
Performance Optimization for Performance Optimization for
the Origin 2000the Origin 2000

Philip Mucci (Philip Mucci (mucci@cs.utk.edumucci@cs.utk.edu))
Kevin London (Kevin London (london@cs.utk.edulondon@cs.utk.edu))

University of Tennessee, KnoxvilleUniversity of Tennessee, Knoxville

http://www.cs.utk.edu/~mucci/MPPopt.html

Army Research Laboratory, Aug. 31 - Sep. 2

OutlineOutline

■ Introduction to Performance Introduction to Performance
OptimizationOptimization

■ Origin ArchitectureOrigin Architecture
■ Performance Metrics and IssuesPerformance Metrics and Issues
■ Compiler TechnologyCompiler Technology
■ Numerical LibrariesNumerical Libraries
■ Performance ToolsPerformance Tools

PerformancePerformance

■ What is performance? What is performance?
– LatencyLatency
– BandwidthBandwidth
– EfficiencyEfficiency
– ScalabilityScalability
– Execution timeExecution time

■ At what cost?At what cost?

Performance ExamplesPerformance Examples

■ Operation Weather Forecasting ModelOperation Weather Forecasting Model
– ScalabilityScalability

■ Database search engineDatabase search engine
– LatencyLatency

■ Image processing systemImage processing system
– ThroughputThroughput

What is Optimization?What is Optimization?

■ Finding Finding hot spotshot spots & & bottlenecks bottlenecks
(profiling)(profiling)
– Code in the program that uses a Code in the program that uses a

disproportionaldisproportional amount of amount of timetime
– Code in the program that uses system Code in the program that uses system

resources resources inefficientlyinefficiently
■ Reducing Reducing wall clockwall clock time time
■ Reducing resource requirementsReducing resource requirements

Types of OptimizationTypes of Optimization

■ Hand-tuningHand-tuning
■ PreprocessorPreprocessor
■ CompilerCompiler
■ ParallelizationParallelization

Steps of OptimizationSteps of Optimization

■ Optimize compiler switches Optimize compiler switches
■ Integrate librariesIntegrate libraries
■ ProfileProfile
■ Optimize blocks of code that dominate Optimize blocks of code that dominate

execution timeexecution time
■ Always examine correctness at every Always examine correctness at every

stage! stage!

Performance StrategiesPerformance Strategies

■ Always use optimal or near optimal Always use optimal or near optimal
algorithms.algorithms.
– Be careful of resource requirements and Be careful of resource requirements and

problem sizes.problem sizes.
■ Maintain realistic and consistent input Maintain realistic and consistent input

data sets/sizes during optimization.data sets/sizes during optimization.
■ Know when to stop. Know when to stop.

The 80/20 RuleThe 80/20 Rule

■ Program spends 80 % time in 20 % of Program spends 80 % time in 20 % of
its codeits code

■ Programmer spends 20 % effort to get Programmer spends 20 % effort to get
80 % of the total speedup possible in 80 % of the total speedup possible in
the code.the code.

How high is up?How high is up?

■ Profiling reveals percentages of time Profiling reveals percentages of time
spent in CPU and I/O bound functions.spent in CPU and I/O bound functions.

■ Correlation with representative low-Correlation with representative low-
level, kernel and application level, kernel and application
benchmarks.benchmarks.

■ Literature search.Literature search.
■ Peak speed of CPU means little in Peak speed of CPU means little in

relation to most codes.relation to most codes.
■ Example: ISIS solver packageExample: ISIS solver package

Don’t Sweat the Small StuffDon’t Sweat the Small Stuff
■ Make the Common Case Fast (Hennessy)Make the Common Case Fast (Hennessy)

■ A 20% decrease of A 20% decrease of procedure3()procedure3()results in results in
10% increase in performance.10% increase in performance.

■ A 20% decrease of A 20% decrease of main()main()results in 2.6% results in 2.6%
increase in performanceincrease in performance

PROCEDURE TIME
main() 13%
procedure1() 17%
procedure2() 20%

procedure3() 50%

Considerations when Considerations when
OptimizingOptimizing

■ Machine configuration, libraries and Machine configuration, libraries and
toolstools

■ Hardware and software overheadsHardware and software overheads
■ Alternate algorithms Alternate algorithms
■ CPU/Resource requirementsCPU/Resource requirements
■ Amdahl’s LawAmdahl’s Law
■ Communication pattern, load balance Communication pattern, load balance

and granularityand granularity

Origin 2000 ArchitectureOrigin 2000 Architecture

■ Up to 64 nodesUp to 64 nodes
■ Each node has 2 R10000’s running at Each node has 2 R10000’s running at

195 Mhz, 1 memory per node195 Mhz, 1 memory per node
■ Each R10000 has on chip 32K Each R10000 has on chip 32K

instruction, 32K data caches (32/64 instruction, 32K data caches (32/64
Byte line)Byte line)

■ EachEach R10000 has a 4MB off-chip R10000 has a 4MB off-chip unifiedunified
cache (128 Byte line)cache (128 Byte line)

■ 64(58) entry TLB (each holds 2 pages)64(58) entry TLB (each holds 2 pages)

Origin 2000 ArchitectureOrigin 2000 Architecture

■ Each node is connected with a Each node is connected with a
624MB/sec 624MB/sec CrayLinkCrayLink

■ Shared memory support in hardwareShared memory support in hardware
■ Variable page size, migration (Variable page size, migration (dplace)dplace)
■ Provides explicit (programmer) or Provides explicit (programmer) or

implicit (compiler) parallelismimplicit (compiler) parallelism
■ Communication with MPI or shared-Communication with MPI or shared-

memory.memory.

R10000 ArchitectureR10000 Architecture

■ 5 independent, pipelined, execution 5 independent, pipelined, execution
unitsunits

■ 1 non-blocking load/store unit1 non-blocking load/store unit
■ 2 asymmetric integer units (both add, 2 asymmetric integer units (both add,

sub, log)sub, log)
■ 2 asymmetric floating point units (390 2 asymmetric floating point units (390

MFlops)MFlops)
■ Conditional load/store instructionsConditional load/store instructions

R10000 ArchitectureR10000 Architecture

■ Superscalar with 5 pipelinesSuperscalar with 5 pipelines
■ Each pipeline has 7 stagesEach pipeline has 7 stages
■ Dynamic, out-of-order, speculative Dynamic, out-of-order, speculative

executionexecution
■ 32 logical registers32 logical registers
■ 512 Entry Branch history table512 Entry Branch history table
■ Hardware performance countersHardware performance counters

Cache ArchitectureCache Architecture

■ Small high-speed memories with block Small high-speed memories with block
accessaccess

■ Divided into smaller units of transfer Divided into smaller units of transfer
called lines called lines

■ Address indicatesAddress indicates
– Page numberPage number
– Cache lineCache line
– Byte offsetByte offset

Caches exploit LocalityCaches exploit Locality

Spatial - Spatial - If location X is being accessed, If location X is being accessed,
it is likely that a location it is likely that a location nearnear X will be X will be
accessed accessed soon.soon.

TemporalTemporal - If location X is being - If location X is being
accessed, it is likely that X will be accessed, it is likely that X will be
accessed again accessed again soon.soon.

Cache BenchmarkCache Benchmark
http://www.cs.utk.edu/~mucci/cachebenchhttp://www.cs.utk.edu/~mucci/cachebench

do i = 1,max_lengthdo i = 1,max_length

 start_timestart_time

 do j = 1,max_iterationsdo j = 1,max_iterations

 do k = 1,ido k = 1,i

 A(k) = iA(k) = i

 enddoenddo

 enddoenddo

 stop_time_and_printstop_time_and_print

enddoenddo

Cache PerformanceCache Performance

Cache MappingCache Mapping

■ Two major types of mappingTwo major types of mapping
– Direct MappedDirect Mapped

Each memory address resides in only one Each memory address resides in only one
cache line. (constant hit time)cache line. (constant hit time)

– N-way Set AssociativeN-way Set Associative
Each memory address resides in one of N Each memory address resides in one of N
cache lines. (variable hit time)cache lines. (variable hit time)

– Origin is 2-way set associative, 2-way interleavedOrigin is 2-way set associative, 2-way interleaved

2 way Set Associative Cache2 way Set Associative Cache

distinct lines = size / line size * associativitydistinct lines = size / line size * associativity

Every datum can live in any classEvery datum can live in any class
but in only 1 line (computed from its address)but in only 1 line (computed from its address)

Which class? Least Recently UsedWhich class? Least Recently Used

Line0
Class0

Line1
Class0

Line2
Class0

Line3
Class0

Line0
Class1

Line1
Class1

Line2
Class1

Line3
Class1

What is a TLB?What is a TLB?

■ Fully associative cache of virtual to Fully associative cache of virtual to
physical address mappings. Used if data physical address mappings. Used if data
not in cache.not in cache.

■ Number is limited on R10K, by default:Number is limited on R10K, by default:
16KB/pg * 2pgs/TLB * 58 TLBs = 2MB 16KB/pg * 2pgs/TLB * 58 TLBs = 2MB

■ Processing with more than 2MB of data Processing with more than 2MB of data
results in TLB misses.results in TLB misses.

O2K Memory HierarchyO2K Memory Hierarchy

RegistersRegisters
Level 1 CachesLevel 1 Caches
Level 2 CacheLevel 2 Cache

Memory (NUMA)Memory (NUMA)
DiskDisk

SizeSpeed

Origin 2000 Access TimesOrigin 2000 Access Times

■ Register: 1 cycleRegister: 1 cycle
■ L1 Cache Hit: 2-3 cyclesL1 Cache Hit: 2-3 cycles
■ L1 Cache Miss: 7-13 cyclesL1 Cache Miss: 7-13 cycles
■ L2 Cache Miss: ~60-200 cyclesL2 Cache Miss: ~60-200 cycles
■ TLB Miss: > 60 cyclesTLB Miss: > 60 cycles

Performance MetricsPerformance Metrics

■ Wall ClockWall Clock time - Time from start to time - Time from start to
finish of our programfinish of our program

■ MFLOPS - Millions of floating point MFLOPS - Millions of floating point
operations per secondoperations per second

■ MIPS - Millions of instructions per MIPS - Millions of instructions per
secondsecond

■ Possibly ignore set-up costPossibly ignore set-up cost

What about MFLOPS?What about MFLOPS?

■ Poor measures of comparison becausePoor measures of comparison because
– They are dependent on the definition, They are dependent on the definition,

instruction set and the compilerinstruction set and the compiler
■ Ok measures of numerical Ok measures of numerical kernelkernel

performance for a single CPUperformance for a single CPU

EXECUTION TIMEEXECUTION TIME

What do we use for evaluationWhat do we use for evaluation

■ For purposes of optimization, we are For purposes of optimization, we are
interested in:interested in:
– Execution time of our code over a range of Execution time of our code over a range of

data setsdata sets
– MFLOPS of our kernel code vs. peak in MFLOPS of our kernel code vs. peak in

order to determine order to determine EFFICIENCYEFFICIENCY
– Hardware resources dominating our Hardware resources dominating our

execution timeexecution time

Performance MetricsPerformance Metrics

For the purposes of comparing your For the purposes of comparing your
codes performance among different codes performance among different
architectures architectures base your comparison base your comparison
on time.on time.

......UnlessUnless you are completely aware of all you are completely aware of all
the issues in performance analysis the issues in performance analysis
including architecture, instruction sets, including architecture, instruction sets,
compiler technology etc...compiler technology etc...

FallaciesFallacies

– MIPS is an accurate measure for comparing MIPS is an accurate measure for comparing
performance among computersperformance among computers. .

– MFLOPS is a consistent and useful measure MFLOPS is a consistent and useful measure
of performance.of performance.

– Synthetic benchmarks predict performance Synthetic benchmarks predict performance
for real programs.for real programs.

– Peak performance tracks observed Peak performance tracks observed
performance.performance.

(Hennessey and Patterson)(Hennessey and Patterson)

Basis for Performance AnalysisBasis for Performance Analysis

■ Our evaluation will be based upon:Our evaluation will be based upon:
– Performance of a single machine on a Performance of a single machine on a
– Single (Single (optimaloptimal) algorithm using) algorithm using
– Execution timeExecution time

■ Optimizations are portableOptimizations are portable

Asymptotic AnalysisAsymptotic Analysis

■ Algorithm X requires O(N log N) time on Algorithm X requires O(N log N) time on
O(N processors)O(N processors)

■ This ignores constants and lower order This ignores constants and lower order
terms!terms!

10N > N log N for N < 102410N > N log N for N < 1024
10N*N < 1000N log N for N < 99610N*N < 1000N log N for N < 996

Amdahl’s LawAmdahl’s Law

■ The performance improvement is The performance improvement is
limited by the fraction of time the faster limited by the fraction of time the faster
mode can be used.mode can be used.

Speedup = Perf. enhanced / Perf. standardSpeedup = Perf. enhanced / Perf. standard
Speedup = Time sequential / Time parallelSpeedup = Time sequential / Time parallel

Time parallel = TTime parallel = Tser ser + T+ Tparpar

Amdahl’s LawAmdahl’s Law

■ Be careful when using speedup as a Be careful when using speedup as a
metric. Ideally, use it only when the metric. Ideally, use it only when the
code is modified. Be sure to completely code is modified. Be sure to completely
analyze and document your analyze and document your
environment.environment.

■ Problem: This ignores the overhead of Problem: This ignores the overhead of
parallel reformulation.parallel reformulation.

Amdahl’s LawAmdahl’s Law

■ Problem? This ignores scaling of the Problem? This ignores scaling of the
problem size with number of nodes.problem size with number of nodes.

■ Ok, what about Ok, what about Scaled Speedup?Scaled Speedup?
– Results will vary given the nature of the Results will vary given the nature of the

algorithmalgorithm
– Requires O() analysis of communication Requires O() analysis of communication

and run-time operations.and run-time operations.

EfficiencyEfficiency

■ A measure of code quality?A measure of code quality?

E = Time sequential / (P * Time parallel)E = Time sequential / (P * Time parallel)
S = P * ES = P * E

■ Sequential time is not a good reference Sequential time is not a good reference
point. For Origin, 4 is good.point. For Origin, 4 is good.

Issues in PerformanceIssues in Performance

■ Brute speed (MHz and bus width)Brute speed (MHz and bus width)
■ Cycles per operation (startup + Cycles per operation (startup +

pipelined)pipelined)
■ Number of functional units on chipNumber of functional units on chip
■ Access to Cache, RAM and storage Access to Cache, RAM and storage

(local & distributed)(local & distributed)

Issues in PerformanceIssues in Performance

■ Cache utilizationCache utilization
■ Register allocationRegister allocation
■ Loop nest optimizationLoop nest optimization
■ Instruction scheduling and pipeliningInstruction scheduling and pipelining
■ Compiler TechnologyCompiler Technology
■ Programming Model (Shared Memory, Programming Model (Shared Memory,

Message Passing)Message Passing)

Problem Size and PrecisionProblem Size and Precision

■ NecessityNecessity
■ Density and Locality Density and Locality
■ Memory, Communication and Disk I/OMemory, Communication and Disk I/O
■ Numerical representationNumerical representation

– INTEGER, REAL, REAL*8, REAL*16INTEGER, REAL, REAL*8, REAL*16

Parallel Performance IssuesParallel Performance Issues

■ Single node performanceSingle node performance
■ Compiler ParallelizationCompiler Parallelization
■ I/O and CommunicationI/O and Communication
■ Mapping Problem - Load BalancingMapping Problem - Load Balancing
■ Message Passing or Data Parallel Message Passing or Data Parallel

OptimizationsOptimizations

Understanding CompilersUnderstanding Compilers

■ Why?Why?
– Compilers emphasize correctness rather Compilers emphasize correctness rather

than performancethan performance
– On well recognized constructs, compilers On well recognized constructs, compilers

will will usuallyusually do better than the developer do better than the developer
– The idea? To express an algorithm The idea? To express an algorithm clearlyclearly

to the compiler allows the most to the compiler allows the most
optimization.optimization.

Compiler TechnologyCompiler Technology

■ Ideally, compiler should do most of the Ideally, compiler should do most of the
workwork

■ Rarely happens in practice for Rarely happens in practice for realreal
applicationsapplications

■ Here we will cover some of the options Here we will cover some of the options
for the MIPSpro 7.x compiler suitefor the MIPSpro 7.x compiler suite

Recommended FlagsRecommended Flags
-n32 -mips4 -Ofast=ip27 -LNO:cache_size2=4096 -n32 -mips4 -Ofast=ip27 -LNO:cache_size2=4096

-OPT:IEEE_arithmetic=3-OPT:IEEE_arithmetic=3

■ Use at link and compile timeUse at link and compile time
■ We don’t need more than 2GB of dataWe don’t need more than 2GB of data
■ Turn on the highest level of Turn on the highest level of

optimization for the Originoptimization for the Origin
■ Tell compiler we have 4MB of L2 cacheTell compiler we have 4MB of L2 cache
■ Favor speed over precise numerical Favor speed over precise numerical

roundingrounding

Accuracy ConsiderationsAccuracy Considerations

■ Try moving forwardTry moving forward
-O2 -IPA -SWP:=ON -O2 -IPA -SWP:=ON

-LNO -TENV:X=0-5-LNO -TENV:X=0-5

■ Try backing offTry backing off
-Ofast=ip27-Ofast=ip27

-OPT:roundoff=0-3-OPT:roundoff=0-3

-OPT:IEEE_arithmetic=1-3-OPT:IEEE_arithmetic=1-3

Compiler flagsCompiler flags

■ Many optimizations can be controlled Many optimizations can be controlled
separately from -Ofastseparately from -Ofast

■ It’s better to selectively disable It’s better to selectively disable
optimizations rather than reduce the optimizations rather than reduce the
level of global optimizationlevel of global optimization

■ -OPT:IEEE_arithmetic=n controls -OPT:IEEE_arithmetic=n controls
rounding and overflowrounding and overflow

■ -OPT:roundoff=n controls roundoff-OPT:roundoff=n controls roundoff

Roundoff exampleRoundoff example

■ Floating point arithmetic is not Floating point arithmetic is not
associative. Which order is correct?associative. Which order is correct?

■ Think about the following example:Think about the following example:

sum = 0.0sum = 0.0

do i = 1, ndo i = 1, n

 sum = sum + a(i)sum = sum + a(i)

enddoenddo

sum1 = 0.0

sum2 = 0.0

do i = 1, n-1, 2

 sum1 = sum1 + a(i)

 sum2 = sum2 + a(i+1)

enddo

sum = sum1 + sum2

ExceptionsExceptions

■ Numerical computations resulting in Numerical computations resulting in
undefined resultsundefined results

■ Exception is generated by the processor Exception is generated by the processor
(with control)(with control)

■ Handled in software by the Operating Handled in software by the Operating
System.System.

Exception profilingException profiling

■ If there are few exceptions, enable a If there are few exceptions, enable a
faster level of exception handling at faster level of exception handling at
compile time with compile time with -TENV:X=0-5-TENV:X=0-5

■ Defaults are Defaults are 11 at at -O0-O0 through through -O2-O2, , 22
at at -O3-O3 and higher and higher

■ Else if there are exceptions, link with Else if there are exceptions, link with

-lfpe-lfpe
setenv TRAP_FPE “UNDERFL=ZERO”setenv TRAP_FPE “UNDERFL=ZERO”

AliasingAliasing

■ The compiler needs to assume that any The compiler needs to assume that any
2 pointers can point to the same region 2 pointers can point to the same region
of memoryof memory

■ This removes many optimization This removes many optimization
opportunitiesopportunities

■ -Ofast-Ofast implies implies -OPT:alias=typed-OPT:alias=typed
■ Only pointers of the same type can Only pointers of the same type can

point to the same region of memory.point to the same region of memory.

Advanced AliasingAdvanced Aliasing

■ Programmer knows much more about Programmer knows much more about
pointer usage than compiler.pointer usage than compiler.

■ -OPT:alias=restrict-OPT:alias=restrict - all pointer - all pointer
variables are assumed to point to non-variables are assumed to point to non-
overlapping regions of memory.overlapping regions of memory.

■ -OPT:alias=disjoint-OPT:alias=disjoint - all pointer - all pointer
expressions are assumed to point to expressions are assumed to point to
non-overlapping regions of memory.non-overlapping regions of memory.

■ Very important for C programs.Very important for C programs.

Advanced AliasingAdvanced Aliasing

■ Most advanced form is the Most advanced form is the ivdep ivdep
compilercompiler directive.directive.

■ Used on inner loops with software Used on inner loops with software
pipelining. pipelining.

■ Can move a loop to be completely Can move a loop to be completely
load/store bound.load/store bound.

■ Please refer to the Please refer to the Origin 2000 Origin 2000
Optimization and Tuning GuideOptimization and Tuning Guide..

Software PipeliningSoftware Pipelining

■ Important contribution of Important contribution of -O3-O3
■ Different iterations of a loop are Different iterations of a loop are

overlapped in time in an attempt to overlapped in time in an attempt to
keep all the functional units busy.keep all the functional units busy.

■ Data needs to be in cache for this to Data needs to be in cache for this to
work well.work well.

■ Can be enabled with Can be enabled with -SWP:=ON-SWP:=ON

Interprocedural AnalysisInterprocedural Analysis

■ When analysis is confined to a single When analysis is confined to a single
procedure, the optimizer is forced to procedure, the optimizer is forced to
make worst case assumptions about the make worst case assumptions about the
possible effects of subroutines.possible effects of subroutines.

■ IPA analyzes the entire program at once IPA analyzes the entire program at once
and feeds that information into the and feeds that information into the
other phases.other phases.

IPA featuresIPA features

■ Inlining across source filesInlining across source files
■ Common block paddingCommon block padding
■ Constant propagationConstant propagation
■ Dead function/variable eliminationDead function/variable elimination
■ Library reference optimizationsLibrary reference optimizations
■ Enabled with Enabled with -IPA-IPA

InliningInlining

■ Replaces a subroutine call with the Replaces a subroutine call with the
function itself.function itself.

■ Useful in loops that have a large Useful in loops that have a large
iteration count and functions that don’t iteration count and functions that don’t
do a lot of work.do a lot of work.

■ Allows other optimizations.Allows other optimizations.
■ Most compilers will do inlining but the Most compilers will do inlining but the

decision process is conservative.decision process is conservative.

Manual InliningManual Inlining

-INLINE:file=<-INLINE:file=<filenamefilename>>

-INLINE:must=<-INLINE:must=<namename>[,>[,name2name2,,name3name3..]..]

-INLINE:all-INLINE:all

■ Exposes internals of the call to the Exposes internals of the call to the
optimizeroptimizer

■ Eliminates overhead of the callEliminates overhead of the call
■ Expands codeExpands code

Loop Nest OptimizerLoop Nest Optimizer

■ Optimizes the use of the memory Optimizes the use of the memory
heirarchyheirarchy

■ Works on relatively small sections of Works on relatively small sections of
codecode

■ Enabled with Enabled with -LNO-LNO
■ Visualize the transformations with Visualize the transformations with

-FLIST:=on-FLIST:=on

-CLIST:=on-CLIST:=on

LNO functionalityLNO functionality

■ Cache blockingCache blocking
■ Merging of data used togetherMerging of data used together
■ Loop fusionLoop fusion
■ Loop unrollingLoop unrolling
■ Loop interchangeLoop interchange
■ Loop fissionLoop fission
■ PrefetchingPrefetching

Optimized Arithmetic LibrariesOptimized Arithmetic Libraries

■ Advantages:Advantages:
– Subroutines are quick to code and Subroutines are quick to code and

understand.understand.
– Routines provide Routines provide portability.portability.
– Routines perform well.Routines perform well.
– Comprehensive set of routines.Comprehensive set of routines.

■ DisadvantagesDisadvantages
– Can lead to vertical code structureCan lead to vertical code structure
– May mask memory performance problemsMay mask memory performance problems

Numerical LibrariesNumerical Libraries

■ libfastm libfastm
– Link with Link with -r10000-r10000 and and -lfastm-lfastm

– Link before Link before -lm-lm

■ CHALLENGEcomplib and SCSLCHALLENGEcomplib and SCSL
– Sequential and parallel versionsSequential and parallel versions
– FFTs, convolutions, BLAS, LINPACK, FFTs, convolutions, BLAS, LINPACK,

EISPACK, LAPACK and sparse solversEISPACK, LAPACK and sparse solvers

CHALLENGEcomplib and SCSLCHALLENGEcomplib and SCSL

■ SerialSerial
-lcomplib.sgimath-lcomplib.sgimath or or
-lscs-lscs

■ ParallelParallel
-mp -lcomplib.sgimath_mp-mp -lcomplib.sgimath_mp or or
-lscs_mp-lscs_mp

LAPACKLAPACK

■ F77 routines for solvingF77 routines for solving
– systems of simultaneous linear equations systems of simultaneous linear equations

and eigenvalue problemsand eigenvalue problems
– matrix factorizations (LU, Cholesky, QR, matrix factorizations (LU, Cholesky, QR,

SVD, Schur, generalized Schur)SVD, Schur, generalized Schur)
– Related computations such as reordering Related computations such as reordering

and conditioning.and conditioning.
– Built on the level 1, 2 3 BLAS Single, Built on the level 1, 2 3 BLAS Single,

Double, Complex, Double ComplexDouble, Complex, Double Complex
■ http://www.netlib.org/lapack/index.htmlhttp://www.netlib.org/lapack/index.html

ScaLAPACKScaLAPACK

■ Parallelized LAPACK routinesParallelized LAPACK routines
■ Based upon LAPACK and BLASBased upon LAPACK and BLAS
■ Can be used with vendor librariesCan be used with vendor libraries
■ Available inAvailable in
/home/army/susan/ECKERT/lib/home/army/susan/ECKERT/lib

PETScPETSc

■ Generalized sparse solver package for Generalized sparse solver package for
solution of PDEs.solution of PDEs.

■ Multiple preconditioners and explicit and Multiple preconditioners and explicit and
implicit methods.implicit methods.

■ Available in Available in
/home/army/susan/ECKERT/petsc-2.0.21/home/army/susan/ECKERT/petsc-2.0.21

http://www.mcs.anl.gov/petschttp://www.mcs.anl.gov/petsc

O2K Performance ToolsO2K Performance Tools

■ TimersTimers
■ Hardware CountersHardware Counters
■ ProfilersProfilers

– perfexperfex
– SpeedShopSpeedShop
– profprof
– dprofdprof
– cvdcvd

External TimersExternal Timers

■ time <command> time <command> returns 3 kinds.returns 3 kinds.
– Real time: Time from start to finishReal time: Time from start to finish
– User: CPU time spent executing your codeUser: CPU time spent executing your code
– System: CPU time spent executing system System: CPU time spent executing system

calls calls

■ Use Use timextimex on the SGI. on the SGI.
■ Warning! The definition of CPU time is Warning! The definition of CPU time is

different on different machines. different on different machines.

External TimersExternal Timers

■ Sample output for csh users:Sample output for csh users:
 1 2 3 4 5 6 71 2 3 4 5 6 7

1.150u 0.020s 0:01.76 66.4 15+3981k 24+10io 0pf+0w1.150u 0.020s 0:01.76 66.4 15+3981k 24+10io 0pf+0w

1) User (ksh)1) User (ksh)
2) System (ksh)2) System (ksh)
3) Real (ksh)3) Real (ksh)
4) Percent of time spent on behalf of this process, not including 4) Percent of time spent on behalf of this process, not including

waiting.waiting.
5) 15K shared, 3981K unshared5) 15K shared, 3981K unshared
6) 24 input, 10 output operations6) 24 input, 10 output operations
7) No page faults, no swaps.7) No page faults, no swaps.

Internal TimersInternal Timers

■ gettimeofday(),gettimeofday(), part of the C part of the C
library obtains seconds and library obtains seconds and
microseconds since Jan 1, 1970.microseconds since Jan 1, 1970.

■ Resolution is hardware dependent, few Resolution is hardware dependent, few
microseconds for SP2, T3E and SGIs.microseconds for SP2, T3E and SGIs.

■ Latency is not the same as resolution.Latency is not the same as resolution.
– Many calls to this function will affect your Many calls to this function will affect your

wall clock time.wall clock time.

Internal TimersInternal Timers

■ clock_gettime()clock_gettime()

■ MPI_WtimeMPI_Wtime() returns elapsed wall () returns elapsed wall
clock time in seconds as a double.clock time in seconds as a double.

 Fortran
integer ierr

double start

call MPI_INIT(ierr);

start = MPI_WTIME();

call MPI_FINALIZE(ierr)

Hardware Performance Hardware Performance
CountersCounters

■ 2 32-bit registers that do the counting2 32-bit registers that do the counting
■ 32 different events (30 distinct, 14 32 different events (30 distinct, 14

each, 1 shared)each, 1 shared)
■ OS accumulates counts into 64-bit OS accumulates counts into 64-bit

quantitiesquantities
■ Both user and kernel modes can be Both user and kernel modes can be

measuredmeasured
■ Explicit counting or overflowsExplicit counting or overflows

Some Hardware Counter Some Hardware Counter
EventsEvents

■ Cycles, InstructionsCycles, Instructions
■ Loads, Stores, MissesLoads, Stores, Misses
■ Exceptions, MispredictionsExceptions, Mispredictions
■ CoherencyCoherency
■ Issued/GraduatedIssued/Graduated
■ ConditionalsConditionals

Hardware Performance Hardware Performance
Counter AccessCounter Access

■ At the source level with raw counter API At the source level with raw counter API
or perfex API.or perfex API.

■ At the application level with At the application level with perfexperfex
■ At the function level with SpeedShop At the function level with SpeedShop

and and profprof..
■ List all the events with List all the events with perfex -hperfex -h

Origin Counter APIOrigin Counter API

■ Very simple, easy to use.Very simple, easy to use.
– start_counter()start_counter()

– stop_counter()stop_counter()

– read_counters()read_counters()

– print_counters()print_counters()

■ Information available with Information available with
man start_countersman start_counters

Perfex usagePerfex usage

■ Used to gather statistics about the Used to gather statistics about the
entire run of the program.entire run of the program.

■ From the command line:From the command line:
perfex [perfex [optionsoptions] command [] command [argsargs]]
■ At compile time, perfex library calls can At compile time, perfex library calls can

start or stop collection.start or stop collection.
■ Link with Link with -lperfex-lperfex

■ man libperfexman libperfex

Perfex featuresPerfex features

■ Explicit counts (FP and Total)Explicit counts (FP and Total)
perfex -e 15 -e 21 <exe>perfex -e 15 -e 21 <exe>
■ Multiplex over all countsMultiplex over all counts
perfex -a <exe>perfex -a <exe>
■ Analytic output (for all)Analytic output (for all)
perfex -a -y <exe>perfex -a -y <exe>
■ Exceptions (for Cycles & L1DC misses)Exceptions (for Cycles & L1DC misses)
perfex -e 1 -e 25 -x <exe>perfex -e 1 -e 25 -x <exe>

Speedshop Speedshop

■ Find out exactly where program is Find out exactly where program is
spending it’s timespending it’s time
– proceduresprocedures
– lineslines

■ Uses 3 methodsUses 3 methods
– SamplingSampling
– CountingCounting
– TracingTracing

Speedshop ComponentsSpeedshop Components

■ 4 parts4 parts
– ssrunssrun performs experiments and collects performs experiments and collects

datadata
– ssusagessusage reports machine resources reports machine resources

– profprof processes the data and prepares processes the data and prepares
reportsreports

– SpeedShop allows caliper pointsSpeedShop allows caliper points
■ See man pagesSee man pages

Speedshop UsageSpeedshop Usage

ssrun [options] <ssrun [options] <exeexe>>

■ output is placed in output is placed in ././
command.experiment.pidcommand.experiment.pid

■ Viewed withViewed with
prof [options] <prof [options] <command.experiment.pidcommand.experiment.pid>>

Speedshop SamplingSpeedshop Sampling

■ Basd uponBasd upon
– interval timers interval timers
– instructionsinstructions
– cyclescycles
– i/d/s cache missesi/d/s cache misses
– TLB faultsTLB faults
– FP instructionsFP instructions
– any hardware any hardware

countercounter

-usertime (30ms)
-pcsamp (10ms)
-gi_hwc
-cy_hwc
-ic_hwc
-isc_hwc
-dc_hwc
-dsc_hwc
-tlb_hwc
-gfp_hwc
-prof_hwc

ssrun Option

SpeedShop SamplingSpeedShop Sampling

■ All procedures called by the code, many All procedures called by the code, many
will be foreign to the programmer.will be foreign to the programmer.

■ Statistics are created by sampling and Statistics are created by sampling and
then looking up the PC and correlating then looking up the PC and correlating
it with the address and symbol table it with the address and symbol table
information.information.

■ Phase problems may cause erroneous Phase problems may cause erroneous
results and reporting.results and reporting.

Speedshop CountingSpeedshop Counting

■ Based upon basic block profilingBased upon basic block profiling
■ Basic block is a section of code with one Basic block is a section of code with one

entry and one exitentry and one exit
■ Executable is instrumented with Executable is instrumented with pixiepixie

■ pixiepixie adds a counter to every basic adds a counter to every basic
blockblock

Ideal ExperimentIdeal Experiment

■ ssrun -idealssrun -ideal
■ Calculates ideal timeCalculates ideal time

– no cache/TLB missesno cache/TLB misses
– minimum latencies for all operationsminimum latencies for all operations

■ Exact operation count with Exact operation count with -op-op
– floating point floating point operations (MADD is 2)operations (MADD is 2)
– integer operationsinteger operations

Prof UsageProf Usage

■ Normally just Normally just prof <prof <output fileoutput file>>

■ --heavyheavy lists offending line numbers lists offending line numbers
■ --sourcesource lists source code and lists source code and

disassembled machine code with disassembled machine code with
specific instructions highlighted specific instructions highlighted

ideal Experiment Exampleideal Experiment Example

 Prof run at: Fri Jan 30 01:59:32 1998Prof run at: Fri Jan 30 01:59:32 1998
 Command line: prof nn0.ideal.21088Command line: prof nn0.ideal.21088
 --
 3954782081: Total number of cycles3954782081: Total number of cycles
 20.28093s: Total execution time20.28093s: Total execution time
 2730104514: Total number of instructions executed2730104514: Total number of instructions executed
 1.449: Ratio of cycles / instruction1.449: Ratio of cycles / instruction
 195: Clock rate in MHz195: Clock rate in MHz

 R10000: Target processor modeledR10000: Target processor modeled
--
..
..
..
--
 cycles(%) cum % secs instrns calls procedure(dso:file)cycles(%) cum % secs instrns calls procedure(dso:file)
3951360680(99.91) 99.91 20.26 2726084981 1 main(nn0.pixie:nn0.c)3951360680(99.91) 99.91 20.26 2726084981 1 main(nn0.pixie:nn0.c)
1617034(0.04) 99.95 0.01 1850963 5001 doprnt1617034(0.04) 99.95 0.01 1850963 5001 doprnt

pcsamp Experiment Examplepcsamp Experiment Example
--
Profile listing generated Fri Jan 30 02:06:07 1998Profile listing generated Fri Jan 30 02:06:07 1998
 with: prof nn0.pcsamp.21081with: prof nn0.pcsamp.21081
--
samples time CPU FPU Clock N-cpu S-interval Countsizesamples time CPU FPU Clock N-cpu S-interval Countsize
 1270 13s R10000 R10010 195.0MHz 1 10.0ms 2(bytes)1270 13s R10000 R10010 195.0MHz 1 10.0ms 2(bytes)
Each sample covers 4 bytes for every 10.0ms (0.08% of 12.7000s)Each sample covers 4 bytes for every 10.0ms (0.08% of 12.7000s)
--
samples time(%) cum time(%) procedure (dso:file)samples time(%) cum time(%) procedure (dso:file)
 1268 13s(99.8) 13s(99.8) main (nn0:nn0.c)1268 13s(99.8) 13s(99.8) main (nn0:nn0.c)
 1 0.01s(0.1) 13s(99.9) _doprnt 1 0.01s(0.1) 13s(99.9) _doprnt

usertime Experiment Exampleusertime Experiment Example
--
Profile listing generated Fri Jan 30 02:11:45 1998Profile listing generated Fri Jan 30 02:11:45 1998
 with: prof nn0.usertime.21077with: prof nn0.usertime.21077
--
 Total Time (secs) : 3.81Total Time (secs) : 3.81
 Total Samples : 127Total Samples : 127
 Stack backtrace failed: 0Stack backtrace failed: 0
 Sample interval (ms) : 30Sample interval (ms) : 30
 CPU : R10000CPU : R10000
 FPU : R10010FPU : R10010
 Clock : 195.0MHzClock : 195.0MHz
 Number of CPUs : 1Number of CPUs : 1
--
index %Samples self descendents total nameindex %Samples self descendents total name
(1) 100.0% 3.78 0.03 127 main(1) 100.0% 3.78 0.03 127 main
(2) 0.8% 0.00 0.03 1 _gettimeofday(2) 0.8% 0.00 0.03 1 _gettimeofday

(3) 0.8% 0.03 0.00 1 _BSD_getime(3) 0.8% 0.03 0.00 1 _BSD_getime

Gprof UsageGprof Usage

■ profprof doesn’t give information about doesn’t give information about
the call heirarchythe call heirarchy

■ Some function may be used everywhere Some function may be used everywhere
but is only a problem in one specific but is only a problem in one specific
instance.instance.

■ prof -gprofprof -gprof can be used only with can be used only with
Ideal and Usertime experimentsIdeal and Usertime experiments

Gprof informationGprof information

■ In addition to the information from profIn addition to the information from prof
– Contributions from descendantsContributions from descendants
– Distribution relative to callersDistribution relative to callers

■ To get gprof like information useTo get gprof like information use
prof -gprof <prof -gprof <output fileoutput file>>

Exception ProfilingException Profiling

■ By default the R10000 causes hardware By default the R10000 causes hardware
traps on floating point exceptions and traps on floating point exceptions and
then ignores them in softwarethen ignores them in software

■ This can result in lots of overhead.This can result in lots of overhead.
■ Use Use ssrun -fpe <exe>ssrun -fpe <exe> to generate a to generate a

trace of locations generating trace of locations generating
exceptions.exceptions.

Address Space ProfilingAddress Space Profiling

■ Used primarily for checking shared Used primarily for checking shared
memory programs for memory memory programs for memory
contention.contention.

■ Generates a trace of most frequently Generates a trace of most frequently
referenced pagesreferenced pages

■ Samples operand address instead of PCSamples operand address instead of PC
dprof -hwpc <dprof -hwpc <exeexe>>

dprofdprof

■ Output is organized byOutput is organized by
– virtual addressvirtual address
– threadthread
– samples per pagesamples per page

■ Difficult to trace pages to actual Difficult to trace pages to actual
symbolssymbols

Parallel ProfilingParallel Profiling

■ After tuning for a single CPU, tune for After tuning for a single CPU, tune for
parallel.parallel.

■ Use full path of toolUse full path of tool
■ ssrun/perfexssrun/perfex used directly with used directly with
mpirunmpirun

■ mpirun <opts> /bin/perfex -mp <opts> <exe> mpirun <opts> /bin/perfex -mp <opts> <exe>
<args> |& cat > output<args> |& cat > output

■ mpirun <opts> /bin/ssrun <opts> <exe> <args>mpirun <opts> /bin/ssrun <opts> <exe> <args>

Parallel ProfilingParallel Profiling

■ perfexperfex outputs all tasks followed by all outputs all tasks followed by all
tasks summedtasks summed

■ In shared memory executables, watch In shared memory executables, watch
– load imbalance (cntr 21, flinstr)load imbalance (cntr 21, flinstr)
– excessive synchronization (4, store cond)excessive synchronization (4, store cond)
– false sharing (31, shared cache block)false sharing (31, shared cache block)

CASEVision DebuggerCASEVision Debugger

■ cvdcvd
■ GUI interface to SpeedShop PC GUI interface to SpeedShop PC

sampling and ideal experimentssampling and ideal experiments
■ Interface to viewing automatic Interface to viewing automatic

parallelization optionsparallelization options
■ Poor documentationPoor documentation
■ Debugging supportDebugging support
■ This tool is complex...This tool is complex...

OutlineOutline

■ Performance guidelines Performance guidelines
■ Array/Loop OptimizationArray/Loop Optimization
■ Language specific considerationsLanguage specific considerations
■ MPI OptimizationMPI Optimization
■ Shared Memory OptimizationShared Memory Optimization

Guidelines for PerformanceGuidelines for Performance

■ I/O is slowI/O is slow
■ System calls are slowSystem calls are slow
■ Use your in-cache data completelyUse your in-cache data completely
■ When looping, remember the pipeline! When looping, remember the pipeline!

– BranchesBranches
– Function callsFunction calls
– Speculation/Out-of-order executionSpeculation/Out-of-order execution
– DependenciesDependencies

Array OptimizationArray Optimization

■ Array InitializationArray Initialization
■ Array PaddingArray Padding
■ Stride MinimizationStride Minimization
■ Loop FusionLoop Fusion
■ Floating IF’sFloating IF’s
■ Loop DefactorizationLoop Defactorization
■ Loop PeelingLoop Peeling
■ Loop InterchangeLoop Interchange

■ Loop CollapseLoop Collapse
■ Loop UnrollingLoop Unrolling
■ Loop Unrolling and Loop Unrolling and

Sum ReductionSum Reduction
■ Outer Loop UnrollingOuter Loop Unrolling

Memory AccessMemory Access

■ Programs should be designed for Programs should be designed for
maximal cache benefit.maximal cache benefit.
– Stride 1 access patternsStride 1 access patterns
– Use entire cache linesUse entire cache lines
– Reusing data as soon as possible after first Reusing data as soon as possible after first

referencereference
■ Also, we should minimize page faults Also, we should minimize page faults

and TLB misses. (code and and TLB misses. (code and dplacedplace))

Array AllocationArray Allocation

■ Array’s are allocated differently in C and Array’s are allocated differently in C and
FORTRAN. FORTRAN.

1 2 31 2 3

4 5 64 5 6

7 8 97 8 9

C: C: 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Fortran: Fortran: 1 4 7 2 5 8 3 6 91 4 7 2 5 8 3 6 9

Array ReferencingArray Referencing

■ In C, outer most index should change In C, outer most index should change
fastest. fastest.

[x,[x,YY]]
■ In Fortran, inner most index should In Fortran, inner most index should

change fastest.change fastest.
((XX,y),y)

Array InitializationArray Initialization

Which to choose?Which to choose?
■ Static initialization requires:Static initialization requires:

– Disk space and Compile timeDisk space and Compile time
– Demand pagingDemand paging
– Extra Cache and TLB misses.Extra Cache and TLB misses.
– Less run timeLess run time

■ Use only for small sizes with default Use only for small sizes with default
initialization to 0.initialization to 0.

Array InitializationArray Initialization

■ Static initializationStatic initialization
REAL(8) A(100,100) /10000*1.0/REAL(8) A(100,100) /10000*1.0/

■ Dynamic initializationDynamic initialization
DO I=1, DIM1DO I=1, DIM1

DO J=1, DIM2DO J=1, DIM2

A(I,J) = 1.0A(I,J) = 1.0

Array PaddingArray Padding

■ Data inData in COMMON COMMON blocks is allocated blocks is allocated
contiguously contiguously

■ Watch for powers of two and know the Watch for powers of two and know the
associativity of your cacheassociativity of your cache

■ Example: dot product, possible miss per Example: dot product, possible miss per
element on 16KB Direct mapped cache element on 16KB Direct mapped cache
for 4 byte elementsfor 4 byte elements

common /xyz/ a(2048),b(2048)common /xyz/ a(2048),b(2048)

Array PaddingArray Padding
a = a + b * ca = a + b * c

Tuned Untuned Tuned
-O3

Untuned
-O3

Origin
2000 1064.1 1094.7 800.9 900.3

Stride MinimizationStride Minimization

■ We must think about spatial locality.We must think about spatial locality.
■ Effective usage of the cache provides us Effective usage of the cache provides us

with the best possibility for a with the best possibility for a
performance gain.performance gain.

■ RecentlyRecently accessed data are likely to be accessed data are likely to be
faster to access.faster to access.

■ Tune your algorithm to minimize stride, Tune your algorithm to minimize stride,
innermost index changes fastestinnermost index changes fastest..

Stride MinimizationStride Minimization

■ Stride 1Stride 1
do y = 1, 1000do y = 1, 1000

do x = 1, 1000do x = 1, 1000

c(x,y) = c(x,y) + a(x,y)*b(x,y)c(x,y) = c(x,y) + a(x,y)*b(x,y)

■ Stride 1000Stride 1000
do y = 1, 1000do y = 1, 1000

do x = 1, 1000do x = 1, 1000

c(y,x) = c(y,x) + a(y,x)*b(y,x)c(y,x) = c(y,x) + a(y,x)*b(y,x)

Stride MinimizationStride Minimization

Untuned
-O3

Tuned
-O3

Origin
2000

67.24 23.27

IBM SP2 201.07 17.54

Cray T3E 37.61 37.66

Loop FusionLoop Fusion

■ Loop overhead reducedLoop overhead reduced
■ Better instruction overlapBetter instruction overlap
■ Lower cache missesLower cache misses
■ Be aware of associativity issues with Be aware of associativity issues with

array’s mapping to the same cache line.array’s mapping to the same cache line.

Loop FusionLoop Fusion

■ UntunedUntuned

do i = 1, 50000do i = 1, 50000

 x = x * a(i) + b(i)x = x * a(i) + b(i)

enddoenddo

do i = 1, 100000do i = 1, 100000

 y = y + a(i) / b(i)y = y + a(i) / b(i)

enddoenddo

■ TunedTuned

do i = 1, 50000do i = 1, 50000

x = x * a(i) + b(i)x = x * a(i) + b(i)

y = y + a(i) / b(i)y = y + a(i) / b(i)

enddoenddo

do i = 50001, 100000do i = 50001, 100000

 y = y + a(i) / b(i)y = y + a(i) / b(i)

enddoenddo

Loop FusionLoop Fusion
Untuned

-O3
Tuned

-O3

Origin
2000

276.37 191.06

IBM SP2 254.96 202.76

Cray T3E 1405.52 1145.91

Loop InterchangeLoop Interchange

■ Swapping the nested order of loopsSwapping the nested order of loops
– Minimize strideMinimize stride
– Reduce loop overhead where inner loop Reduce loop overhead where inner loop

counts are smallcounts are small
– Allows better compiler schedulingAllows better compiler scheduling

Loop InterchangeLoop Interchange

■ UntunedUntuned

real*8 a(2,40,2000)real*8 a(2,40,2000)

do i=1, 2000do i=1, 2000

 do j=1, 40do j=1, 40

 do k=1, 2do k=1, 2

 a(k,j,i) = a(k,j,i)*1.01a(k,j,i) = a(k,j,i)*1.01

 enddoenddo

 enddoenddo

enddoenddo

■ TunedTuned

real*8 a(2000,40,2)real*8 a(2000,40,2)

do i=1, 2do i=1, 2

 do j=1, 40do j=1, 40

do k=1, 2000do k=1, 2000

 a(k,j,i) = a(k,j,i)*1.01a(k,j,i) = a(k,j,i)*1.01

enddoenddo

 enddoenddo

enddoenddo

Loop InterchangeLoop Interchange

Untuned
-O3

Tuned
-O3

Origin
2000

73.85 55.23

IBM SP2 432.39 434.15

Cray T3E 241.85 241.80

Floating IF’sFloating IF’s

■ IF statements that do not change from IF statements that do not change from
iteration to iteration may be moved out iteration to iteration may be moved out
of the loop.of the loop.

■ Compilers can usually do this except Compilers can usually do this except
whenwhen
– Loops contain calls to proceduresLoops contain calls to procedures
– Variable bounded loopsVariable bounded loops
– Complex loopsComplex loops

Floating IF’sFloating IF’s

■ UntunedUntuned

do i = 1, ldado i = 1, lda

 do j = 1, ldado j = 1, lda

 if (a(i) .GT. 100) thenif (a(i) .GT. 100) then

 b(i) = a(i) - 3.7b(i) = a(i) - 3.7

 endifendif

 x = x + a(j) + b(i)x = x + a(j) + b(i)

 enddoenddo

enddoenddo

■ TunedTuned

do i = 1, ldado i = 1, lda

 if (a(i) .GT. 100) thenif (a(i) .GT. 100) then

 b(i) = a(i) - 3.7b(i) = a(i) - 3.7

 endifendif

 do j = 1, ldado j = 1, lda

 x = x + a(j) + b(i)x = x + a(j) + b(i)

 enddoenddo

enddoenddo

Floating IF’sFloating IF’s

Untuned
–O3

Tuned
 –O3

Origin
2000

203.18 94.11

IBM
SP2

80.56 80.77

Cray
T3E

160.86 161.21

Loop DefactorizationLoop Defactorization

■ Loops involving multiplication by a Loops involving multiplication by a
constantconstant in an array. in an array.

■ Allows better instruction scheduling.Allows better instruction scheduling.
■ Facilitates use of multiply-adds.Facilitates use of multiply-adds.

Gather-Scatter OptimizationGather-Scatter Optimization

■ UntunedUntuned

do i = 1, ndo i = 1, n

 if (t(I).gt.0.0) thenif (t(I).gt.0.0) then

 a(I)=2.0*b(I-1)a(I)=2.0*b(I-1)

 end ifend if

enddoenddo

■ TunedTuned

inc = 0inc = 0

do i = 1, ndo i = 1, n

 tmp(inc) = itmp(inc) = i

 if (t(I).gt.0.0) thenif (t(I).gt.0.0) then

 inc = inc + 1inc = inc + 1

 end ifend if

enddoenddo

do I = 1, incdo I = 1, inc

 a(tmp(I))=2.0*b((tmp(I)-1)a(tmp(I))=2.0*b((tmp(I)-1)

enddoenddo

Gather-Scatter OptimizationGather-Scatter Optimization

■ For loops with branches inside loopsFor loops with branches inside loops
■ Increases pipeliningIncreases pipelining
■ Often, body of the loop is executed on Often, body of the loop is executed on

every iteration, thus no savingsevery iteration, thus no savings
■ Solution is to split the loop with a Solution is to split the loop with a

temporary array containing indices of temporary array containing indices of
elements to be computed withelements to be computed with

IF Statements in LoopsIF Statements in Loops

■ Solution is to unroll the loopSolution is to unroll the loop
■ Move conditional elements into scalarsMove conditional elements into scalars
■ Test scalars at the end of the loop bodyTest scalars at the end of the loop body
do I = 1, n, 2do I = 1, n, 2

 a = t(I)a = t(I)

 b = t(I+1)b = t(I+1)

 if (a .eq. 0.0)if (a .eq. 0.0)

 end ifend if

 if (b .eq. 0.0)if (b .eq. 0.0)

 end ifend if

end doend do

Loop DefactorizationLoop Defactorization

■ Note that floating point operations are Note that floating point operations are
not always associative. not always associative.

(A + B) + C != A + (B + C)(A + B) + C != A + (B + C)

■ Be aware of your precisionBe aware of your precision
■ Always verify your results with Always verify your results with

unoptimized code first!unoptimized code first!

Loop DefactorizationLoop Defactorization

■ UntunedUntuned

do i = 1, ldado i = 1, lda

 A(i) = 0.0A(i) = 0.0

 do j = 1, ldado j = 1, lda

 A(i)=A(i)+B(j)*D(j)*C(i)A(i)=A(i)+B(j)*D(j)*C(i)

 enddoenddo

enddoenddo

■ TunedTuned

 do i = 1, ldado i = 1, lda

 A(i) = 0.0A(i) = 0.0

 do j = 1, ldado j = 1, lda

 A(i) = A(i) + B(j) * D(j)A(i) = A(i) + B(j) * D(j)

 enddoenddo

 A(i) = A(i) * C(i)A(i) = A(i) * C(i)

 enddoenddo

Loop DefactorizationLoop Defactorization
Tuned

-O3
Untuned

-O3

Origin
2000

371.95 559.17

IBM SP2 449.03 591.26

Cray T3E 3201.35 3401.61

Loop PeelingLoop Peeling

■ For loops which access previous For loops which access previous
elements in arrays. elements in arrays.

■ Compiler often cannot determine that Compiler often cannot determine that
an item doesn’t need to be loaded an item doesn’t need to be loaded
every iteration.every iteration.

Loop PeelingLoop Peeling

■ UntunedUntuned

 jwrap = ldajwrap = lda

 do i = 1, ldado i = 1, lda

 b(i) = (a(i)+a(jwrap))*0.5b(i) = (a(i)+a(jwrap))*0.5

 jwrap = ijwrap = i

 enddoenddo

■ TunedTuned

b(1) = (a(1)+a(lda))*0.5b(1) = (a(1)+a(lda))*0.5

do i = 2, ldado i = 2, lda

 b(i) = (a(i)+a(i-1))*0.5b(i) = (a(i)+a(i-1))*0.5

enddoenddo

Loop PeelingLoop Peeling
Tuned

-O3
Untuned

-O3

Origin
2000

61.06 63.33

IBM SP2 25.68 40.50

Cray T3E 72.93 90.05

Loop CollapseLoop Collapse

■ For multi-nested loops in which the For multi-nested loops in which the
entire array is accessed.entire array is accessed.

■ This can reduce loop overhead and This can reduce loop overhead and
improve compiler vectorization.improve compiler vectorization.

Loop CollapseLoop Collapse

■ UntunedUntuned

 do i = 1, ldado i = 1, lda

 do j = 1, ldbdo j = 1, ldb

 do k = 1, ldcdo k = 1, ldc

 A(k,j,i) = A(k,j,i) + B(k,j,i) * C(k,j,i)A(k,j,i) = A(k,j,i) + B(k,j,i) * C(k,j,i)

 enddoenddo

 enddoenddo

 enddoenddo

Loop CollapseLoop Collapse

■ TunedTuned
 do i = 1, lda*ldb*ldcdo i = 1, lda*ldb*ldc

 A(i,1,1) = A(i,1,1) + B(i,1,1) * C(i,1,1)A(i,1,1) = A(i,1,1) + B(i,1,1) * C(i,1,1)

 enddoenddo

■ More Tuned (declarations are 1D)More Tuned (declarations are 1D)
 do i = 1, lda*ldb*ldcdo i = 1, lda*ldb*ldc

 A(i) = A(i) + B(i) * C(i)A(i) = A(i) + B(i) * C(i)

 enddoenddo

Loop CollapseLoop Collapse
Tuned Tuned

–O3
Tuned

2nd
Tuned 2nd

–O3

Origin
2000

400.25 143.01 410.58 77.86

IBM
SP2

144.75 31.57 144.18 31.54

Cray
T3E

394.19 231.44 394.92 229.86

Loop UnrollingLoop Unrolling

■ Data dependence delays can be Data dependence delays can be
reduced or eliminated.reduced or eliminated.

■ Reduce loop overhead.Reduce loop overhead.
■ Usually performed well by the compiler Usually performed well by the compiler

or preprocessor. or preprocessor.

Loop UnrollingLoop Unrolling

■ UntunedUntuned

do i = 1, ldado i = 1, lda

 do j = 1, ldado j = 1, lda

 do k = 1, 4do k = 1, 4

 a(j,i) = a(j,i) + b(i,k) * c(j,k)a(j,i) = a(j,i) + b(i,k) * c(j,k)

 enddoenddo

 enddoenddo

enddoenddo

Loop UnrollingLoop Unrolling

■ Tuned (4)Tuned (4)

do i = 1, ldado i = 1, lda

 do j = 1, ldado j = 1, lda

 a(j,i) = a(j,i) + b(i,1) * c(j,1)a(j,i) = a(j,i) + b(i,1) * c(j,1)

 a(j,i) = a(j,i) + b(i,2) * c(j,2)a(j,i) = a(j,i) + b(i,2) * c(j,2)

 a(j,i) = a(j,i) + b(i,3) * c(j,3)a(j,i) = a(j,i) + b(i,3) * c(j,3)

 a(j,i) = a(j,i) + b(i,4) * c(j,4)a(j,i) = a(j,i) + b(i,4) * c(j,4)

 enddoenddo

enddoenddo

Loop UnrollingLoop Unrolling

Tuned
-O3

Untuned
-O3

Origin
2000

61.06 63.33

IBM SP2 11.26 12.65

Cray T3E 36.30 24.41

Loop Unrolling and Sum Loop Unrolling and Sum
ReductionsReductions

■ When an operation requires as input When an operation requires as input
the result of the last output.the result of the last output.

■ Called a Data Dependency.Called a Data Dependency.
■ Frequently happens with multi-add Frequently happens with multi-add

instruction inside of loops.instruction inside of loops.
■ Introduce intermediate sums. Use your Introduce intermediate sums. Use your

registers!registers!

Loop Unrolling and Sum Loop Unrolling and Sum
ReductionsReductions

■ UntunedUntuned

 do i = 1, ldado i = 1, lda

 do j = 1, ldado j = 1, lda

 a = a + (b(j) * c(i))a = a + (b(j) * c(i))

 enddoenddo

 enddoenddo

Loop Unrolling and Sum Loop Unrolling and Sum
ReductionsReductions

■ Tuned (4)Tuned (4)

 do i = 1, ldado i = 1, lda

 do j = 1, lda, 4do j = 1, lda, 4

 a1 = a1 + b(j) * c(i)a1 = a1 + b(j) * c(i)

 a2 = a2 + b(j+1) * c(i)a2 = a2 + b(j+1) * c(i)

 a3 = a3 + b(j+2) * c(i)a3 = a3 + b(j+2) * c(i)

 a4 = a4 + b(j+3) * c(i)a4 = a4 + b(j+3) * c(i)

 enddoenddo

 enddoenddo

 aa = a1 + a2 +a3 + a4aa = a1 + a2 +a3 + a4

Loop Unrolling and Sum Loop Unrolling and Sum
ReductionsReductions

Untuned
–O3

2
Tuned

2
Tuned
–O3

4
Tuned

-O3

8
Tuned

-O3

16
Tuned

-O3

Origin
2000

454 4945 352 350 350 330

IBM
SP2

281 6490 563 281 281 263

Cray
T3E 865 10064 564 340 231 860

Outer Loop UnrollingOuter Loop Unrolling

■ For nested loops, unrolling outer loop For nested loops, unrolling outer loop
may reduce loads and stores in the may reduce loads and stores in the
inner loop.inner loop.

■ Compiler may perform this optimization.Compiler may perform this optimization.

Outer Loop UnrollingOuter Loop Unrolling

■ UntunedUntuned
– Each flop requires two loads and one store.Each flop requires two loads and one store.

 do i = 1, ldado i = 1, lda

 do j = 1, ldbdo j = 1, ldb

 A(i,j) = B(i,j) * C(j)A(i,j) = B(i,j) * C(j)

 enddoenddo

 enddoenddo

Outer Loop UnrollingOuter Loop Unrolling

■ TunedTuned
– Each flop requires 5/4 loads and one store.Each flop requires 5/4 loads and one store.

 do i = 1, lda, 4do i = 1, lda, 4

 do j = 1, ldbdo j = 1, ldb

 A(i,j) = B(i,j) * C(j) A(i,j) = B(i,j) * C(j)

 A(i+1,j) = B(i+1,j) * C(j)A(i+1,j) = B(i+1,j) * C(j)

 A(i+2,j) = B(i+2,j) * C(j)A(i+2,j) = B(i+2,j) * C(j)

 A(i+3,j) = B(i+3,j) * C(j)A(i+3,j) = B(i+3,j) * C(j)

 enddoenddo

 enddoenddo

Outer Loop UnrollingOuter Loop Unrolling
Tuned

-O3
Untuned

-O3

Origin
2000

28.85 34.52

IBM SP2 74.67 286.11

Cray T3E 14.33 30.91

Cache BlockingCache Blocking

■ Takes advantage of the cache by Takes advantage of the cache by
working with smaller tiles of dataworking with smaller tiles of data

■ Only really beneficial on problems with Only really beneficial on problems with
significant potential for reusesignificant potential for reuse

■ Merges naturally with unrolling and Merges naturally with unrolling and
sum-reductionsum-reduction

Cache BlockingCache Blocking

■ UntunedUntuned
REAL*8 A(M,N)REAL*8 A(M,N)

REAL*8 B(N,P)REAL*8 B(N,P)

REAL*8 C(M,P)REAL*8 C(M,P)

DO J=1,PDO J=1,P

 DO I=1,MDO I=1,M

 DO K=1,NDO K=1,N

 C(I,P) = C(I,P) +C(I,P) = C(I,P) +

 A(I,K)*B(K,J)A(I,K)*B(K,J)

 ENDDOENDDO

 ENDDOENDDO

ENDDOENDDO

■ TunedTuned
DO JB=1,P,16DO JB=1,P,16
 DO IB=1,M,16DO IB=1,M,16
 DO KB=1,NDO KB=1,N
 DO J=JB,MIN(P,JB+15)DO J=JB,MIN(P,JB+15)
 DO I=IB,MIN(M,IB+15)DO I=IB,MIN(M,IB+15)
 C(I,P) = C(I,P) +C(I,P) = C(I,P) +
 A(I,K)*B(K,J)A(I,K)*B(K,J)
 ENDDOENDDO
 ENDDOENDDO
 ENDDOENDDO
 ENDDOENDDO
 ENDDOENDDO
ENDDOENDDO

Loop structureLoop structure

■ IF/GOTO and WHILE loops inhibit some IF/GOTO and WHILE loops inhibit some
compiler optimizations.compiler optimizations.

■ Some optimizers and preprocessors can Some optimizers and preprocessors can
perform transforms.perform transforms.

■ DO and for() loops are the most highly DO and for() loops are the most highly
tuned.tuned.

Strength ReductionStrength Reduction

■ Reduce cost of mathematical operation Reduce cost of mathematical operation
with no loss in precision, compiler might with no loss in precision, compiler might
do it.do it.
– Integer multiplication/division by a Integer multiplication/division by a

constant with shift/addsconstant with shift/adds
– Exponentiation by multiplicationExponentiation by multiplication
– Factorization and Horner’s RuleFactorization and Horner’s Rule
– Floating point division by inverse Floating point division by inverse

multiplicationmultiplication

Strength ReductionStrength Reduction
Horner’s RuleHorner’s Rule

■ Polynomial expression can be rewritten Polynomial expression can be rewritten
as a nested factorization.as a nested factorization.

Ax^5 + Bx^4 + Cx^3 + Dx^2 + Ex + F =Ax^5 + Bx^4 + Cx^3 + Dx^2 + Ex + F =

((((Ax + B) * x + C) * x + D) * x + E) * x + F.((((Ax + B) * x + C) * x + D) * x + E) * x + F.

■ Also uses multiply-add instructionsAlso uses multiply-add instructions
■ Eases dependency analysisEases dependency analysis

Strength ReductionStrength Reduction
Horner’s RuleHorner’s Rule

Tuned
-O3

Untuned
-O3

Origin
2000

74.20 74.09

IBM SP2 40.69 74.71

Cray T3E 61.70 160.05

Strength ReductionStrength Reduction
Integer Division by a Power of 2Integer Division by a Power of 2

■ Shift requires less cycles than division.Shift requires less cycles than division.
■ Both dividend and divisor must both be Both dividend and divisor must both be

unsigned or positive integers.unsigned or positive integers.

Strength ReductionStrength Reduction
Integer division by a Power of 2Integer division by a Power of 2

■ UntunedUntuned

IL = 0IL = 0

DO I=1,ARRAY_SIZEDO I=1,ARRAY_SIZE

 DO J=1,ARRAY_SIZEDO J=1,ARRAY_SIZE

 IL = IL + A(J)/2IL = IL + A(J)/2

 ENDDOENDDO

 ILL(I) = ILILL(I) = IL

ENDDOENDDO

■ TunedTuned

IL = 0IL = 0

ILL = 0ILL = 0

DO I=1,ARRAY_SIZEDO I=1,ARRAY_SIZE

 DO J=1,ARRAY_SIZEDO J=1,ARRAY_SIZE

 IL = IL + ISHFT(A(J),-1)IL = IL + ISHFT(A(J),-1)

 ENDDOENDDO

 ILL(I) = ILILL(I) = IL

ENDDOENDDO

Strength ReductionStrength Reduction
 Integer division by a Power of 2Integer division by a Power of 2

Tuned
-O3

Untuned
-O3

Origin
2000

210.71 336.44

IBM SP2 422.65 494.05

Cray T3E 771.28 844.17

Strength ReductionStrength Reduction
FactorizationFactorization

■ Allows for better instruction scheduling.Allows for better instruction scheduling.
■ Compiler can interleave loads and ALU Compiler can interleave loads and ALU

operations.operations.
■ Especially benefits compilers able to do Especially benefits compilers able to do

software pipelining.software pipelining.

Strength ReductionStrength Reduction
FactorizationFactorization

■ UntunedUntuned
XX = X*A(I) + X*B(I) + X*C(I) + X*D(I)XX = X*A(I) + X*B(I) + X*C(I) + X*D(I)

■ TunedTuned
XX = X*(A(I) + B(I) + C(I) + D(I))XX = X*(A(I) + B(I) + C(I) + D(I))

Strength ReductionStrength Reduction
FactorizationFactorization

Tuned
-O3

Untuned
-O3

Origin
2000

51.65 48.99

IBM SP2 57.43 57.40

Cray T3E 387.77 443.45

Subexpression EliminationSubexpression Elimination
ParenthesisParenthesis

■ Parenthesis can help the compiler Parenthesis can help the compiler
recognize repeated expressions.recognize repeated expressions.

■ Some preprocessors and aggressive Some preprocessors and aggressive
compilers will do it.compilers will do it.

■ Might limit aggressive optimizationsMight limit aggressive optimizations

Subexpression EliminationSubexpression Elimination
ParenthesisParenthesis

■ UntunedUntuned
XX = XX + X(I)*Y(I)+Z(I) + X(I)*Y(I)-Z(I) + X(I)*YXX = XX + X(I)*Y(I)+Z(I) + X(I)*Y(I)-Z(I) + X(I)*Y

(I) + Z(I)(I) + Z(I)

■ TunedTuned
XX = XX + (X(I)*Y(I)+Z(I)) + X(I)*Y(I)-Z(I) + (XXX = XX + (X(I)*Y(I)+Z(I)) + X(I)*Y(I)-Z(I) + (X

(I)*Y(I)+Z(I))(I)*Y(I)+Z(I))

Subexpression EliminationSubexpression Elimination
Type ConsiderationsType Considerations

■ Changes the type or precision of data.Changes the type or precision of data.
– Reduces resource requirements.Reduces resource requirements.
– Avoid type conversions.Avoid type conversions.
– Processor specific performance.Processor specific performance.

■ Do you really need 8 or 16 bytes of Do you really need 8 or 16 bytes of
precision?precision?

Subexpression EliminationSubexpression Elimination
Type ConsiderationsType Considerations

■ Consider which elements are used Consider which elements are used
together?together?
– Should you be merging your arrays?Should you be merging your arrays?
– Should you be splitting your loops for Should you be splitting your loops for

better locality?better locality?
– For C, are your structures packed tightly in For C, are your structures packed tightly in

terms of storage and reference pattern?terms of storage and reference pattern?

F90 ConsiderationsF90 Considerations

■ WHERE statementsWHERE statements
■ ARRAY syntaxARRAY syntax
■ ALLOCATE placementALLOCATE placement
■ OO complicationOO complication

– Class dependenciesClass dependencies
– Code fragmentationCode fragmentation
– Operator overloadingOperator overloading
– InliningInlining

C/C++ ConsiderationsC/C++ Considerations

■ Use C++ I/O operatorsUse C++ I/O operators
■ Call by const ref Call by const ref
■ OO complicationOO complication
■ Avoid unsigned conversionsAvoid unsigned conversions
■ Use Use inlineinline, , constconst and and __restrict__restrict

keywordskeywords

dplacedplace Usage Usage

■ Used to specify different page sizes and Used to specify different page sizes and
data placementdata placement

■ For performance use:For performance use:

dplace -data_pagesize 64k -stack_pagesize 64k <program>dplace -data_pagesize 64k -stack_pagesize 64k <program>

mpirun -np <procs> /usr/sbin/dplace <args> <program>mpirun -np <procs> /usr/sbin/dplace <args> <program>

mpirun -np <procs> /bin/ssrun <args> /usr/sbin/dplace mpirun -np <procs> /bin/ssrun <args> /usr/sbin/dplace
<args> <program> <args> <program>

Parallel OptimizationParallel Optimization

■ Two programming models.Two programming models.
– Message PassingMessage Passing
– Shared MemoryShared Memory

■ Optimizing parallel codeOptimizing parallel code

Choosing a Data DistributionChoosing a Data Distribution

■ The two main issues in choosing a data The two main issues in choosing a data
layout for dense matrix computations arelayout for dense matrix computations are::
– load balanceload balance, or splitting the work reasonably , or splitting the work reasonably

evenly among the processors throughout the evenly among the processors throughout the
algorithm, andalgorithm, and

– use of the Level 3 BLASuse of the Level 3 BLAS during computations on during computations on
a single processor to utilize the memory hierarchy a single processor to utilize the memory hierarchy
on each processoron each processor..

Possible Data LayoutsPossible Data Layouts
■ 1D block and cyclic column distributions1D block and cyclic column distributions

■ 1D block-cyclic column and 2D block-cyclic 1D block-cyclic column and 2D block-cyclic
distribution used in ScaLAPACKdistribution used in ScaLAPACK

Two-dimensional Block-Cyclic DistributionTwo-dimensional Block-Cyclic Distribution

■ Ensure good load balance --> Ensure good load balance -->
Performance and scalabilityPerformance and scalability,,

■ Encompasses a large number of (but not all) Encompasses a large number of (but not all)
data distribution schemes,data distribution schemes,

■ Need redistribution routines to go from one Need redistribution routines to go from one
distribution to the otherdistribution to the other..

Load BalancingLoad Balancing

■ StaticStatic
– Data/tasks are partitioned among existing Data/tasks are partitioned among existing

processors.processors.
– Problem of finding an efficient mappingProblem of finding an efficient mapping

■ DynamicDynamic
– Master/Worker modelMaster/Worker model
– Synchronization and data distribution Synchronization and data distribution

problemsproblems

MPP OptimizationMPP Optimization

■ ProgrammingProgramming
– Message passing (MPI, PVM, Shmem)Message passing (MPI, PVM, Shmem)
– Shared memory (HPF or MP directive Shared memory (HPF or MP directive

based)based)
■ AlgorithmsAlgorithms

– Data or Functional ParallelismData or Functional Parallelism
– SIMD, MIMDSIMD, MIMD
– Granularity (fine, medium, coarse)Granularity (fine, medium, coarse)
– Master/Worker or HostlessMaster/Worker or Hostless

Parallel PerformanceParallel Performance

■ Architecture is characterized byArchitecture is characterized by
– Number of CPU’sNumber of CPU’s
– ConnectivityConnectivity
– I/O capabilityI/O capability
– Single processor performanceSingle processor performance

Message Passing APIsMessage Passing APIs

■ Two popular message passing API’s.Two popular message passing API’s.
– PVMPVM

■ UT/ORNLUT/ORNL
■ VendorVendor

– MPIMPI
■ MPICH from MS StateMPICH from MS State
■ LAM from Ohio Supercomputing CenterLAM from Ohio Supercomputing Center
■ VendorVendor

Message Passing APIsMessage Passing APIs

■ In generalIn general
– PVM is a message passing research vehicle.PVM is a message passing research vehicle.
– MPI is a production product intended for MPI is a production product intended for

application engineers.application engineers.
– MPI will outperform PVM.MPI will outperform PVM.
– MPI has richer functionalityMPI has richer functionality
– PVM is better for applications requiring PVM is better for applications requiring

fault tolerance, heterogeneity and fault tolerance, heterogeneity and
changing number of processes.changing number of processes.

Message Passing InterfaceMessage Passing Interface

■ MPIMPI
– Support collective operationsSupport collective operations
– Support customized data typesSupport customized data types
– Will take advantage of shared memoryWill take advantage of shared memory
– Exist on almost every platform includingExist on almost every platform including

■ Networks of workstationsNetworks of workstations
■ Windows 95 and NTWindows 95 and NT
■ Multiprocessor workstationsMultiprocessor workstations

Message PassingMessage Passing

■ Node 1 needs X bytes from node 0Node 1 needs X bytes from node 0
■ Node 0 calls a send function (X bytes Node 0 calls a send function (X bytes

from address A)from address A)
■ Node 1 calls a receive function (X bytes Node 1 calls a receive function (X bytes

into address B)into address B)

Message PassingMessage Passing

■ Upon message arrivalUpon message arrival
– If node B has not If node B has not postedposted a receive the a receive the

data is data is bufferedbuffered until the receive function until the receive function
is called.is called.

– Else the data is copied directly to the Else the data is copied directly to the
address given to the receive function.address given to the receive function.

Communication IssuesCommunication Issues

■ Startup time, latency or overheadStartup time, latency or overhead
■ BandwidthBandwidth
■ Network contention and congestionNetwork contention and congestion
■ BidirectionalityBidirectionality
■ Communication APICommunication API
■ Dedicated ChannelsDedicated Channels

Communication IssuesCommunication Issues

■ Startup time and bandwidthStartup time and bandwidth
– Startup time is higher than the time to Startup time is higher than the time to

actually transfer a actually transfer a smallsmall message. message.
– Send larger messages fewer times, but try Send larger messages fewer times, but try

to keep everyone busy.to keep everyone busy.
■ Contention can be reduced by uniformly Contention can be reduced by uniformly

distributing messages.distributing messages.

Communication IssuesCommunication Issues

■ To take advantage of bidirectionality, To take advantage of bidirectionality,
post receives before sending. post receives before sending.

■ As mentioned, use MPI_Ixxx calls.As mentioned, use MPI_Ixxx calls.
– It can handle more particles than fit in It can handle more particles than fit in

memorymemory

Message PassingMessage Passing

BufferingBuffering - Temporary storage of data. - Temporary storage of data.
PostingPosting - Temporary storage of an address. - Temporary storage of an address.
NonblockingNonblocking - Refers to an function A that - Refers to an function A that

initiates an operation B and returns to the initiates an operation B and returns to the
caller before the completion of B.caller before the completion of B.

BlockingBlocking - The function A does not return to - The function A does not return to
the caller until the completion of operation B.the caller until the completion of operation B.

Polling/Waiting Polling/Waiting - Testing for the completion - Testing for the completion
of a nonblocking operation.of a nonblocking operation.

Message PassingMessage Passing

■ It is possible for sends and receives to It is possible for sends and receives to
bebe
– Nonblocking(send) or Posted(receive)Nonblocking(send) or Posted(receive)
– Synchronous(send)Synchronous(send)
– BufferedBuffered
– BlockingBlocking

MPI Message PassingMPI Message Passing

■ MPI introduces communication MPI introduces communication modes modes
dictating semantics of completion of dictating semantics of completion of
send operations.send operations.
– BBuffered - When transmitted or buffered, uffered - When transmitted or buffered,

space provided/limited by application, else space provided/limited by application, else
error.error.

– RReady - Only if receive is posted, else eady - Only if receive is posted, else
error.error.

– SSynchronous - Only when receive begins to ynchronous - Only when receive begins to
execute, else wait. Useful for debugging.execute, else wait. Useful for debugging.

MPI Message PassingMPI Message Passing

■ In additionIn addition
standard - MPI will decide if/how much standard - MPI will decide if/how much

outgoing data is buffered. If space is outgoing data is buffered. If space is
unavailable, completion will be delayed unavailable, completion will be delayed
until data is transmitted to receiver. (Like until data is transmitted to receiver. (Like
PVM) PVM)

IImmediate - nonblocking, returns to the mmediate - nonblocking, returns to the
caller ASAP. May be used with any of the caller ASAP. May be used with any of the
above modes.above modes.

MPI Message PassingMPI Message Passing

■ Ready sends can remove a handshake Ready sends can remove a handshake
for large messages.for large messages.

■ There is only one receive mode, it There is only one receive mode, it
matches any of the send modes.matches any of the send modes.

MPI OptimizationsMPI Optimizations

■ We are primarily interested inWe are primarily interested in
MPI_ISEND, MPI_IRECV, MPI_IRSENDMPI_ISEND, MPI_IRECV, MPI_IRSEND

■ Why? Because your program could be Why? Because your program could be
doing something useful while sending doing something useful while sending
or receiving! You can hide much of the or receiving! You can hide much of the
cost of these communication cost of these communication
operations.operations.

■ Avoid one sided and persistent Avoid one sided and persistent
communication operations.communication operations.

MPI Data TypesMPI Data Types

■ For array transfers MPI has user For array transfers MPI has user
defined data types to gather and defined data types to gather and
scatter data to/from memory.scatter data to/from memory.

■ Try to use Try to use MPI_TYPE_[H]VECTOR()MPI_TYPE_[H]VECTOR()or or
MPI_TYPE_[H]INDEXED()MPI_TYPE_[H]INDEXED()

■ Avoid Avoid MPI_TYPE_STRUCT()MPI_TYPE_STRUCT()

MPI Collective CommunicationMPI Collective Communication

■ Unlike PVM, with MPI you should use Unlike PVM, with MPI you should use
the collective operations. They are likely the collective operations. They are likely
to be highly tuned for the architecture.to be highly tuned for the architecture.

■ These operations are very difficult to These operations are very difficult to
optimize and are often the bottlenecks optimize and are often the bottlenecks
in parallel applications.in parallel applications.

MPI Collective CommunicationMPI Collective Communication

MPI_Barrier()MPI_Barrier()

MPI_Bcast()MPI_Bcast()

MPI_Gather[v]() MPI_Scatter[v]()MPI_Gather[v]() MPI_Scatter[v]()

MPI_Allgather[v]() MPI_Allgather[v]()

MPI_Alltoall[v]()MPI_Alltoall[v]()

MPI_Reduce()MPI_Reduce()

MPI_AllReduce()MPI_AllReduce()

MPI_Reduce_Scatter()MPI_Reduce_Scatter()

MPI_Scan()MPI_Scan()

Message Passing Message Passing
OptimizationsOptimizations

■ Try to keep message sizes Try to keep message sizes not smallnot small
■ Try to pipeline Try to pipeline

communication/computationcommunication/computation
■ Avoid data translation and data types Avoid data translation and data types

unless necessary for good performanceunless necessary for good performance
■ Avoid wildcard receivesAvoid wildcard receives
■ Align application buffers to double Align application buffers to double

words and page sizes. Be careful of words and page sizes. Be careful of
cache lines!cache lines!

Message Passing OptimizationMessage Passing Optimization
Nearest Neighbor Example 1Nearest Neighbor Example 1

N slave processors available plus Master, N slave processors available plus Master,
M particles each having (M particles each having (x,y,zx,y,z))
coordinates.coordinates.

1) Master reads and distributes all 1) Master reads and distributes all
coordinates to N processors.coordinates to N processors.

2) Each processor calculates its subset of 2) Each processor calculates its subset of
M/N and sends it back to the master.M/N and sends it back to the master.

3) Master processor receives and outputs 3) Master processor receives and outputs
information.information.

Message Passing OptimizationMessage Passing Optimization
Nearest Neighbor Example 2Nearest Neighbor Example 2

1) Master reads and scatters M/N coordinates to N 1) Master reads and scatters M/N coordinates to N
processors.processors.

2) Each processor receives its own subset and makes a 2) Each processor receives its own subset and makes a
replica.replica.

3) Each processor calculates its subset of M/N 3) Each processor calculates its subset of M/N
coordinates versus the replica.coordinates versus the replica.

 4) Each processor sends to the next processor its replica 4) Each processor sends to the next processor its replica
of M/N coordinates.of M/N coordinates.

5) Each processor receives the replica. Goto 3) N-1 5) Each processor receives the replica. Goto 3) N-1
times.times.

6) Each processor sends its info back to the Master6) Each processor sends its info back to the Master

Message Passing OptimizationMessage Passing Optimization
Nearest Neighbor ExampleNearest Neighbor Example

■ Example 1 works better only whenExample 1 works better only when
– There are a small number of particlesThere are a small number of particles
– You have an super efficient broadcastYou have an super efficient broadcast

■ Example 2 works better more often Example 2 works better more often
becausebecause
– Computation is pipelined. Note that slave Computation is pipelined. Note that slave

processor 0 is already busy before processor 0 is already busy before
processor 1 even gets its input data.processor 1 even gets its input data.

MPI Message PassingMPI Message Passing

■ To test for the completion of a message To test for the completion of a message
useuse

MPI_WAITxxx MPI_WAITxxx andand MPI_TESTxxx MPI_TESTxxx

where where xxxxxx is all, any, some or NULL. is all, any, some or NULL.

■ Remember you must test ISEND’s as Remember you must test ISEND’s as
well as IRECV’s before you can reuse well as IRECV’s before you can reuse
the argument.the argument.

Automatic ParallelizationAutomatic Parallelization

■ Let the compiler do the work.Let the compiler do the work.
■ AdvantagesAdvantages

– It’s easyIt’s easy
■ DisadvantagesDisadvantages

– Only does loop level parallelism.Only does loop level parallelism.
– It wants to parallelize every loop iteration It wants to parallelize every loop iteration

in your code.in your code.

Automatic ParallelizationAutomatic Parallelization

■ On the SGIOn the SGI
f77 -pfa <prog.f>f77 -pfa <prog.f>

■ Tries to parallelize every loop in your Tries to parallelize every loop in your
code.code.

Data ParallelismData Parallelism

■ Data parallelism: Data parallelism: different processors different processors
running the same code on different running the same code on different
data. (SPMD)data. (SPMD)

■ Identify hot spots.Identify hot spots.
■ Do it by hand via directives.Do it by hand via directives.
■ Modify the code to remove Modify the code to remove

dependencies.dependencies.
■ Make sure you get the right answers.Make sure you get the right answers.

Data Parallelism on the SGI’sData Parallelism on the SGI’s

■ Insert the Insert the c$doacrossc$doacross directive just directive just
before the loop to be parallelized.before the loop to be parallelized.

■ Declare local and shared variablesDeclare local and shared variables
■ Compile with Compile with -mp-mp option. option.

c$doacross local(i) share(a,n)c$doacross local(i) share(a,n)

do i=1,ndo i=1,n

a(i)=float(i)a(i)=float(i)

end doend do

Data Parallelism on the SGI’sData Parallelism on the SGI’s

■ Directives affect only immediately Directives affect only immediately
referenced loop.referenced loop.

■ Directives begin in column one.Directives begin in column one.
■ c$doacrossc$doacross is becoming a standard. is becoming a standard.

Data Parallelism on the SGI’sData Parallelism on the SGI’s

■ Compiler generates code that runs with Compiler generates code that runs with
any number of threads settable at any number of threads settable at
runtime.runtime.

■ Set number of threads.Set number of threads.
pagh> setenv MP_SET_NUMTHREADS 4pagh> setenv MP_SET_NUMTHREADS 4

Task ParallelismTask Parallelism

■ Task parallelismTask parallelism means different means different
processors are running different processors are running different
procedures. procedures.

■ Can be accomplished on Can be accomplished on anyany machine machine
with data parallel directives via if with data parallel directives via if
statements inside a loop.statements inside a loop.

Task ParallelismTask Parallelism

c$doacross local(i)c$doacross local(i)

do i=1,ndo i=1,n

 if (i=1) call sub1(...)if (i=1) call sub1(...)

 if (i=2) call sub2(...)if (i=2) call sub2(...)

 if (i=3) call sub3(...)if (i=3) call sub3(...)

 if (i=4) call sub4(...)if (i=4) call sub4(...)

end doend do

Limits on Parallel SpeedupLimits on Parallel Speedup

■ The code is I/O bound.The code is I/O bound.
■ The problem size is fixed.The problem size is fixed.
■ The problem size is too small.The problem size is too small.
■ There is too much serial/scalar code.There is too much serial/scalar code.
■ The algorithm is inherently serial.The algorithm is inherently serial.
■ Data distribution.Data distribution.
■ Parallel overhead.Parallel overhead.

Parallel OverheadParallel Overhead

■ Creating/Scheduling threadsCreating/Scheduling threads
■ CommunicationCommunication
■ SynchronizationSynchronization
■ PartitioningPartitioning

Parallel OverheadParallel Overhead

■ For data parallel programming we can For data parallel programming we can
estimate parallel overhead.estimate parallel overhead.

■ Time the code with only one threadTime the code with only one thread

Reducing Parallel OverheadReducing Parallel Overhead

■ Don’t parallelize ALL the loops.Don’t parallelize ALL the loops.
■ Don’t parallelize the small loops.Don’t parallelize the small loops.
■ Use the “if” modifier.Use the “if” modifier.

c$doacross if(n > 500), local(...), share(...)c$doacross if(n > 500), local(...), share(...)

do i=1,ndo i=1,n

enddoenddo

Reducing Parallel OverheadReducing Parallel Overhead

■ Use task parallelism.Use task parallelism.
– Lower overheadLower overhead
– More code runs in parallelMore code runs in parallel
– Requires a parallel algorithmRequires a parallel algorithm

Improving Load BalanceImproving Load Balance

■ Change the way loop iterations are Change the way loop iterations are
allocated to threads.allocated to threads.
– Change the scheduling typeChange the scheduling type
– Change the chunk sizeChange the chunk size

Improving Load BalanceImproving Load Balance

■ Scheduling Scheduling
– setenv MP_SCHEDTYPE <type>setenv MP_SCHEDTYPE <type>

– c$doacross mp_schedtype=<type>c$doacross mp_schedtype=<type>

– SIMPLE - default, iterations equally and SIMPLE - default, iterations equally and
sequentially allocated per processor. sequentially allocated per processor.

– INTERLEAVE - round-robin per chunk of INTERLEAVE - round-robin per chunk of
iterations. Use when some iterations do iterations. Use when some iterations do
more work than others.more work than others.

Improving Load BalanceImproving Load Balance

■ Scheduling Scheduling
– DYNAMIC - iterations are allocated per DYNAMIC - iterations are allocated per

processor during run-time. When the processor during run-time. When the
amount of work is unknown.amount of work is unknown.

– GSS - guided self scheduling. Each GSS - guided self scheduling. Each
processor starts with a large number and processor starts with a large number and
finishes with a small number. finishes with a small number.

Improving Load BalanceImproving Load Balance

■ Change the number of iterations Change the number of iterations
performed per processor.performed per processor.
– setenv CHUNK 4setenv CHUNK 4

– c$doacross local(i) chunk_size=4c$doacross local(i) chunk_size=4

Additional MaterialAdditional Material

http://www.cs.utk.edu/~mucci/MPPopt.htmlhttp://www.cs.utk.edu/~mucci/MPPopt.html

■ Slides Slides
■ Optimization GuidesOptimization Guides
■ PapersPapers
■ PointersPointers
■ Compiler BenchmarksCompiler Benchmarks

HTTP ReferencesHTTP References

http://www.nersc.govhttp://www.nersc.gov

http://www.mhpcc.govhttp://www.mhpcc.gov

http://www-jics.cs.utk.eduhttp://www-jics.cs.utk.edu

http://www.tc.cornell.eduhttp://www.tc.cornell.edu

http://www.netlib.orghttp://www.netlib.org

http://www.ncsa.uiuc.eduhttp://www.ncsa.uiuc.edu

http://www.cray.comhttp://www.cray.com

http://www.psc.eduhttp://www.psc.edu

http://techpubs.sgi.comhttp://techpubs.sgi.com

ReferencesReferences

SGI:SGI: Origin 2000 Optimization and Tuning Guide Origin 2000 Optimization and Tuning Guide
SGI: SGI: MIPSpro Compiler Performance Tuning GuideMIPSpro Compiler Performance Tuning Guide
Hennessey and Patterson: Hennessey and Patterson: Computer Architecture, A Computer Architecture, A

Quantitative ApproachQuantitative Approach
Dongarra et al: MPI, Dongarra et al: MPI, The Complete ReferenceThe Complete Reference
Dongarra et al: PVM, Dongarra et al: PVM, Parallel Virtual MachineParallel Virtual Machine
Vipin Kumer et alVipin Kumer et al: Introduction to Parallel Computing: Introduction to Parallel Computing
IBM: IBM: Optimization and Tuning Guide for Fortran, C, C++Optimization and Tuning Guide for Fortran, C, C++

