

• irtc() returns INTEGER*8 of nanoseconds 
since the initial value.



Timers

• T3E has RTC() which returns cycle counter 
as REAL. Use the following to get speed in 
seconds of a cycle.

float CLOCKTICK(void) {
long sysconf(int request);
float p;

p = (float)sysconf(_SC_CRAY_CPCYCLE);

p *= 1.0e-12;

return(p); }



Timers

• MPI_Wtime() returns elapsed wall clock 
time in seconds as a double.

• This is portably one of the most efficient 
timers. We can use it for serial programs.

 C
double start;

MPI_Init(&argc,&argv);

start = MPI_Wtime();

MPI_Finalize();

  Fortran
integer ierr

double start

call MPI_INIT(ierr);

start = MPI_WTIME();

call MPI_FINALIZE(ierr)



prof

• Profiles program execution at the procedure 
level

• Available on most Unix systems, not T3E

• Displays the following:
– Name, percentage of CPU time

– Cumulative and average execution time

– Number of time procedure was called



prof

• Compile your code with -p

• After execution the CWD will contain mon.out.[x]

• Type prof, it will look for mon.out in the CWD. 
Otherwise give it name(s) with the -m option

• Format of output is:

Name %Time Seconds Sumsecs #Calls msec/call



gprof

• Profiles programs according to their call 
graphs

• Available on most Unix systems, not T3E

• Information different from prof:
– Adds the parent of each procedure

– Adds an index number for each procedure

– Adds direct descendents of each procedure

– Adds breakdown of time used by descendents

– Percentage of CPU time is cumulative



gprof

• Compile your code with -pg

• After execution the CWD will contain 
gmon.out.[x]

• Type gprof, it will look for gmon.out in 
the CWD. Otherwise give it name(s) with 
the -m option



prof/gprof

• All procedures called by the object code, 
many will be foreign to the programmer.

• Statistics are created by sampling and then 
looking up the PC and correlating it with 
the address space information.

•  Phase problems may cause erroneous 
results and reporting.



Tool-assisted Performance Analysis

Develop
performance

model

Instrument
source code
(optional or
automatic)

Link with
instrumentation

library

Generate
tracefile during

program execution

Analyze 
trace file

Compare model
predictions with
measurements

Tune code and/or
revise model



Parallel Performance Tool Capabilities 

Post-
mortem
analysi

s

Automati
c run-
time

analysis

Source
code

clickbac
k

State-time
diagram

(zooming/
scrolling)

Statistical
analysis

Languages
& platforms
supported

AIMS x x x x Fortran,C
SGI , Sun,
IBM SP

nupshot x x(x) Language-
independent
Most MPI
platforms

Paradyn
(MPI version) x x Fortran, C,

HPF, C++
IBM SP

SvPablo x x x ANSI C, HPF
Sun, SGI

VAMPIR x x(x) Language-
independent
all platforms



Speedshop

• ssusage collects information about your 
program’s use of machine resources.

• ssrun allows you to run experiments on a 
program to collect performance data.

• prof analyzes the performance data you 
have recorded using ssrun and provides 
formatted reports.



Speedshop (cont)

• pixie instruments an executable to enable basic 
block counting experiments to be performed.

• squeeze allocates a region of virtual memory and 
locks the virtual memory down into real memory, 
making it unavailable to other processes.

• thrash allows you to explore paging behavior by 
allowing you to allocate a block of memory, then 
accessing the allocated memory to explore paging 
behavior.



Using Speedshop

1 Build the Application

2 Run Experiments on the application to 
collect performance Data

3 Examine the Performance Data

4 Generate an improved version of the 
program

5 Repeat as needed



Pcsamp Example
-------------------------------------------------------------------------------
Profile listing generated Fri Jan 30 02:06:07 1998
    with:       prof nn0.pcsamp.21081
-------------------------------------------------------------------------------
samples   time    CPU    FPU   Clock   N-cpu  S-interval Countsize
   1270    13s R10000 R10010 195.0MHz   1     10.0ms     2(bytes)
Each sample covers 4 bytes for every 10.0ms ( 0.08% of 12.7000s)
-------------------------------------------------------------------------------
  -p[rocedures] using pc-sampling.
  Sorted in descending order by the number of samples in each 

procedure.
  Unexecuted procedures are excluded.
-------------------------------------------------------------------------------
samples   time(%)      cum time(%)      procedure (dso:file)
   1268    13s( 99.8)   13s( 99.8)           main (nn0:nn0.c)
      1  0.01s(  0.1)   13s( 99.9)        _doprnt 

(/usr/lib32/libc.so.1:doprnt.c)



Example of Usertime

-------------------------------------------------------------------------------
Profile listing generated Fri Jan 30 02:11:45 1998
    with:       prof nn0.usertime.21077
-------------------------------------------------------------------------------
        Total Time (secs)     : 3.81
        Total Samples         : 127
        Stack backtrace failed: 0
        Sample interval (ms)  : 30
        CPU                   : R10000
        FPU                   : R10010
        Clock                 : 195.0MHz
        Number of CPUs        : 1
-------------------------------------------------------------------------------
index  %Samples     self descendents  total        name
[1]    100.0%    3.78        0.03     127          main
[2]      0.8%    0.00        0.03       1          _gettimeofday
[3]      0.8%    0.03        0.00       1          _BSD_getime 



Speedshop

• ssusage collects information about your 
program’s use of machine resources.

• ssrun allows you to run experiments on a 
program to collect performance data.

• prof analyzes the performance data you 
have recorded using ssrun and provides 
formatted reports.



Speedshop (cont)

• pixie instruments an executable to enable basic 
block counting experiments to be performed.

• squeeze allocates a region of virtual memory and 
locks the virtual memory down into real memory, 
making it unavailable to other processes.

• thrash allows you to explore paging behavior by 
allowing you to allocate a block of memory, then 
accessing the allocated memory to explore paging 
behavior.



Using Speedshop

1 Build the Application

2 Run Experiments on the application to 
collect performance Data

3 Examine the Performance Data

4 Generate an improved version of the 
program

5 Repeat as needed



Ideal experiment
 Prof run at: Fri Jan 30 01:59:32 1998
 Command line: prof nn0.ideal.21088
 3954782081: Total number of cycles
 20.28093s: Total execution time
 2730104514: Total number of instructions executed
 1.449: Ratio of cycles / instruction
  195: Clock rate in MHz
   R10000: Target processor modeled
---------------------------------------------------------
Procedures sorted in descending order of cycles executed.
Unexecuted procedures are not listed. Procedures
beginning with *DF* are dummy functions and represent
init, fini and stub sections.
---------------------------------------------------------
        cycles(%)  cum %     secs    instrns    calls procedure(dso:file)
3951360680(99.91)  99.91    20.26 2726084981     1 main(nn0.pixie:nn0.c)
1617034( 0.04)  99.95     0.01    1850963  5001 doprnt 

(./libc.so.1.pixn32:doprnt.c) 



Pcsamp Example
-------------------------------------------------------------------------------
Profile listing generated Fri Jan 30 02:06:07 1998
    with:       prof nn0.pcsamp.21081
-------------------------------------------------------------------------------
samples   time    CPU    FPU   Clock   N-cpu  S-interval Countsize
   1270    13s R10000 R10010 195.0MHz   1     10.0ms     2(bytes)
Each sample covers 4 bytes for every 10.0ms ( 0.08% of 12.7000s)
-------------------------------------------------------------------------------
  -p[rocedures] using pc-sampling.
  Sorted in descending order by the number of samples in each procedure.
  Unexecuted procedures are excluded.
-------------------------------------------------------------------------------
samples   time(%)      cum time(%)      procedure (dso:file)
   1268    13s( 99.8)   13s( 99.8)           main (nn0:nn0.c)
      1  0.01s(  0.1)   13s( 99.9)        _doprnt (/usr/lib32/libc.so.1:doprnt.c)



Example of Usertime
-------------------------------------------------------------------------------
Profile listing generated Fri Jan 30 02:11:45 1998
    with:       prof nn0.usertime.21077
-------------------------------------------------------------------------------
        Total Time (secs)     : 3.81
        Total Samples         : 127
        Stack backtrace failed: 0
        Sample interval (ms)  : 30
        CPU                   : R10000
        FPU                   : R10010
        Clock                 : 195.0MHz
        Number of CPUs        : 1
-------------------------------------------------------------------------------
index  %Samples     self descendents  total        name
[1]    100.0%    3.78        0.03     127          main
[2]      0.8%    0.00        0.03       1          _gettimeofday

[3]      0.8%    0.03        0.00       1          _BSD_getime 



tprof for the SP2

• Reports CPU usage for programs and 
system. i.e.
– All other processes while your program was 

executing

– Each subroutine of the program

– Kernel and Idle time

– Each line of the program

• We are interested in source statement 
profiling.



tprof for the SP2

• Also based on sampling, which may cause 
erroneous reports.

• Compile using -qlist and -g.

• tprof <program> <args>

• Leaves a number of files in the CWD preceded by 
__.

__h.<file>.c - Hot line profile

__t.<subroutine>_<file>.c - Subroutine profile

__t.main_<file>.c - Executable profile



PAT for the T3E

• Performance analysis tool is a low-overhead 
method for
– Estimating time in functions

– Determining load balance

– Generating and viewing trace files

– Timing individual calls

– Displaying hardware performance counter 
information



PAT for the T3E

• Uses the UNICOS/mk profil() system 
call to gather information by periodically 
sampling and examining the program 
counter.

• Works on C, C++ and Fortran executables

• No recompiling necessary

• Just link with -lpat



Apprentice for the T3E

• Graphical interface for identifying 
bottlenecks.

% f90 -eA <file>.f -lapp

% cc -happrentice <file>.c 
-lapp

% a.out

% apprentice app.rif





Automated Instrumentation and 
Monitoring System (AIMS)

URL http:// hhttp://science.nas.nasa.gov/Software/AIMS

Version 3.7

Languages ANSI C, Fortran 77

Platforms IBM SP with IBM MPI or MPICH
Sun, SGI, and HP workstations with MPICH
SGI Power Challenge with SGI MPI



AIMS Components

• Source code instrumentors
– xinstrument

– batch_inst

• Monitoring library

• Analysis tools
– View Kernel (VK)

– tally statistics generator



xinstrument

• GUI allows user to select specific source code constructs to 
be instrumented

• Default is to instrument all communication routines

• Other possibilities

– All subroutines

– All I/O

– Enable by Type

– Point and click on particular constructs in Construct Tree 
diagrams



xinstrument (cont.)

• Regards source code as nested collection of constructs

– conditionals

– loops

– subroutines

– communication calls

• Instrumented construct is replaced or surrounded by calls to 
AIMS monitor routines

• Execution of instrumented construct generates time-
stamped event



Visualizing Trace Files with VK

• View Kernel (VK) animates a trace file

• VCR-like controls for tracefile playback

• Can set breakpoints by time or in specific source 
code constructs

• Source code click-back capability

• Timeline display

• Spokes view animates messages passed between 
tasks



Controlling Scale and Speed of Playback

• No scrolling or zooming capabilities

• Set jump factor between 0 and 1 to speed up 
animation

• Set pause times or breakpoints to slow 
down animation

• Set scale to view larger or smaller time 
interval (default is 100 milliseconds)



tally [options] [sorted tracefile]

where options include:

-help Prints usage message

-proc[=Name] Print information for procedure(s)

-node[=Node] Print information for node(s)

-ncpu Print information about
normalized cpu usage

-msg Print information about message
sizes per node

-all Print all information
(proc+node+ncpu+msg)



tally output - tally.summary

• Information for each procedure/function:
– busy time: time spent performing useful work

– global blocking: time spent in global blocking operation

– send blocking: time spent in send operation

– receive blocking: time spent in receive operation

– life time: exclusive time

– percentage communication: percentage of total execution time 
spent in communication

– communication index: time spent in routine with respect to total 
time of program, as well as percentage of time spent in 
communication in this routine



tally.summary (cont.)

• Information for each node (and routine):
– busy time

– global blocking

– send blocking

– recv blocking

– percentage communication



tally output - ncpu.summary

• NCPU for a given subroutine and a given k is the 
amount of CPU time used by that subroutine when 
k processors are busy, divided by k.

• Routine Concurrency - amount of time spent by 
each subroutine when k copies were executing 
simultaneously (indicates degree to which each 
routine was parallelized)



MPE Logging/nupshot

URL http://www.mcs.anl.gov/mpi/mpich/

Version 1.1, April 1997

Languages Language-independent

Tested platforms SGI PCA and Origin 2000
IBM SP
Sun Solaris



MPE Logging/nupshot

• Included with MPICH 1.1 distribution

• Distributed separately from rest of MPICH from 
PTLIB

• MPE logging library produces trace files in ALOG 
format

• nupshot display trace files in ALOG or PICL 
format

• Minimal documentation in MPICH User’s Guide 
and man pages



MPE Logging Library (cont.)

• MPI application linked with liblmpi.a 
produces trace file in ALOG format
– Calls to MPE_Log_event store event records in 

per-process memory buffer

– Memory buffers are collected and merged 
during MPI_Finalize

• MPI_Pcontrol can be used to suspend and 
restart logging



nupshot

• Current version requires Tcl 7.3 and Tk 3.6

• Must be built with -32 on SGI IRIX

• Visualization displays
– Timeline

– Mountain Ranges

– State duration histograms

• Zooming and scrolling capabilities



Pablo Project

• http://www-pablo.cs.uiuc.edu/Projects/Pablo/

• Goal: portable performance data 
environment for parallel systems

• Pablo Version 5.0 components

– SDDF Library

– TraceLibrary

– I/O Analysis programs

– Analysis GUI

– SvPablo



Pablo TraceLibrary 

• Extensions provide wrapper functions for 
management of event ID’s for various event types

• Procedure and loop tracing done manually by 
inserting calls to TraceLibrary routines into 
application source code

• Default mode is to dump trace buffer contents to a 
trace file, but it’s possible to have trace data output 
sent to a socket for real-time analysis



I/O Extension to TraceLibrary

• I/O instrumentation requires changes to application 
source code

• I/O trace initialization and termination routines 
must be called before and after calling any other 
I/O trace routines

• I/O trace bracketing routines provided for I/O 
requests that are not implemented as library calls 
(e.g., getc macro in C and Fortran I/O statements 
that are part of the language)



I/O Extension (cont.)

• I/O instrumentation options for C programs

– Manually replace standard I/O calls with tracing 
counterparts

– Define IOTRACE so that pre-processor replaces 
standard I/O calls with tracing counterparts

• I/O instrumentation of Fortran programs

– Manually bracket each I/O call with I/O trace 
library bracketing routines



I/O Extension (cont.)

• Programs containing to I/O extension 
interface routines must be linked with
– Pablo Trace Extension Library 

libPabloTraceExt.a

– Pablo Base Trace Library libPabloTrace.a



MPI TraceLibrary Extension

• MPI profiling library that can be linked in 
without making source code changes

• Each MPI process output a trace file labeled 
with the process number

• Insert call to SetTraceFileName() 
immediately after MPI_Init() to control 
location of trace file



MPI Extension (cont.)

• Disable tracing by calling MPI_Control(0)

• Re-enable tracing by calling MPI_Control
(1)

• Link with Pablo Trace Extension Library 
(libPabloTraceExt.a) and Pablo Base 
Trace Library (libPabloTrace.a)

• Merge per-process trace file using the 
SDDF utility MergePabloTraces



Pablo Trace File Analysis

• Command-line FileStats program scans SDDF file 
and reports record types, min and max values for 
each field, and count of each record type.

• SDDFStatistics GUI for generating and browsing 
statistics from an SDDF file

• Pablo I/O analysis command-line routines

• Pablo Analysis GUI



SDDFStatistics

• Statistics for entire file are displayed along top of 
display

• Record types are displayed in panel at lower left

• Clicking on a record type brings up statistics for 
each field of that record type

• Clicking on a field displays a histogram 
summarizing values for that field

• Clicking on an array field type brings up statistics 
for each dimension of that field



SDDFStatistics Usage

• SDDFStatistics [-toolkitoption …] [-loadSummary 
filename] [-openSDDF filename]

• Or use runSDDFStatistics script which invokes the 
SDDFStatistics program after setting environment 
variables so that required resources can be located



I/O Analysis Programs

• Iostats generates a report of application I/O 
activity summarized by I/O request type.

• IOstatsTable produces table summarizing 
information about I/O operations.

• IOtotalsByPE produces a report showing 
the total count, duration, and bytes involved 
for various operations by processor.



I/O Analysis Programs (cont.)

• LifetimeIOstats produces a report summarizing 
I/O activity by processor and file, prints a 
histogram of the file lifetimes, and prints total time 
spent in I/O calls for each procedure.

• FileRegionIOstats generates a report of 
application I/O activity summarized by file region.  
Each file is divided spatially into regions whose 
size is set by calling enableFileRegionSummaries
(). 



I/O Analysis Programs (cont.)

• TimeWindowIOstats produces a report from 
Time Window Summary trace records. The 
execution time of the program is divided into time 
windows whose size is set by calling 
enableTimeWindowSummaries().

• SyncIOfileIDs processes a trace file continuing 
I/O trace events where many different file Ids may 
be associated with a given file, and write a new file 
where every I/O trace event associated with a 
particular file (as determined by the file name) has 
the same file ID.



Pablo Analysis GUI

• Toolkit of data transformation modules capable of 
processing SDDF records

• Supports graphical connection of performance data 
transformation modules in style of AVS

• By graphically connecting modules and 
interactively selecting trace data records, user 
specifies desired data transformation and 
presentations

• Expert users can develop and add new data analysis 
modules



Analysis GUI (cont.)

• Module types
– Data analysis

• Mathematical transforms (counts, sums, ratios, max, 
min, average, trig functions, etc.)

• Synthesis of vectors and arrays from scalar input data

– Data presentation - bar graphs, bubble charts, 
strip charts, contour plots, interval plots, kiviat 
diagrams, 2-d and 3-d scatter plots, matrix 
displays, pie charts, polar plots



Paradyn

URL http://www.cs.wisc.edu/paradyn/

Version Release 2.0, September 1997

Languages Fortran, Fortran 90, HPF, C, C++

Platforms Sun SPARC (PVM version only)
Windows NT on x86
IBM RS6000 and SP with AIX 4.1 or
greater



Paradyn Goals

• Performance measurement tool that
– scales to long-running programs on large 

parallel and distributed systems

– automates much of the search for performance 
bottlenecks

– avoids space and time overhead of trace-based 
tools



Paradyn Approach

• Dynamically instrument application

• Automatically control instrumentation in search of 
performance problems

• Look for high level problems (e.g., too much 
synchronization blocking, I/O blocking, or memory 
delays) using small amount of instrumentation

• Once general problem is found, selectively insert 
more instrumentation to find specific causes



Paradyn Components

• Front end and user interface that allow user to

– display performance visualization

– use the Performance Consultant to find bottlenecks

– start and stop the application

– monitor status of the application

• Paradyn daemons

– monitor and instrument application processes

– pvmd, mpid, winntd



Performance Consultant

• Based on W3 Search Model
– “Why” - type of performance problems

– “Where” - where in the program these problems 
occur

– “When” - time during execution during which 
problems occur



Performance Consultant (cont.)

• Automatically locates potential bottlenecks in your 
application

– Contains definitions of a set of performance problems in 
terms of hypotheses - e.g., PerfMetricX > Specified 
Threshold

– Continually selects and refines which performance 
metrics are enabled and for which foci

– Reports bottlenecks that exist for significant portion of 
phase being measured



SvPablo

URL http://www-pablo.cs.uiuc.edu/

Version Pablo release 5.0

Languages HPF, ANSI C

Platforms SGI running IRIX 6
Sun SPARC running Solaris



SvPablo

• Source view Pablo

• GUI for instrumenting source code and viewing 
runtime performance data

• Joint work at Univ. of Illinois and Rice Univ.

• HPF programs automatically instrumented by PGI 
HPF compiler

• C programs interactively instrumented using GUI

• Fortran 77/90 parser developed at JPL



SvPablo Project

• Set of application source files

• One or more performance contexts

• Performance context includes

– instrumentation specification - source code points where 
performance measurements are to be inserted

– set of performance data files in SDDF, generated when 
instrumented code is run

• Source files and parser options are shared among all 
contexts.



Line Metrics

• Count

• Duration

• Exclusive Duration

• Message Send Duration

• Message Send Count

• Message Send Size

• Message Receive Duration

• Message Receive Count

• Message Receive Size



VAMPIR

URL http://www.pallas.de/pages/vampir.htm

Version VAMPIR 1.0, VAMPIRtrace 1.5

Languages Language-independent

Platforms All major HPC platforms



VAMPIR

• Visualization and Analysis of MPI 
Resources

• Commercial tool from PALLAS GmbH

• VAMPIRtrace - MPI profiling library

• VAMPIR - trace visualization tool



VAMPIR Displays

• Process State Display

• Statistics Display

• Timeline Display

• Communications Statistics

• Configured by using
– Pull-down menus

– Configuration file



References

http://www.nersc.gov

http://www.mhpcc.gov

http://www-jics.cs.utk.edu

http://www.tc.cornell.edu

http://www.netlib.org

http://www.ncsa.uiuc.edu

http://www.cray.com

http://www.psc.edu



Additional Documentation

http://www.cs.utk.edu/~mucci/MPPopt.html



References

Hennessey and Patterson: Computer Architecture, A 
Quantitative Approach

Dongarra et al: MPI, The Complete Reference

Dongarra et al: PVM, Parallel Virtual Machine

Vipin Kumer et al: Introduction to Parallel Computing


