
MPP Performance Optimization

Philip Mucci (mucci@cs.utk.edu)

Kevin London (london@cs.utk.edu)

University of Tennessee, Knoxville

Outline

• Performance Metrics

• Strategy

• Single Processor Optimization

• MPP Optimization

• Tools

Performance

• What is performance?
– Execution time

– Throughput

– Efficiency

– Scalability

– Development cost

– Maintenance Cost

Performance Examples

• Operation Weather Forecasting Model
– Absolute execution time is key concern

– Scalability

• Database search engine
– Development cost and portability

• Image processing system
– Throughput or latency

Issues in Performance
Problem Size and Precision

• Efficiency of data representation
– Access time

– Density

– Memory/Disk

• Numerical representation
– integer, float, double

Issues in Performance
Execution time

• Brute speed (MHz and bus width)

• Cycles per operation (startup + pipelined)

• Number of arithmetic units on chip

• Access to RAM (local & distributed)

• Access to disk (local & distributed)

Issues in Performance
Execution time

• Cache utilization

• Register allocation

• Instruction scheduling and pipelining

• Compiler technology

• Programming model
– Shared memory, data parallel or SPMD.

– Message passing or MPMD.

Parallel Performance Issues

• Compiler Optimizations

• Single node performance

• I/O and Communication

• Mapping Problem - Load Balancing

• Message Passing or Data Parallel
Optimizations

Performance Metrics

• MFLOPS - Millions of floating point
operations per second.

• MIPS - Millions of instructions per second.

• Execution time - Time from start to finish
of our program. Also called Wall Clock
time.

Performance Metrics

• MFLOPS/MIPS are poor measures because
– They are dependent on the instruction set.

– They can vary inversely to performance.

– They say nothing about what is most important:

EXECUTION TIMEEXECUTION TIME

Performance Metrics

• For purposes of optimization, we are
interested in:
– Execution time of our code

– MFLOPS of our code vs. peak rate in order to
determine efficiency

Performance Metrics

• Fallacies
– MIPS is an accurate measure for comparing

performance among computers.
– MFLOPS is a consistent and useful measure of

performance.

– Synthetic benchmarks predict performance for real
programs.

– Peak performance tracks observed performance.

[Hennessey and Patterson]

Performance Metrics

• Our analysis will be based upon:
– Performance of a single machine

– Performance of a single (optimal) algorithm

– Execution time

Performance Metrics

For the purposes of comparing your codes
performance among different architectures
base your comparison on time.time.

...Unless you are completely aware of all the
issues in performance analysis including
architecture, instruction sets, compiler
technology etc...

Asymptotic Analysis

• Algorithm X requires O(N log N) time on O
(N processors)

• Ignores constants and lower order terms.
10N > N log N for N < 1024

10N*N < 1000N log N for N < 996

Amdahl’s Law

• The performance improvement to be gained
from using some faster mode of execution
is limited by the fraction of time the faster
mode can be used.

Speedup = Time enhanced / Time normal

Speedup = Time sequential / Time parallel

• For parallel codes, there is a sequential
portion 1/X and a parallel portion Y/X the
maximum speedup is S. (∞ number of PEs)

Amdahl’s Law

• Only applicable for same algorithm, starting
conditions, problem size, data set, machine,
etc... Fine for us.

• Problem: This ignores scaling of the
problem size

Efficiency

• A measure of parallel algorithm / code
quality.

E = Time sequential / (P * Time parallel)

S = P * E

What is Optimization?

• Finding hot spots & bottlenecks
(profiling)
– Code in the program that uses a disproportional

amount of time

– Code in the program that uses system resources
inefficiently

• Reducing wall clock time

• Reducing resource requirements

Types of Optimization

• Hand-tuning

• Preprocessor

• Compiler

• Parallelization

Steps of Optimization

• Debug

• Profile

• Optimize blocks of code that dominate
execution time

• Optimize compiler switches

• Examine correctness

Performance Strategies

• Use profiling tools before you optimize.

• Always use optimal or near optimal
algorithms.
– Be careful of requirements and problem sizes.

• The largest bottleneck should be optimized
first.

• Maintain realistic and consistent input data
sets/sizes during optimization.

• Know when to stop.

Performance Strategies

• The largest bottleneck should be optimized first.

• A 20% decrease of procedure3()results in
10% increase in performance.

• A 20% decrease of main()results in 2.6%
increase in performance

PROCEDURE TIME
main() 13%
procedure1() 17%
procedure2() 20%

procedure3() 50%

Considerations when Optimizing

Developer should be familiar with:

• Machine configuration, libraries and tools

• Hardware and Software overheads

• Algorithm and alternatives

• CPU/Resource requirements O()notation

• Amdahl’s Law

• Communication patterns

• Load balance and granularity

Locality

Spatial - If location X is being accessed, it is
likely that a location near X will be
accessed soon.

Temporal - If location X is being accessed, it
is likely that X will be accessed again soon.

Memory Hierarchy

CPU

Register

Cache / TLB

<Level 2 Cache>

<Level 3 Cache>

Memory

Disk

SizeSpeed

SP2 Access Times

• Register: 0 cycles

• Cache Hit: 1 cycle

• Cache Miss: 8-12 cycles

• TLB Miss: 36-56 cycles

• Page Fault: ~100,000 cycles

Cache Performance
Title:

Creator:
gnuplot
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

Types of Cache

• Direct Mapped

One to one correspondence between memory
address and cache address

• N-way Set Associative
Each memory address can live in N cache
addresses, usually it’s the LRU slot.

Memory Access

• Programs should be designed for maximal
cache benefit.

• Minimize page faults

• Minimize large stride access to minimize
TLB misses.

Memory Access

• Avoid repeatedly processing sequentially
accessed data. Example for SP2: accessing
1MB of REAL*8

1MB = 244 pages * 4096 bytes;

REAL*8 = 8 bytes

4096 / 128 bytes = 32 lines/pg

128 bytes / 8 bytes = miss every 16 elements

32 misses/pg * 8 cycles/miss = 256 cycles/pg

1MB = 256 pgs

36 cycle TLB miss per page

256 * (36 + 256) = 73728 cycles wasted

Serial Optimizations

• Use most aggressive compiler options.

• Use vendor libraries.

• Improve cache utilization.

• Improve loop structure.

• Use subroutine inlining.

Array Optimization

• Stride Minimization

• Sparse Arrays

• Array Initialization

• Loop Fusion

• Floating IF’s

• Loop Defactorization

• Loop Peeling

• Loop Interchange

• Loop Collapse

• Loop Unrolling

• Loop Unrolling and
Sum Reduction

• Outer Loop Unrolling

Array Allocation

• Array’s are allocated differently in C and
FORTRAN.

1 2 3

4 5 6

7 8 9

C: 1 2 3 4 5 6 7 8 9

Fortran: 1 4 7 2 5 8 3 6 9

Array Padding

• COMMON blocks are allocated contiguously.

• Watch out for powers of two and know the
associativity of your cache.

• Thrashing a 4MB direct mapped cache.

common /xyz/ a(1024),b(1024)

common /xyz/ a(1024),b(32),c(1024)

Stride Minimization

• Stride 1
for (I=0;I<1000;I++)

for (j=0;j<1000;j++)

c[I][j] += a[I][j]+b[I][j]

• Stride 1000
for (j=0;j<1000;j++)

for (i=0;i<1000;i++)

c[I][j] += a[i[j]+b[I][j]

Stride Minimization

• We must think about spatial locality.

• Effective usage of the cache provides us
with the best possibility for a performance
gain.

• Recently accessed data are likely to be
faster to access.

• Tune your algorithm to minimize stride.

Stride Minimization

• Stride 1000 Loop
– Default: 2086 ms.

– -O3 1860 ms.

• Stride 1 Loop
– Default: 287 ms.

– -O3: 78 ms.

Array Initialization

• Static initialization
REAL(8) A(100,100) /10000*1.0/

• Dynamic initialization
DO I=1, DIM1

DO J=1, DIM2

A(I,J) = 1.0

Array Initialization

Which to choose?

• Static initialization requires:
– Disk space

– Demand paging

– Extra Cache and TLB misses.

• Use only for small sizes with default
initialization to 0.

Loop Fusion

• Loop overhead reduced

• Better instruction overlap

• Lower cache misses

• Be aware of associativity issues with
array’s mapping to the same cache line.

Loop Fusion

• Untuned

for(i=0;i<100000;i++)

x *= a[i] + b[i];

for(i=0;i<100000;i++)

y *= a[i] + c[i];

• Tuned

for(i=0;i<100000;i++)

{

x *= a[i] + b[i];

y *= a[i] + c[i];

}

Loop Fusion

• Untuned
Default: 55 (3) ms.

-O3 39 (1.6) ms.

• Tuned
Default: 30 (6) ms.

-O3: 16 (5) ms.

Loop Interchange

• Swapping the nested order of loops
– Minimize stride

– Reduce loop overhead where inner loop counts
are small

Loop Interchange

• Untuned

float a[2000][40][2];

for(i=0;i<2000;i++)

 for(j=0;j<40;j++)

 for (k=0;k<2;k++)

 a[i][j][k] *= 1.01;

• Tuned

float a[2][40][2000];

for(i=0;i<2;i++)

 for(j=0;j<40;j++)

 for (k=0;k<2000;k++)

 a[i][j][k] *= 1.01;

Loop Interchange

• Untuned
– Default: 49 ms.

– -O3: 7 ms.

• Tuned
– Default: 48 ms.

– -O3: 6 ms.

Floating IF’s

• IF statements that do not change from
iteration to iteration may be modeled out of
the loop.

• Compilers can usually do this except when
– Loops contain calls to procedures

– Variable bounded loops that may never get
entered

– Complex loops where invariance cannot be
determined

Floating IF’s

• Untuned

for(i=0;i<1000;i++)

{

for (j=0;j<1000;j++)

{

 if (a[i] > 100)

 b[i] = a[i] -
3.7;

 x = x + a[j] + b[i];

}

}

• Tuned

for(i=0;i<1000;i++)

{

 if (a[i] > 100)

 b[i] = a[i] - 3.7;

for (j=0;J<1000;J++)

 x = x + a[j] + b[i];

}

Floating IF’s

• Untuned
– Default: 452 ms.

– -O3: 120 ms.

• Tuned
– Default: 243 ms.

– -O3: 120 ms.

Loop Defactorization

• Loops involving multiplication by a
constant in an array.

• Allows better instruction scheduling.

• Facilitates multiply-adds.

Loop Defactorization

• Untuned

for (i=0;i<1000;i++)

{

a[i] = 0.0;

for (j=0;j<1000;j++)

 a[i]+=b[j]*d[j]*c
[i];

}

• Tuned

for (i=0;i<1000;i++)

{

a[i] = 0.0;

for (j=0;j<1000;j++)

 a[i]+=b[j]*d[j];

a[i] *= c[i];

}

Loop Defactorization

• Note that floating point operations are not
always associative.

(A + B) + C != A + (B + C)

• Be aware of your precision

• Always verify your results with an
unoptimized code.

Loop Defactorization

• Untuned
– Default: 270 ms.

– -O3: 30 ms.

• Tuned
– Default: 225 ms.

– -O3: 28 ms.

Loop Peeling

• For loops which access previous elements
in arrays. (Cylinder coordinate system)

• Compiler cannot determine that a[jwrap]
doesn’t need to be loaded in every iteration.

Loop Peeling

• Untuned

jwrap = ARRAY_SIZE;

for (i=0;i<ARRAY_SIZE;i++)

{

b[i]=(a[i]+a[jwrap])*0.5;

jwrap = i;

}

• Tuned

b[0]=(a[0]+a[ARRAY_SIZE])*0.5;

for (i=1;i<ARRAY_SIZE;i++)

{

b[i]=(a[i]+a[i-1])*0.5;

jwrap = i;

}

Loop Peeling

• Untuned
– Default: 26 ms.

– -O3: 7 ms.

• Tuned
– Default: 25 ms.

– -O3: 6 ms.

Loop Collapse

• For multi-nested loops in which the entire
array is accessed.

• This can reduce loop overhead and improve
compiler vectorization.

Loop Collapse

• Untuned

for(i=0;i<50;i++)

 for(j=0;j<80;j++)

 for(k=0;k<4;k++)

 a[i][j][k] += b[i][j]
[k] * c[i][j][k];

• Tuned

for(i=0;i<(50*80*4);i++)

 a[0][0][i] += b[0][0][i]
* c[0][0][i];

Loop Collapse

• Untuned
– Default: 5.6 ms.

– -O3: 1.6 ms.

• Tuned
– Default: 3.6 ms.

– -O3: 1.4 ms.

Loop Unrolling

• Data dependence delays can be reduced or
eliminated.

• Reduce loop overhead.

• Might be performed by the compiler or
preprocessor. (KAP/VAST)

Loop Unrolling

Untuned

for(i=0;i<100;i++)

 for(j=0;j<100;j++)

 for(k=0;k<4;k++)

 a[i][j] += b[k][i] * c[k][j];

Loop Unrolling

Tuned

for(i=0;i<100;i++)

 for(j=0;j<100;j++)

 {

 a[i][j] += b[0][i] * c[0][j];

 a[i][j] += b[1][i] * c[1][j];

 a[i][j] += b[2][i] * c[2][j];

 a[i][j] += b[3][i] * c[3][j];
 }

Loop Unrolling

• Untuned
– Default: 224 ms.

– -O3: 25 ms.

• Tuned
– Default: 117 ms.

– -O3: 20 ms.

Loop Unrolling and Sum
Reductions

• When an operation requires as input the
result of the last output.

• Called a Data Dependency.

• Frequently happens with multi-add
instruction inside of loops.

• Introduce intermediate sums. Use your
registers!

Loop Unrolling and Sum
Reductions

• Untuned

a=0.0;

for(i=0;i<ARRAY_SIZE;i++)

 for(j=0;j<ARRAY_SIZE;j++)

 a += b[j] + c[i];

• Tuned

a1 = a2 = a3 = a4 = 0.0;

for(i=0;i<ARRAY_SIZE;i++)

 for(j=0;j<ARRAY_SIZE;j+=4)

 {

 a1 += b[j] * c[i];

 a2 += b[j+1] * c[i];

 a3 += b[j+2] * c[i];

 a4 += b[j+3] * c[i];

 }

aa = a1 + a2 + a3 + a4;

Loop Unrolling and Sum
Reductions

• Untuned

– Default: 39 ms.

– -O3: 12 ms.

• Tuned (2)

– Default: 33 ms.

– -O3: 6.1 ms.

• Tuned (4)

– Default: 29 ms.

– -O3: 3.6 ms.

• Tuned (8)

– Default: 28 ms.

– -O3: 3.0 ms.

• Tuned (16)

– Default: 27 ms.

– -O3: 3.3 ms.

Outer Loop Unrolling

• For nested loops, unrolling outer loop may
reduce loads and stores in the inner loop.

• Compiler may perform this optimization.

Outer Loop Unrolling

• Untuned
– Each multiply requires two loads and one store.

for(i=0;i<ARRAY_SIZE;i++)

 for(j=0;j<ARRAY_SIZE;j++)

 a[i][j] = b[i][j] * c[j];

Outer Loop Unrolling

• Tuned
– Each multiply requires 5/4 loads and one store.

for(i=0;i<ARRAY_SIZE;i+=4)

 for(j=0;j<ARRAY_SIZE;j++)

 {

 a[i][j] = b[i][j] * c[j];

 a[i+1][j] = b[i+1][j] * c[j];

 a[i+2][j] = b[i+2][j] * c[j];

 a[i+3][j] = b[i+3][j] * c[j];

 }

Outer Loop Unrolling

• Untuned
– Default: 42 ms.

– -O3: 10 ms.

• Tuned
– Default: 32 ms.

– -O3: 10 ms.

Loop structure

• IF/GOTO and WHILE loops inhibit some
compiler optimizations.

• Some optimizers and preprocessors can
perform transforms.

• DO and for() loops are the most highly
tuned.

Strength Reduction

• Reduce cost of mathematical operation with
no loss in precision, compiler might do it.

• Integer multiplication/division by a constant
with shift/adds

• Exponentiation by repeated multiplication

• Factorization and Horner’s Rule

• Floating point division by inverse
multiplication

Strength Reduction
Horner’s Rule

• Polynomial expression can be rewritten as a
nested factorization.

Ax^5 + Bx^4 + Cx^3 + Dx^2 + Ex + F =

((((Ax + B) * x + C) * x + D) * x + E) * x + F.

• Also uses multiply-add instructions

• Eases dependency analysis

Strength Reduction
Horner’s Rule

• Untuned

for(i=0;i<10000;i++)

{

 x = a[i] * pow(x,5) +

 b[i] * pow(x,4) +

 c[i] * pow(x,3) +

 d[i] * pow(x,2) +

 e[i] * x + f[i];

}

• Tuned

for(i=0;i<10000;i++)

{

 x = ((((a[i] * x + b[i]) *

 x + c[i]) * x + d[i]) *

 x + e[i]) * x + f[i];

}

Strength Reduction
Horner’s Rule

• Untuned
– Default: 56 ms.

– -O3: 51 ms.

• Tuned
– Default: 6 ms.

– -O3: 5 ms.

Strength Reduction
Integer Division by a Power of 2

• Shift requires less cycles than division.

• Both dividend and divisor must both be
unsigned or positive integers.

Strength Reduction
Integer division by a Power of 2

• Untuned

IL = 0

DO I=1,ARRAY_SIZE

 DO J=1,ARRAY_SIZE

 IL = IL + A(J)/2

 ENDDO

 ILL(I) = IL

ENDDO

• Tuned

IL = 0

ILL = 0

DO I=1,ARRAY_SIZE

 DO J=1,ARRAY_SIZE

 IL = IL + ISHFT(A(J),-1)

 ENDDO

 ILL(I) = IL

ENDDO

Strength Reduction
 Integer division by a Power of 2

• Untuned
– Default: 195 ms.

– -O3: 37 ms.

• Tuned
– Default: 180 ms.

– -O3: 30 ms.

Strength Reduction
Factorization

• Allows for better instruction scheduling.

• Compiler can interleave loads and ALU
operations.

• Especially benefits compilers able to do
software pipelining.

Strength Reduction
Factorization

• Untuned
XX = X*A(I) + X*B(I) + X*C(I) + X*D(I)

• Tuned
XX = X*(A(I) + B(I) + C(I) + D(I))

Strength Reduction
Factorization

• Untuned
– Default: 53 ms.

– -O3: 8 ms.

• Tuned
– Default: 49 ms.

– -O3: 3 ms.

Subexpression Elimination
Parenthesis

• Parenthesis can help the compiler recognize
repeated expressions.

• Some preprocessors and aggressive
compilers will do it.

Subexpression Elimination
Parenthesis

• Untuned
XX = XX + X(I)*Y(I)+Z(I) + X(I)*Y(I)-Z(I) + X(I)*Y

(I) + Z(I)

• Tuned
XX = XX + (X(I)*Y(I)+Z(I)) + X(I)*Y(I)-Z(I) + (X

(I)*Y(I) + Z(I))

Subexpression Elimination
Parenthesis

• Untuned
– Default: 38 ms.

– -O3: 25 ms.

• Tuned
– Default: 33 ms.

– -O3: 20 ms.

Subexpression Elimination
Type Considerations

• Changes the type or precision of data.
– Reduces resource requirements.

– Avoid type conversions.

– Processor specific performance.

• Example convert REAL*16 to REAL*8

Subexpression Elimination
Type Considerations

• Untuned
– Default: 157 ms.

– -O3: 129 ms.

• Tuned
– Default: 35 ms.

– -O3: 13 ms.

I/O Considerations

• Memory map files.

• Match record size near multiple of cache
line size.

• Use near power of two record size.

I/O Considerations

• I/O is orders of magnitude slower than
memory access.

• Eliminate unnecessary I/O.

• Use best suited interface.

• Avoid copies.

• Use binary I/O

Optimized Arithmetic Libraries

• [P]BLAS: Basic Linear Algebra
Subroutines

• [Sca]LAPACK: Linear Algebra Package

• ESSL: Engineering and Scientific
Subroutine Library

• NAG: Numerical Algorithms Group

• IMSL: International Mathematical and
Statistical Lib.

• Available for Fortran, C, C++ etc...

Optimized Arithmetic Libraries

• Advantages:
– Subroutines are quick to code and understand.

– Routines provide portability.

– Routines perform well.

– Comprehensive set of routines.

BLAS

• Common Matrix/Matrix, Matrix-Vector,
Vector-Vector.

• REAL/DOUBLE/COMPLEX

• Reference version available from UT.

• Vendor version offer high performance.

• Multithreaded are sometimes available.
• http://www.netlib.org/blas/index.html

Level 1, 2 and 3 BLAS

• Level 1 BLAS
Vector-Vector
operations

• Level 2 BLAS
Matrix-Vector
operations

• Level 3 BLAS
Matrix-Matrix
operations

+ *

*

+ *

BLAS for Performance

• Development of blocked algorithms
important for performance

IBM RS/6000-590 (66 MHz, 264 Mflop/s Peak)

0

50

100

150

200

250

10 100 200 300 400 500
Order of vector/Matrices

M
fl

o
p

/s

Level 3 BLAS

Level 2 BLAS

Level 1 BLAS

BLAS Performance
Title:

Creator:
gnuplot
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

BLACS -- Introduction

• A design tool, they are a conceptual aid in design
and coding.

• Associate widely recognized mnemonic names with
communication operations, improve
– program readability,

– self-documenting quality of the code.

• Promote efficiency by identifying frequently
occurring operations of linear algebra which can be
optimized on various computers.

BLACS -- Basics
• An operation which involves more than one sender

and one receiver is called a “scoped operation”.
Using a 2D-grid, there are 3 natural scopes:

Scope Meaning
Row All processes in a process row

participate.
Colum
n

All processes in a process column
participate.

All All processes in the process grid
participate.

BLACS -- Basics

• Operations are matrix-based and ID-less

• Types of BLACS routines: point-to-point
communication, broadcast, combine
operations and support routines.

PBLAS -- Introduction
• Parallel Basic Linear Algebra Subprograms

for distributed-memory MIMD computers

• Do both the communication and computation.

• Simplification of the parallelization: especially
when BLAS-based,

• Modularity: gives programmer larger building
blocks,

• Portability: machine dependencies are confined to
the BLAS and BLACS.

Scope of the PBLAS

• No vector rotations,

• No dedicated subprograms for banded
matrices,

• Matrix transposition available.

• Prototype version of packed storage PBLAS
– http://www.netlib.org/scalapack/prototype/

PBLAS

• Similar to the BLAS in functionality and
naming.

• Built on the BLAS and BLACS

• Provide global view of matrix
CALL DGEXX (M, N, A(IA, JA), LDA,...)

CALL PDGEXX(M, N, A, IA, JA, DESCA,...)

PBLAS -- Syntax

• Global view of the matrix operands, allowing global
addressing of distributed matrices (hiding complex local
indexing),

A(IA:IA+M­1,JA:JA+N­1)

 JA

IA

N_

N

MM_

PBLAS -- Storage Conventions

• An M_ -by-N_ matrix is block-partitioned into
MB_-by-NB_ blocks and distributed according to
the two-dimensional block-cyclic scheme

 load balanced computations, scalability

• Locally, the scattered columns are stored
contiguously (FORTRAN “Column Major”)
– re-use of the BLAS (leading dimension LLD_)

PBLAS -- Examples

 INTEGER IAM, ICTXT, INFO, LDA, LDB, LDC, NMAX, NPROCS

 PARAMETER (NMAX = 3, LDA = NMAX, LDB = NMAX, LDC = NMAX)

 INTEGER DESCA(9), DESCB(9), DESCC(9)

 DOUBLE PRECISION A(NMAX, NMAX), B(NMAX, NMAX), C(NMAX,
NMAX)

 CALL BLACS_PINFO(IAM, NPROCS)

 IF(NPROCS.LT.1) THEN

 NPROCS = 4

 CALL BLACS_SETUP(IAM, NPROCS)

 END IF

 CALL BLACS_GET(-1, 0, ICTXT)

 CALL BLACS_GRIDINIT(ICTXT, ‘Row’, 2, 2)

PBLAS -- Examples

 . . .

 CALL DESCINIT(DESCA, 5, 5, 2, 2, 0, 0, ICTXT, LDA, INFO)

 CALL DESCINIT(DESCB, 5, 5, 2, 2, 0, 0, ICTXT, LDB, INFO)

 CALL DESCINIT(DESCC, 5, 5, 2, 2, 0, 0, ICTXT, LDC, INFO)

 . . .

 CALL PDGEMM(‘No transpose’, ‘No transpose’, 4, 4, 4, 1.0D+0,

$ A, 1, 1, DESCA, B, 1, 1, DESCB, 0.0D+0, C, 1, 1, DESCC)

 . . .

 CALL PBFREEBUF()

 CALL BLACS_GRIDEXIT(ICTXT)

 CALL BLACS_EXIT(0)

Features of PBLAS V2 ALPHA

• Software is backward compatible with
current version 1.5.

• Improved ease-of-use:
– Previous alignment restrictions have all been

removed. Re-alignment is performed on-the-fly
and only when necessary.

– General rectangular block cyclic distribution of
the operands is supported for all routines.

Features of PBLAS V2 ALPHA

– Support for replicated operands
• Increased functionality is truly usable as illustrated

by the packed storage ScaLAPACK prototype
routines

• Enable the expression of currently missing
algorithms in the ScaLAPACK dense library such as
constrained linear least squares solvers.

• Simply the expression of complex algorithms such as
divide and conquer algorithms (sign function).

LAPACK

• F77 routines for solving
– systems of simultaneous linear equations and

eigenvalue problems

– matrix factorizations (LU, Cholesky, QR, SVD,
Schur, generalized Schur)

– Related computations such as reordering and
conditioning.

– Built on the level 1, 2 3 BLAS Single, Double,
Complex, Double Complex

• http://www.netlib.org/lapack/index.html

LAPACK

• Most of the parallelism in the BLAS.

• Advantages of using the BLAS for
parallelism:
– Clarity

– Modularity

– Performance

– Portability

LAPACK -- Release 3.0

• Add functionality
– divide and conquer SVD,

– error bounds for GLM and LSE,

– new expert drivers for GSEP,

– faster QRP,

– faster solver for the rank-deficient LS (xGELSY),

– divide and conquer least squares

– ...

ScaLAPACK Structure

ScaLAPACK

BLAS

LAPACK BLACS

PVM/MPI/...

PBLAS
Global
Local

LAPACK - Goals

• Efficiency
– Optimized compute and communication engines

– Block-partitioned algorithms (Level 3 BLAS) utilize memory hierarchy and yield good node
performance

• Scalability
– as the problem size and number of processors grow

• Reliability
– Whenever possible, use LAPACK algorithms and error bounds.

• Portability
– isolate machine dependencies to BLAS and the BLACS

• Flexibility
– Modularity: Build rich set of linear algebra tools: BLAS, BLACS, PBLAS

• Ease-of-Use
– Calling interface similar to LAPACK

ScaLAPACK Implementation

• BLAS (Performance and Portability)
– Blocked data access (Level 3 BLAS) yields good local

performance,

– Portability: standardization of efficient kernels.

• BLACS (Performance and Portability)
– Correct level of notation: communication of matrices,

– Efficiency: identify frequent linear algebra operations
which can be optimized on various computers.

113

ScaLAPCK Functionality
Problem type
Ax = b

SDrv EDrv Factor Solve Inv Cond
Est

Iter
Refin

Triangular X X X X

SPD
SPD Banded
SPD Tridiagonal

X
X
X

X X
X
X

X
X
X

X X X

General
General Banded
General Tridiagonal

X
X
X

X X
X
X

X
X
X

X X X

Least squares
GQR
GRQ

X X
X
X

X

Ax = λx or Ax = λBx SDrv Edrv Reduct Solution

Symmetric X X X X
General + X +
Generalized BSPD X X
SVD + X X +

• Timing and
Testing routines
for almost all

• This is a large
component of the
package

• Prebuilt libraries
available for SP,
PCA, O2K,
PGON, ALPHA,
HPPA, LINUX,
Sun, RS6K

ScaLAPACK Functionality

• Orthogonal/unitary transformation routines

• Prototype Codes
– PBLAS (version 2.0 ALPHA)

– Packed Storage routines for LLT, SEP, GSEP

– Out-of-Core Linear Solvers for LU, LLT, and QR

– Matrix Sign Function for Eigenproblems

– SuperLU and SuperLU_MT

– HPF Interface to ScaLAPACK

Parallelism in ScaLAPACK

• Level 3 BLAS block
operations

– All the reduction routines

• Pipelining
– QR Algorithm, Triangular

Solvers, classic factorizations

• Redundant computations
– Condition estimators

• Static work assignment
– Bisection

• Task parallelism
– Sign function eigenvalue

computations

• Divide and Conquer
– Tridiagonal and band solvers,

symmetric eigenvalue problem
and Sign function

• Cyclic reduction
– Reduced system in the band

solver

Narrow Band and Tridiagonal
Matrices

• The ScaLAPACK routines solving narrow-band
and tridiagonal linear systems assume
– the narrow band or tridiagonal coefficient matrix to be

distributed in a block-column fashion, and

– the dense matrix of right-hand-side vectors to be
distributed in a block-row fashion.

• Divide-and-conquer algorithms have been
implemented because they offer greater scope for
exploiting parallelism than the corresponding
adapted dense algorithms.

ScaLAPACK Documentation

• Documentation
– ScaLAPACK Users’ Guide

http://www.netlib.org/scalapack/slug/scalapack_slug.html

– Installation Guide for ScaLAPACK

– LAPACK Working Notes

• Test Suites for ScaLAPACK, PBLAS,
BLACS

• Example Programs
http://www.netlib.org/scalapack/examples/

• Prebuilt ScaLAPACK libraries on netlib

ESSL

• provides 400 functions:
– Basic Linear Algebra Subroutines (BLAS)

– Linear System of Equations

– Eigensystem Analysis

– Fourier Transforms
• http://www.tc.cornell.edu/UserDoc/Software/Num/essl/

Optimized Arithmetic Libraries

• NAG - Routines for solving
– Minimization, integral equations

– ODE’s, PDE’s, transforms, quadrature

– Linear algebra, nonlinear equations

– Curve, surface fitting, smoothing

– Statistics and estimation

– Multivariate, time-series, tabular and
contingency analysis

– http://www.nag.com

Optimized Arithmetic Libraries

• IMSL - Over 900 routines for solving
common mathematical and statistical tasks.

• NAG is better for optimization, IMSL better
for statistics.

• http://www.vni.com/products/imsl/fortfunc.html

Parallel Optimization

• Two programming models.
– Message Passing

– Shared Memory

• Optimizing parallel code

Choosing a Data Distribution

• The two main issues in choosing a data layout for
dense matrix computations are:
– load balance, or splitting the work reasonably evenly

among the processors throughout the algorithm, and

– use of the Level 3 BLAS during computations on a
single processor to utilize the memory hierarchy on each
processor.

Possible Data Layouts
• 1D block and cyclic column distributions

• 1D block-cyclic column and 2D block-cyclic
distribution used in ScaLAPACK

Two-dimensional Block-Cyclic Distribution

• Ensure good load balance --> Performance and
scalability,

• Encompasses a large number of (but not all) data
distribution schemes,

• Need redistribution routines to go from one
distribution to the other.

Load Balancing

• Static
– Data/tasks are partitioned among existing

processors.

– Problem of finding an efficient mapping

• Dynamic
– Master/Worker model

– Synchronization and data distribution problems

MPP Optimization

• Programming
– Message passing (MPI, PVM, Shmem)

– Shared memory (HPF or MP directive based)

• Algorithms
– Data or Functional Parallelism

– SIMD, MIMD

– Granularity (fine, medium, coarse)

– Master/Worker or Hostless

Parallel Performance

• Architecture is characterized by
– Number of CPU’s

– Connectivity

– I/O capability

– Single processor performance

Message Passing

• Two popular message passing API’s.
– PVM

• UT/ORNL

• Vendor

– MPI
• MPICH from MS State

• LAM from Ohio Supercomputing Center

• Vendor

Message Passing

• In general
– PVM is a message passing research vehicle.

– MPI is a production product intended for
application engineers.

– MPI will outperform PVM.

– MPI has richer functionality

– PVM is better for applications requiring fault
tolerance, heterogeneity and changing number of
processes.

Message Passing

• Both PVM and MPI
– Support collective operations

– Support customized data types

– Will take advantage of shared memory

– Exist on almost every platform including
• Networks of workstations

• Windows 95 and NT

• Multiprocessor workstations

Message Passing

• Node 1 needs X bytes from node 0

• Node 0 calls a send function (X bytes from
address A)

• Node 1 calls a receive function (X bytes
into address B)

Message Passing

• Upon message arrival
– If node B has not posted a receive the data is

buffered until the receive function is called.

– Else the data is copied directly to the address
given to the receive function.

Communication Issues

• Startup time, latency or overhead

• Bandwidth

• Network contention and congestion

• Bidirectionality

• Communication API

• Dedicated Channels

Communication Issues

• Startup time and bandwidth
– Startup time is higher than the time to actually

transfer a small message.

– Send larger messages fewer times, but try to
keep everyone busy.

• Contention can be reduced by uniformly
distributing messages.

Communication Issues

• To take advantage of bidirectionality, post
receives before sending.

• Dedicated channels
– On the SP2 make sure you use the User-Space

communication option. This will double your
bandwidth and half your latency.

– setenv MP_EUILIB us

• As mentioned, use MPI_Ixxx calls.
– It can handle more particles than fit in memory

Message Passing

Buffering - Temporary storage of data.

Posting - Temporary storage of an address.

Nonblocking - Refers to an function A that initiates
an operation B and returns to the caller before the
completion of B.

Blocking - The function A does not return to the
caller until the completion of operation B.

Polling/Waiting - Testing for the completion of a
nonblocking operation.

MPI Bandwidth
Title:

Creator:
gnuplot
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

MPI Send Latency
Title:

Creator:
gnuplot
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

Message Passing

• It is possible for sends and receives to be
– Nonblocking(send) or Posted(receive)

– Synchronous(send)

– Buffered

– Blocking

PVM Message Passing

• In PVM, all transfers are buffered except
for some MPP and vendor implementations.

• All sends complete when it is safe to use the
input argument again.
(transmitted/buffered)

• Transmission does not guarantee buffering
or completion of the sent data by the remote
process.

PVM Optimizations

• We are primarily interested in
PVM_PSEND PVM_PRECV

• Why? Because it avoids the cost of memory
allocation, packing and data translation.

• In addition, PVM_PRECV allows in-place
receives on MPP’s.

PVM Optimizations

• Avoid packing data, this implies an extra
copy and data translation. By default PVM
uses XDR encoding.

• If you must pack a message, use
pvm_initsend(PvmDataInPlace)

• If communicating off your machine, bypass
the PVM daemon with
pvm_setopt(PvmRoute,PvmRouteDirect)

PVM Optimizations

• Avoid use of the group server, roll your
own collective operations.

pvm_joingroup()

pvm_bcast()

pvm_barrier()

pvm_reduce()

pvm_gsize()

pvm_getinst()

pvm_lvgroup()

MPI Message Passing

• MPI introduces communication modes
dictating semantics of completion of send
operations.
– BBuffered - When transmitted or buffered, space

provided/limited by application, else error.

– RReady - Only if receive is posted, else error.

– SSynchronous - Only when receive begins to
execute, else wait. Useful for debugging.

MPI Message Passing

• In addition
standard - MPI will decide if/how much outgoing

data is buffered. If space is unavailable,
completion will be delayed until data is
transmitted to receiver. (Like PVM)

IImmediate - nonblocking, returns to the caller
ASAP. May be used with any of the above
modes.

MPI Message Passing

• Ready sends can remove a handshake for
large messages.

• There is only one receive mode, it matches
any of the send modes.

MPI Optimizations

• We are primarily interested in
MPI_ISEND, MPI_IRECV, MPI_IRSEND

• Why? Because your program could be
doing something useful while sending or
receiving! You can hide much of the cost of
these communication operations.

MPI Data Types

• For array transfers MPI has user defined
data types to gather and scatter data to/from
memory.

• Try to use MPI_TYPE_[H]VECTOR()or
MPI_TYPE_[H]INDEXED()

• Avoid MPI_TYPE_STRUCT()

MPI Collective Communication

• Unlike PVM, with MPI you should use the
collective operations. They are likely to be
highly tuned for the architecture.

• These operations are very difficult to
optimize and are often the bottlenecks in
parallel applications.

MPI Collective Communication

MPI_Barrier()

MPI_Bcast()

MPI_Gather[v]() MPI_Scatter[v]()

MPI_Allgather[v]()

MPI_Alltoall[v]()

MPI_Reduce()

MPI_AllReduce()

MPI_Reduce_Scatter()

MPI_Scan()

Message Passing Optimizations

• Try to keep message sizes not small

• Try to pipeline communication/computation

• Avoid data translation and data types unless
necessary for good performance

• Avoid wildcard receives

• Align application buffers to double words
and page sizes. Be careful of cache lines!

Message Passing Optimization
Nearest Neighbor Example 1

N slave processors available plus Master, M
particles each having (x,y,z) coordinates.

1) Master reads and distributes all coordinates
to N processors.

2) Each processor calculates its subset of M/N
and sends it back to the master.

3) Master processor receives and outputs
information.

Message Passing Optimization
Nearest Neighbor Example 2

1) Master reads and scatters M/N coordinates to N processors.

2) Each processor receives its own subset and makes a replica.

3) Each processor calculates its subset of M/N coordinates
versus the replica.

 4) Each processor sends to the next processor its replica of
M/N coordinates.

5) Each processor receives the replica. Goto 3) N-1 times.

6) Each processor sends its info back to the Master

Message Passing Optimization
Nearest Neighbor Example

• Example 1 works better only when
– There are a small number of particles

– You have an super efficient broadcast

• Example 2 works better more often because
– Computation is pipelined. Note that slave

processor 0 is already busy before processor 1
even gets its input data.

MPI Message Passing

• To test for the completion of a message use

MPI_WAITxxx and MPI_TESTxxx

where xxx is all, any, some or NULL.

• Remember you must test ISEND’s as well
as IRECV’s before you can reuse the
argument.

Automatic Parallelization

• Let the compiler do the work.

• Advantages
– It’s easy

• Disadvantages
– Only does loop level parallelism.

– It wants to parallelize every loop iteration in
your code.

Automatic Parallelization

• On the SGI
f77 -pfa <prog.f>

• Tries to parallelize every loop in your code.

Data Parallelism

• Data parallelism: different processors
running the same code on different data.
(SPMD)

• Identify hot spots.

• Do it by hand via directives.

• Modify the code to remove dependencies.

• Make sure you get the right answers.

Data Parallelism on the SGI’s

• Insert the c$doacross directive just
before the loop to be parallelized.

• Declare local and shared variables

• Compile with -mp option.

c$doacross local(i) share(a,n)

do i=1,n

a(i)=float(i)

end do

Data Parallelism on the SGI’s

• Directives affect only immediately
referenced loop.

• Directives begin in column one.

• c$doacross is becoming a standard.

Data Parallelism on the SGI’s

• Compiler generates code that runs with any
number of threads settable at runtime.

• Set number of threads.
pagh> setenv MP_SET_NUMTHREADS 4

Task Parallelism

• Task parallelism means different
processors are running different procedures.

• Can be accomplished on any machine with
data parallel directives via if statements
inside a loop.

Task Parallelism

c$doacross local(i)

do i=1,n

 if (i=1) call sub1(...)

 if (i=2) call sub2(...)

 if (i=3) call sub3(...)

 if (i=4) call sub4(...)

end do

Limits on Parallel Speedup

• The code is I/O bound.

• The problem size is fixed.

• The problem size is too small.

• There is too much serial/scalar code.

• The algorithm is inherently serial.

• Data distribution.

• Parallel overhead.

Parallel Overhead

• Creating/Scheduling threads

• Communication

• Synchronization

• Partitioning

Parallel Overhead

• For data parallel programming we can
estimate parallel overhead.

• Time the code with only one thread

Reducing Parallel Overhead

• Don’t parallelize ALL the loops.

• Don’t parallelize the small loops.

• Use the “if” modifier.

c$doacross if(n > 500), local(...), share(...)

do i=1,n

enddo

Reducing Parallel Overhead

• Use task parallelism.
– Lower overhead

– More code runs in parallel

– Requires a parallel algorithm

Improving Load Balance

• Change the way loop iterations are
allocated to threads.
– Change the scheduling type

– Change the chunk size

Improving Load Balance

• Scheduling
– setenv MP_SCHEDTYPE <type>

– c$doacross mp_schedtype=<type>

– SIMPLE - default, iterations equally and
sequentially allocated per processor.

– INTERLEAVE - round-robin per chunk of
iterations. Use when some iterations do more
work than others.

Improving Load Balance

• Scheduling
– DYNAMIC - iterations are allocated per

processor during run-time. When the amount of
work is unknown.

– GSS - guided self scheduling. Each processor
starts with a large number and finishes with a
small number.

Improving Load Balance

• Change the number of iterations performed
per processor.
– setenv CHUNK 4

– c$doacross local(i) chunk_size=4

SGI Origin 2000

• MIPS R10000, 195Mhz, 5.1ns

• 64 Integer, 64 Floating Point Registers

• 4 Instructions per cycle

• Up to 2 Integer, 2 Floating Point, 1
Load/Store per cycle

• 4 outstanding cache misses

• Out of order execution

SGI Origin 2000

• 64 Entry TLB, variable page size

• 32K Data, 32K Instruction, 4MB unified.

• 2-way set associative, LRU replacement, 2-
way interleaved, except instruction cache.

• 128B line size.

• 624MB/sec CrayLink interconnect.

SP2

• IBM Power 2 SC, 135Mhz

• 32 Integer, 32 Floating Point Registers

• 6(8) Instructions per cycle

• 2 Integer, 2 Floating Point, 1 Branch,. 1
Conditional

• Zero cycle branches, dual FMA

SP2

• 256 Entry TLB

• Primary Cache 128K Data, 32K Instruction

• 4 way set associative

• 256B line size

• 150MB/sec interconnect

T3E

• Alpha 21164, 450Mhz

• Primary Cache 8K Data, 8K Instruction

• 96KB on-chip 3-way associative secondary
cache

• 2 FP / 2 Int / cycle

T3E

• Scheduling very important

• 64 bit divides take 22-60 CP

• Ind Mult/Add takes 4 cp, but issued every
cycle

T3E

• Latency hiding features
– Cache bypass

– Streams

– E-registers

• 6 queued Dcache misses/WBs to Scache

• Load/store mergeing

• 32/64 byte line Dcache/Scache

• 2 cycle/8-10 cycle hit Dcache/Scache

T3E Cache Bypass

• Reduces memory traffic requirements.

• Fortran
!DIR$ CACHE_BYPASS var1, var2

• C
#pragma _CRI cache_bypass var1,
var2

• Block copy
– 593 MB/sec vs 401 MB/sec

T3E Streams

• Designed to provide automatic prefetching
for densely strided data.

• 6 stream buffers, two 64 byte lines each

• Starts when 2 contiguous misses

• Look at difference in loads
– 875MB/sec with streams

– 296MB/sec without

T3E Streams

• Count references to memory in your loops,
make sure no more than six.

• Stores take up streams due to WB nature of
Scache.

• May need to split loops to reduce streams.

• To use them
setenv SCACHE_D_STREAMS 1
man intro_streams
man streams_guide

T3E E-registers

• 512 64-bit off-chip registers for transferring
data to/from remote/local memory

• SHMEM library
– Shared, distributed, memory access routines that

use the E-registers.

– Can work on local memory
man intro_shmem

• Block copy
– 775 MB/sec vs 401 MB/sec

T3E E-registers

• Benchlib library
– One sided data transfers from memory to E-

registers

– More complicated to use than SHMEM

– Not supported by Cray

– Nonblocking

– Scatter / Gather

• Block copy
– 592 MB/sec vs 401 MB/sec

T3E/SGI Software Pipelining

•Allows mixing of iterations from different
loops in each iteration of the hardware loop
•More work per cycle
•Not as important for dynamically scheduled
processors. It is turned on by default when you
use -O3 on the R8000.
•Use -pipeline2 on the T3E.

Subroutine Inlining

• Replaces a subroutine call with the function
itself.

• Useful in loops that have a huge iteration
count.

• Allows parallelization.

O2K Flags and Libraries

-O,-O2 - Optimize

-O3 - Maximal generic optimization, may alter semantics.

-Ofast=ip27 - SGI compiler group’s best set of flags.

-IPA=on - Enable interprocedural analysis.

-n32 - 32-bit object, best performer.

-copt - Enable the C source-to-source optimizer.

-INLINE:<func1>,<func2> - Inline all calls to func1 and func2.

-LNO - Enable the loop nest optimizer.

-cord - Enable reordering of instructions based on feedback information.

-feedback - Record information about the programs execution behavior to be
used by IPA, LNO and -cord.

-lcomplib.sgimath -lfastm - Include BLAS, FFTs, Convolutions,
EISPACK, LINPACK, LAPACK, Sparse Solvers and the fast math library.

SP2 Flags and Libraries

-O,-O2 - Optimize

-O3 - Maximum optimization, may alter semantics.

-qarch=pwr2, -qtune=pwr2 - Tune for Power2.

-qcache=size=128k,line=256 - Tune Cache for Power2SC.

-qstrict - Turn off semantic altering optimizations.

-qhot - Turn on addition loop and memory optimization, Fortran only.

-Pv,-Pv! - Invoke the VAST preprocessor before compiling. (C)

-Pk,-Pk! - Invoke the KAP preprocessor before compiling. (C)

-qhsflt - Don’t round floating floating point numbers and don’t range check
floating point to integer conversions.

-inline=<func1>,<func2> - Inline all calls to func1 and func2.

-qalign=4k - Align large arrays and structures to a 4k boundary.

-lesslp2 - Link in the Engineering and Scientific Subroutine Library.

T3E Flags and Libraries

-O,-O2 - Optimize

-O3 - Maximum optimization, may alter semantics.

-apad - Pad arrays to avoid cache line conflicts

-unroll2 - Apply aggressive unrolling

-pipeline2 - Software pipelining

-split2 - Apply loop splitting.

-Wl”-Dallocate(alignsz)=64b” Align common blocks on cache line
boundary

-lmfastv - Fastest vectorized intrinsics library

-lsci - Include library with BLAS, LAPACK and ESSL routines

-inlinefrom=<> - Specifies source file or directory of functions to inline

-inline2 - Aggressively inline function calls.

Timers

• time <command> returns 3 kinds.
– Real time: Time from start to finish

– User: CPU time spent executing your code

– System: CPU time spent executing system calls

• timex on the SGI.

• Warning! The definition of CPU time is
different on different machines.

Timers

• Sample output for csh users:
 1 2 3 4 5 6 7

1.150u 0.020s 0:01.76 66.4 15+3981k 24+10io 0pf+0w

1) User (ksh)

2) System (ksh)

3) Real (ksh)

4) Percent of time spent on behalf of this process, not including waiting.

5) 15K shared, 3981K unshared

6) 24 input, 10 output operations

7) No page faults, no swaps.

Timers

• gettimeofday(), part of the C library
obtains seconds and microseconds since Jan
1, 1970.

• Resolution is hardware dependent, near
microsecond for SP2, T3E and SGIs.

• Latency is not the same as resolution.
– Many calls to this function will affect wall clock

time.

Timers

• mclock() returns machine ticks as REAL*4 of
the current process. Includes all children

• SP2 also has rtc() and irtc() taken directly
from hardware.

• rtc() returns REAL*8 of seconds since initial
value.

• irtc() returns INTEGER*8 of nanoseconds
since the initial value.

Timers

• T3E has RTC() which returns cycle counter
as REAL. Use the following to get speed in
seconds of a cycle.

float CLOCKTICK(void) {
long sysconf(int request);
float p;

p = (float)sysconf(_SC_CRAY_CPCYCLE);

p *= 1.0e-12;

return(p); }

Timers

• MPI_Wtime() returns elapsed wall clock
time in seconds as a double.

• This is portably one of the most efficient
timers. We can use it for serial programs.

 C
double start;

MPI_Init(&argc,&argv);

start = MPI_Wtime();

MPI_Finalize();

 Fortran
integer ierr

double start

call MPI_INIT(ierr);

start = MPI_WTIME();

call MPI_FINALIZE(ierr)

prof

• Profiles program execution at the procedure
level

• Available on most Unix systems, not T3E

• Displays the following:
– Name, percentage of CPU time

– Cumulative and average execution time

– Number of time procedure was called

prof

• Compile your code with -p

• After execution the CWD will contain mon.out.[x]

• Type prof, it will look for mon.out in the CWD.
Otherwise give it name(s) with the -m option

• Format of output is:

Name %Time Seconds Sumsecs #Calls msec/call

gprof

• Profiles programs according to their call
graphs

• Available on most Unix systems, not T3E

• Information different from prof:
– Adds the parent of each procedure

– Adds an index number for each procedure

– Adds direct descendents of each procedure

– Adds breakdown of time used by descendents

– Percentage of CPU time is cumulative

gprof

• Compile your code with -pg

• After execution the CWD will contain
gmon.out.[x]

• Type gprof, it will look for gmon.out in
the CWD. Otherwise give it name(s) with
the -m option

prof/gprof

• All procedures called by the object code,
many will be foreign to the programmer.

• Statistics are created by sampling and then
looking up the PC and correlating it with
the address space information.

• Phase problems may cause erroneous
results and reporting.

Tool-assisted Performance Analysis

Develop
performance

model

Instrument
source code
(optional or
automatic)

Link with
instrumentation

library

Generate
tracefile during

program execution

Analyze
trace file

Compare model
predictions with
measurements

Tune code and/or
revise model

Parallel Performance Tool Capabilities

Post-
mortem
analysi

s

Automati
c run-
time

analysis

Source
code

clickbac
k

State-time
diagram

(zooming/
scrolling)

Statistical
analysis

Languages
& platforms
supported

AIMS x x x x Fortran,C
SGI , Sun,
IBM SP

nupshot x x(x) Language-
independent
Most MPI
platforms

Paradyn
(MPI version) x x Fortran, C,

HPF, C++
IBM SP

SvPablo x x x ANSI C, HPF
Sun, SGI

VAMPIR x x(x) Language-
independent
all platforms

Speedshop

• ssusage collects information about your
program’s use of machine resources.

• ssrun allows you to run experiments on a
program to collect performance data.

• prof analyzes the performance data you
have recorded using ssrun and provides
formatted reports.

Speedshop (cont)

• pixie instruments an executable to enable basic
block counting experiments to be performed.

• squeeze allocates a region of virtual memory and
locks the virtual memory down into real memory,
making it unavailable to other processes.

• thrash allows you to explore paging behavior by
allowing you to allocate a block of memory, then
accessing the allocated memory to explore paging
behavior.

Using Speedshop

1 Build the Application

2 Run Experiments on the application to
collect performance Data

3 Examine the Performance Data

4 Generate an improved version of the
program

5 Repeat as needed

Pcsamp Example

Profile listing generated Fri Jan 30 02:06:07 1998
 with: prof nn0.pcsamp.21081

samples time CPU FPU Clock N-cpu S-interval Countsize
 1270 13s R10000 R10010 195.0MHz 1 10.0ms 2(bytes)
Each sample covers 4 bytes for every 10.0ms (0.08% of 12.7000s)

 -p[rocedures] using pc-sampling.
 Sorted in descending order by the number of samples in each

procedure.
 Unexecuted procedures are excluded.

samples time(%) cum time(%) procedure (dso:file)
 1268 13s(99.8) 13s(99.8) main (nn0:nn0.c)
 1 0.01s(0.1) 13s(99.9) _doprnt

(/usr/lib32/libc.so.1:doprnt.c)

Example of Usertime

Profile listing generated Fri Jan 30 02:11:45 1998
 with: prof nn0.usertime.21077

 Total Time (secs) : 3.81
 Total Samples : 127
 Stack backtrace failed: 0
 Sample interval (ms) : 30
 CPU : R10000
 FPU : R10010
 Clock : 195.0MHz
 Number of CPUs : 1

index %Samples self descendents total name
[1] 100.0% 3.78 0.03 127 main
[2] 0.8% 0.00 0.03 1 _gettimeofday
[3] 0.8% 0.03 0.00 1 _BSD_getime

Speedshop

• ssusage collects information about your
program’s use of machine resources.

• ssrun allows you to run experiments on a
program to collect performance data.

• prof analyzes the performance data you
have recorded using ssrun and provides
formatted reports.

Speedshop (cont)

• pixie instruments an executable to enable basic
block counting experiments to be performed.

• squeeze allocates a region of virtual memory and
locks the virtual memory down into real memory,
making it unavailable to other processes.

• thrash allows you to explore paging behavior by
allowing you to allocate a block of memory, then
accessing the allocated memory to explore paging
behavior.

Using Speedshop

1 Build the Application

2 Run Experiments on the application to
collect performance Data

3 Examine the Performance Data

4 Generate an improved version of the
program

5 Repeat as needed

Ideal experiment
 Prof run at: Fri Jan 30 01:59:32 1998
 Command line: prof nn0.ideal.21088
 3954782081: Total number of cycles
 20.28093s: Total execution time
 2730104514: Total number of instructions executed
 1.449: Ratio of cycles / instruction
 195: Clock rate in MHz
 R10000: Target processor modeled

Procedures sorted in descending order of cycles executed.
Unexecuted procedures are not listed. Procedures
beginning with *DF* are dummy functions and represent
init, fini and stub sections.

 cycles(%) cum % secs instrns calls procedure(dso:file)
3951360680(99.91) 99.91 20.26 2726084981 1 main(nn0.pixie:nn0.c)
1617034(0.04) 99.95 0.01 1850963 5001 doprnt

(./libc.so.1.pixn32:doprnt.c)

Pcsamp Example

Profile listing generated Fri Jan 30 02:06:07 1998
 with: prof nn0.pcsamp.21081

samples time CPU FPU Clock N-cpu S-interval Countsize
 1270 13s R10000 R10010 195.0MHz 1 10.0ms 2(bytes)
Each sample covers 4 bytes for every 10.0ms (0.08% of 12.7000s)

 -p[rocedures] using pc-sampling.
 Sorted in descending order by the number of samples in each procedure.
 Unexecuted procedures are excluded.

samples time(%) cum time(%) procedure (dso:file)
 1268 13s(99.8) 13s(99.8) main (nn0:nn0.c)
 1 0.01s(0.1) 13s(99.9) _doprnt (/usr/lib32/libc.so.1:doprnt.c)

Example of Usertime

Profile listing generated Fri Jan 30 02:11:45 1998
 with: prof nn0.usertime.21077

 Total Time (secs) : 3.81
 Total Samples : 127
 Stack backtrace failed: 0
 Sample interval (ms) : 30
 CPU : R10000
 FPU : R10010
 Clock : 195.0MHz
 Number of CPUs : 1

index %Samples self descendents total name
[1] 100.0% 3.78 0.03 127 main
[2] 0.8% 0.00 0.03 1 _gettimeofday

[3] 0.8% 0.03 0.00 1 _BSD_getime

tprof for the SP2

• Reports CPU usage for programs and
system. i.e.
– All other processes while your program was

executing

– Each subroutine of the program

– Kernel and Idle time

– Each line of the program

• We are interested in source statement
profiling.

tprof for the SP2

• Also based on sampling, which may cause
erroneous reports.

• Compile using -qlist and -g.

• tprof <program> <args>

• Leaves a number of files in the CWD preceded by
__.

__h.<file>.c - Hot line profile

__t.<subroutine>_<file>.c - Subroutine profile

__t.main_<file>.c - Executable profile

PAT for the T3E

• Performance analysis tool is a low-overhead
method for
– Estimating time in functions

– Determining load balance

– Generating and viewing trace files

– Timing individual calls

– Displaying hardware performance counter
information

PAT for the T3E

• Uses the UNICOS/mk profil() system
call to gather information by periodically
sampling and examining the program
counter.

• Works on C, C++ and Fortran executables

• No recompiling necessary

• Just link with -lpat

Apprentice for the T3E

• Graphical interface for identifying
bottlenecks.

% f90 -eA <file>.f -lapp

% cc -happrentice <file>.c
-lapp

% a.out

% apprentice app.rif

Automated Instrumentation and
Monitoring System (AIMS)

URL http:// hhttp://science.nas.nasa.gov/Software/AIMS

Version 3.7

Languages ANSI C, Fortran 77

Platforms IBM SP with IBM MPI or MPICH
Sun, SGI, and HP workstations with MPICH
SGI Power Challenge with SGI MPI

AIMS Components

• Source code instrumentors
– xinstrument

– batch_inst

• Monitoring library

• Analysis tools
– View Kernel (VK)

– tally statistics generator

xinstrument

• GUI allows user to select specific source code constructs to
be instrumented

• Default is to instrument all communication routines

• Other possibilities

– All subroutines

– All I/O

– Enable by Type

– Point and click on particular constructs in Construct Tree
diagrams

xinstrument (cont.)

• Regards source code as nested collection of constructs

– conditionals

– loops

– subroutines

– communication calls

• Instrumented construct is replaced or surrounded by calls to
AIMS monitor routines

• Execution of instrumented construct generates time-
stamped event

Visualizing Trace Files with VK

• View Kernel (VK) animates a trace file

• VCR-like controls for tracefile playback

• Can set breakpoints by time or in specific source
code constructs

• Source code click-back capability

• Timeline display

• Spokes view animates messages passed between
tasks

Controlling Scale and Speed of Playback

• No scrolling or zooming capabilities

• Set jump factor between 0 and 1 to speed up
animation

• Set pause times or breakpoints to slow
down animation

• Set scale to view larger or smaller time
interval (default is 100 milliseconds)

tally [options] [sorted tracefile]

where options include:

-help Prints usage message

-proc[=Name] Print information for procedure(s)

-node[=Node] Print information for node(s)

-ncpu Print information about
normalized cpu usage

-msg Print information about message
sizes per node

-all Print all information
(proc+node+ncpu+msg)

tally output - tally.summary

• Information for each procedure/function:
– busy time: time spent performing useful work

– global blocking: time spent in global blocking operation

– send blocking: time spent in send operation

– receive blocking: time spent in receive operation

– life time: exclusive time

– percentage communication: percentage of total execution time
spent in communication

– communication index: time spent in routine with respect to total
time of program, as well as percentage of time spent in
communication in this routine

tally.summary (cont.)

• Information for each node (and routine):
– busy time

– global blocking

– send blocking

– recv blocking

– percentage communication

tally output - ncpu.summary

• NCPU for a given subroutine and a given k is the
amount of CPU time used by that subroutine when
k processors are busy, divided by k.

• Routine Concurrency - amount of time spent by
each subroutine when k copies were executing
simultaneously (indicates degree to which each
routine was parallelized)

MPE Logging/nupshot

URL http://www.mcs.anl.gov/mpi/mpich/

Version 1.1, April 1997

Languages Language-independent

Tested platforms SGI PCA and Origin 2000
IBM SP
Sun Solaris

MPE Logging/nupshot

• Included with MPICH 1.1 distribution

• Distributed separately from rest of MPICH from
PTLIB

• MPE logging library produces trace files in ALOG
format

• nupshot display trace files in ALOG or PICL
format

• Minimal documentation in MPICH User’s Guide
and man pages

MPE Logging Library (cont.)

• MPI application linked with liblmpi.a
produces trace file in ALOG format
– Calls to MPE_Log_event store event records in

per-process memory buffer

– Memory buffers are collected and merged
during MPI_Finalize

• MPI_Pcontrol can be used to suspend and
restart logging

nupshot

• Current version requires Tcl 7.3 and Tk 3.6

• Must be built with -32 on SGI IRIX

• Visualization displays
– Timeline

– Mountain Ranges

– State duration histograms

• Zooming and scrolling capabilities

Pablo Project

• http://www-pablo.cs.uiuc.edu/Projects/Pablo/

• Goal: portable performance data
environment for parallel systems

• Pablo Version 5.0 components

– SDDF Library

– TraceLibrary

– I/O Analysis programs

– Analysis GUI

– SvPablo

Pablo TraceLibrary

• Extensions provide wrapper functions for
management of event ID’s for various event types

• Procedure and loop tracing done manually by
inserting calls to TraceLibrary routines into
application source code

• Default mode is to dump trace buffer contents to a
trace file, but it’s possible to have trace data output
sent to a socket for real-time analysis

I/O Extension to TraceLibrary

• I/O instrumentation requires changes to application
source code

• I/O trace initialization and termination routines
must be called before and after calling any other
I/O trace routines

• I/O trace bracketing routines provided for I/O
requests that are not implemented as library calls
(e.g., getc macro in C and Fortran I/O statements
that are part of the language)

I/O Extension (cont.)

• I/O instrumentation options for C programs

– Manually replace standard I/O calls with tracing
counterparts

– Define IOTRACE so that pre-processor replaces
standard I/O calls with tracing counterparts

• I/O instrumentation of Fortran programs

– Manually bracket each I/O call with I/O trace
library bracketing routines

I/O Extension (cont.)

• Programs containing to I/O extension
interface routines must be linked with
– Pablo Trace Extension Library

libPabloTraceExt.a

– Pablo Base Trace Library libPabloTrace.a

MPI TraceLibrary Extension

• MPI profiling library that can be linked in
without making source code changes

• Each MPI process output a trace file labeled
with the process number

• Insert call to SetTraceFileName()
immediately after MPI_Init() to control
location of trace file

MPI Extension (cont.)

• Disable tracing by calling MPI_Control(0)

• Re-enable tracing by calling MPI_Control
(1)

• Link with Pablo Trace Extension Library
(libPabloTraceExt.a) and Pablo Base
Trace Library (libPabloTrace.a)

• Merge per-process trace file using the
SDDF utility MergePabloTraces

Pablo Trace File Analysis

• Command-line FileStats program scans SDDF file
and reports record types, min and max values for
each field, and count of each record type.

• SDDFStatistics GUI for generating and browsing
statistics from an SDDF file

• Pablo I/O analysis command-line routines

• Pablo Analysis GUI

SDDFStatistics

• Statistics for entire file are displayed along top of
display

• Record types are displayed in panel at lower left

• Clicking on a record type brings up statistics for
each field of that record type

• Clicking on a field displays a histogram
summarizing values for that field

• Clicking on an array field type brings up statistics
for each dimension of that field

SDDFStatistics Usage

• SDDFStatistics [-toolkitoption …] [-loadSummary
filename] [-openSDDF filename]

• Or use runSDDFStatistics script which invokes the
SDDFStatistics program after setting environment
variables so that required resources can be located

I/O Analysis Programs

• Iostats generates a report of application I/O
activity summarized by I/O request type.

• IOstatsTable produces table summarizing
information about I/O operations.

• IOtotalsByPE produces a report showing
the total count, duration, and bytes involved
for various operations by processor.

I/O Analysis Programs (cont.)

• LifetimeIOstats produces a report summarizing
I/O activity by processor and file, prints a
histogram of the file lifetimes, and prints total time
spent in I/O calls for each procedure.

• FileRegionIOstats generates a report of
application I/O activity summarized by file region.
Each file is divided spatially into regions whose
size is set by calling enableFileRegionSummaries
().

I/O Analysis Programs (cont.)

• TimeWindowIOstats produces a report from
Time Window Summary trace records. The
execution time of the program is divided into time
windows whose size is set by calling
enableTimeWindowSummaries().

• SyncIOfileIDs processes a trace file continuing
I/O trace events where many different file Ids may
be associated with a given file, and write a new file
where every I/O trace event associated with a
particular file (as determined by the file name) has
the same file ID.

Pablo Analysis GUI

• Toolkit of data transformation modules capable of
processing SDDF records

• Supports graphical connection of performance data
transformation modules in style of AVS

• By graphically connecting modules and
interactively selecting trace data records, user
specifies desired data transformation and
presentations

• Expert users can develop and add new data analysis
modules

Analysis GUI (cont.)

• Module types
– Data analysis

• Mathematical transforms (counts, sums, ratios, max,
min, average, trig functions, etc.)

• Synthesis of vectors and arrays from scalar input data

– Data presentation - bar graphs, bubble charts,
strip charts, contour plots, interval plots, kiviat
diagrams, 2-d and 3-d scatter plots, matrix
displays, pie charts, polar plots

Paradyn

URL http://www.cs.wisc.edu/paradyn/

Version Release 2.0, September 1997

Languages Fortran, Fortran 90, HPF, C, C++

Platforms Sun SPARC (PVM version only)
Windows NT on x86
IBM RS6000 and SP with AIX 4.1 or
greater

Paradyn Goals

• Performance measurement tool that
– scales to long-running programs on large

parallel and distributed systems

– automates much of the search for performance
bottlenecks

– avoids space and time overhead of trace-based
tools

Paradyn Approach

• Dynamically instrument application

• Automatically control instrumentation in search of
performance problems

• Look for high level problems (e.g., too much
synchronization blocking, I/O blocking, or memory
delays) using small amount of instrumentation

• Once general problem is found, selectively insert
more instrumentation to find specific causes

Paradyn Components

• Front end and user interface that allow user to

– display performance visualization

– use the Performance Consultant to find bottlenecks

– start and stop the application

– monitor status of the application

• Paradyn daemons

– monitor and instrument application processes

– pvmd, mpid, winntd

Performance Consultant

• Based on W3 Search Model
– “Why” - type of performance problems

– “Where” - where in the program these problems
occur

– “When” - time during execution during which
problems occur

Performance Consultant (cont.)

• Automatically locates potential bottlenecks in your
application

– Contains definitions of a set of performance problems in
terms of hypotheses - e.g., PerfMetricX > Specified
Threshold

– Continually selects and refines which performance
metrics are enabled and for which foci

– Reports bottlenecks that exist for significant portion of
phase being measured

SvPablo

URL http://www-pablo.cs.uiuc.edu/

Version Pablo release 5.0

Languages HPF, ANSI C

Platforms SGI running IRIX 6
Sun SPARC running Solaris

SvPablo

• Source view Pablo

• GUI for instrumenting source code and viewing
runtime performance data

• Joint work at Univ. of Illinois and Rice Univ.

• HPF programs automatically instrumented by PGI
HPF compiler

• C programs interactively instrumented using GUI

• Fortran 77/90 parser developed at JPL

SvPablo Project

• Set of application source files

• One or more performance contexts

• Performance context includes

– instrumentation specification - source code points where
performance measurements are to be inserted

– set of performance data files in SDDF, generated when
instrumented code is run

• Source files and parser options are shared among all
contexts.

Line Metrics

• Count

• Duration

• Exclusive Duration

• Message Send Duration

• Message Send Count

• Message Send Size

• Message Receive Duration

• Message Receive Count

• Message Receive Size

VAMPIR

URL http://www.pallas.de/pages/vampir.htm

Version VAMPIR 1.0, VAMPIRtrace 1.5

Languages Language-independent

Platforms All major HPC platforms

VAMPIR

• Visualization and Analysis of MPI
Resources

• Commercial tool from PALLAS GmbH

• VAMPIRtrace - MPI profiling library

• VAMPIR - trace visualization tool

VAMPIR Displays

• Process State Display

• Statistics Display

• Timeline Display

• Communications Statistics

• Configured by using
– Pull-down menus

– Configuration file

References

http://www.nersc.gov

http://www.mhpcc.gov

http://www-jics.cs.utk.edu

http://www.tc.cornell.edu

http://www.netlib.org

http://www.ncsa.uiuc.edu

http://www.cray.com

http://www.psc.edu

Additional Documentation

http://www.cs.utk.edu/~mucci/MPPopt.html

References

Hennessey and Patterson: Computer Architecture, A
Quantitative Approach

Dongarra et al: MPI, The Complete Reference

Dongarra et al: PVM, Parallel Virtual Machine

Vipin Kumer et al: Introduction to Parallel Computing

