
1

Session III:
Level II Tools: DynaProf

11:00AM – 12:00 PM

Philip J. Mucci
mucci@cs.utk.edu

Innovative Computing Laboratory
University of Tennessee

Lawrence Berkeley National Laboratory
pjmucci@lbl.gov

1

Outline

DynaProf Introduction
Goal and Overview

Architecture

Obtaining and Installing DynaProf

Using DynaProf
Instrument running executable

Collect and browse performance data

DynaProf Current Status

1

Goals

Make collection of hardware performance data quick
and straightforward.

Work with production executables as delivered. No
recompilation required.

Provide highly accurate hardware performance data
with a minimum of interference and overhead.

Provide full platform and language independence.

1

Methodology

Avoid parsing and recompilation of the source code
to insert instrumentation.

Avoid interference of instrumentation with various
compiler optimizations.

Allowing multiple insert/remove instrumentation
cycles.

Allow the use of the same tool with a number of
different performance probes.

1

DynaProf SC2003 Release

Supported Platforms with DynInst 3.0 or 4.0
Linux 2.4+
Solaris 2.8+
IRIX 6.x

Supported Platforms with DPCL (fully interactive MPI
support)

AIX 5

URL: http://www.cs.utk.edu/~mucci/dynaprof

Mailing List: perfapi-devel@ptools.org

1

Summary

DynaProf is a portable tool to gather hardware
performance data at run time for an unmodified
application.
Instrumentation is done through the dynamic
insertion of function calls to specially developed
performance probes.
DynaProf provides a simple and intuitive command
line interface.

1

DynaProf Installation

Download appropriate DynaProf binary distribution from web
site and follow the instructions.

http://www.cs.utk.edu/~mucci/dynaprof

Requirements:

PAPI 2.x
GNU Readline
On AIX 4.3/5

DPCL (See /usr/lpp/ppe.dpcl)
PMAPI (See /usr/pmapi/*, /usr/lib/libpmapi.a)

 On Linux 2.x

DynInst 3.0, 4.0 or later
May require a new binutils, libdwarf, libelf

1

History of Dynamic Instrumentation

Ideas proposed by James Larus with EEL: An
Executable Editor Library at U. Wisconsin

http://www.cs.wisc.edu/~larus/eel.html

Technology developed by Dr. Bart Miller at U.
Wisconsin and Dr. Jeff Hollingsworth at U. Maryland.

http://www.dyninst.org

IBM developed a distributed DynInst called DPCL. It is
integrated with AIX's parallel runtime system.

http://oss.software.ibm.com/dpcl

1

Performance Probes

Papiprobe

Measure PAPI preset and native events.

Papiclock

Measure PAPI real-time and virtual-time cycles.

Wallclock

Measure real-time units.

Perfometerprobe

Enable real-time visualization of PAPI event rates with
Perfometer.

Vmonprobe

Collect statistical performance data for vprof.

1

Using Performance Probes

DynaProf comes with special shared libraries that are the
probes.

The functions in these files have a defined interface and
calling convention.

Probes are handled by the 'use' command.

1

Performance Probes

Three probes provide the ability to instrument specific
regions of code.

Papiprobe

Papiclock

Wallclock
These probes generate the following data for each
instrumented function:

Inclusive: Tfunction = Tself + Tchildren

Exclusive: Tfunction = Tself

1-Level Call Tree: Tchild= Inclusive Tfunction

1

Performance Probe Data

The papiprobe, papiclock and wallclock probes
produce data in an identical format.

These three probes always measure the entire
executable “TOTAL” in addition to any additional
instrumentation points the user has specified.

All use a processing script to display the data in a
human readable format.

papiproberpt <file>

papiclockrpt <file>

wallclockrpt <file>

1

Papiprobe

By default, it measures PAPI_FP_INS or
PAPI_TOT_INS if the former is not available.

Takes a comma separated list of options or PAPI
events, either preset or native.

Passing 'help' as option prints out list of available
PAPI presets.

Passing 'mpx' or “multiplex” as an option enables
the use of counter multiplexing if needed.

1

Making Sense of Papiprobe Data

Sometimes the data might not make sense.

We need to understand the EXACT semantics of the
events.

There is a command that will list all the available PAPI
events and their native mappings.

Type “ papi_avail -a<cr>”

Note the information at the end of each line between
the parenthesis. This can be cross-referenced with
that in /usr/pmapi/lib/POWER3.evs, /
usr/pmapi/lib/POWER3-II.evs and the RS6000
Architecture Manual. Isn't that fun?

1

DPCL Issues

Occasionally DPCL and/or application processes will
be left stranded. They may continue to run or just
block. These issues have not been resolved.

When things get funky:
Type “ dpcl-cleanup<cr>”

This will go out to all 16 nodes on hockney and kill all
of your processes, including the DPCL daemon
processes and any applications.

For Load Leveler jobs you should continuously
monitor your application's progress with:

Type “ llps <username><cr>”

1

DynaProf Exercises 1, 2 & 3

We will use DynaProf to evaluate different versions of
SWIM, the shallow water benchmark code.
1) Discover delivered MFLOP/S and IPC of an entire serial

run.

2) Evaluate memory subsystem efficiency (L1HR,L2HR,stall
%) of the core compute solvers of a serial run.

3) Measure many events on an MPI executable in batch mode
through Load Levelor.

1

Exercise Preparation

Load the tutorial module:
Type “ cd ~<cr>”

Type “ module load perc.sc03<cr>”

For csh: Type “ source ~/DynaProf/setup.csh<cr>”

For sh: Type “ . ~/DynaProf/setup.sh<cr>”

Type “ echo '+ $USER' > ~/.rhosts'”

Type “ chmod 600 ~/.rhosts<cr>”

All exercises start from the DynaProf directory!

Build the swim and swim_ompi executables.
Type “ cd swim; make<cr>”

1

Exercise 1: Global MFLOP/S & IPC

Type “dynaprof<cr>”

Type “load swim<cr>”

Type “use papiprobe PAPI_TOT_CYC, PAPI_FP_INS,
PAPI_TOT_INS<cr>”

Type “run<cr>”

Type “quit<cr>”
Note name of the output file at beginning of run.

Type “papiproberpt <output_file> | more<cr>”

1

Exercise 1 cont.

Compute MFLOP/S & IPC:
CPU Seconds = PAPI_TOT_CYC/(Mhz*1.0e6)

TMFLOP = PAPI_FP_INS/(1.0e6)

MFLOP/S = TMFLOP/Seconds

IPC = PAPI_TOT_INS/PAPI_TOT_CYC

Hockney: A 200Mhz Power 3, 2 floating point
Instructions/Cycle for 400 MFLIP/S, 800 MFLOP/S and
8 total Instructions/Cycle

1

Exercise 1 Answers

CPU Seconds = 3.82e9/(200*1.0e6) = 19.11

TMFLOP = 1.53e9/(1.0e6) = 1530

MFLOP/S = 1530/19.11 = 80

IPC = 3.04e9/3.83e9 = 0.8

Datafile is swim.data.ex1

Report is swim.report.ex1

1

Other Things to Try:

Listing the available PAPI events.
Type “ use papiprobe help” to DynaProf

Use multiplexing with lots of PAPI events.
Type “ use papiprobe mpx, <event>, ...”

Use only with large granularity measurements!

Attaching to a process instead of loading:
Type “ attach <exe> <pid>”

1

Exercise 2: Routine-Level Memory Effects

Measure solver routines to get % memory load stall
cycles and % load miss rates.
Type “ dynaprof<cr>”

Type “ load swim<cr>”

Type “ list<cr>”

Type “ list module swim.F<cr>”

Type “ list functions swim.F calc*<cr>”

Type “ list children swim.F inital<cr>”

Type “ list children swim.F shalow<cr>”

1

DynaProf Command Line Editing

Provides robust command line editing
Arrow Keys and Emacs Bindings:

Delete char under cursor

C-a Beginning of Line

C-e End of line

C-<spc> Set mark

C-w Cut to mark

C-y Yank cut text

<TAB> triggers filename completion

1

Exercise 2 cont.

Type “ use papiprobe PAPI_TOT_CYC, PAPI_MEM_RCY,
PAPI_L2_LDM, PAPI_LD_INS, PAPI_L1_LDM<cr>”

Type “ instr function swim.F calc*<cr>”

Type “ run<cr>”

Type “ quit<cr>

Note name of the output file at beginning of run.

Type “ papiproberpt <output_file> | more<cr>”

1

Exercise 2 cont.

Compute % Memory Load Stall Cycles:
% Stall = 100.0 * (PAPI_MEM_RCY/ PAPI_TOT_CYC)

Compute L1 Miss Rate:
% L1 Miss = 100.0 * (PAPI_L1_LDM/PAPI_LD_INS)

Compute L2 Miss Rate:
% L2 Miss = 100.0 * (PAPI_L2_LDM/PAPI_LD_INS)

1

Exercise 2 Answers

Compute % Memory Load Stall Cycles:
Calc3: 100.0*(8.96e8/1.34e9) = 67.01 %
Calc2: 100.0*(7.11e8/1.26e9) = 56.43 %
Calc1: 100.0*(3.38e8/1.05e9) = 32.19 %

Compute L1 Miss Rate:
Calc 3: 100.0 * (1.75e7/2.79e8) = 6.27 %
Calc 2: 100.0 * (1.4e7/4.25e8) = 3.29%
Calc 1: 100.0 * (6.07e6/2.52e8) = 2.40%

Compute L2 Miss Rate:
Calc 3: 100.0 * (844/2.79e8) = < 1%
Calc 2: 100.0 * (2/4.25e8) = < 1%
Calc 1: 100.0 * (0/2.52e8) = < 1%

1

Exercise 2: Exclusive Profile of Cycles

Name Percent Total Sub. Calls

TOTAL 100 3.836e+09 1

calc3 34.92 1.34e+09 118

calc2 32.89 1.262e+09 120

calc1 27.44 1.053e+09 120

unknown 4.471 1.715e+08 1

calc3z 0.2798 1.073e+07 1

1

Exercise 2: 1-Level Incl. Call Profile of Cycles

Name Percent Total Sub. Calls

TOTAL 100 3.836e+09 1

calc1 100 1.053e+09 120

calc2 100 1.262e+09 120

-fsav 0.02512 3.171e+05 120

calc3z 100 1.073e+07 1

calc3 100 1.34e+09 118

1

DynaProf and Threads

For threaded code, just specify the the same probe!

DynaProf detects a threaded executable and loads a
special version of the probe library.

The probe detects thread creation and termination.

All threads share the instrumentation.

Output goes to <exe>.<probe>.<pid>.<tid>

1

DynaProf and MPI

On AIX with DPCL, DynaProf talks directly to the
parallel run-time system. (POE)

poeattach <exe> <pid_of_poe>

poeload <exe> <poe args>

With DynInst, DynaProf must be run in batch mode as
part of the line to mpirun. DynaProf provides a special
load that waits until MPI_Init() returns before
continuing.

mpiload <exe> <args>

1

DynaProf Batch Mode

DynaProf can run from a script via command line
arguments:
-c <FILE> Specifies the name of a script

-b Exits after processing the script

-q Suppress printing any output

You can see all DynaProf's arguments by using the -h
flag.

All arguments have long versions.

1

Exercise 3: Instrument an MPI Application

Edit the DynaProf script.
Type “ vi swim_mpi.ex3.dp<cr>”

Edit the Load Leveler script.
Type “ vi swim_mpi.ex3.ll<cr>”

Type “ llsubmit swim_mpi.ex3.ll<cr>”

Look in “swim_mpi.ex3.out” for name of probe
output files

Type “papiproberpt <output_file> | more<cr>”

1

DynaProf Development

Changes to the DynInst version:
Port to DynInst on AIX5 and Linux/IA64

Interactive instrumentation of MPI codes with Client/Server
framework

New instrumentation support: Object/Loop/Basic Block/Arbitrary

Breakpoints

Dump instrumentation data upon demand.

Multiple insert/remove cycles within the same run.

Handle programs that load extensions at run-time. (i.e. Mozilla)
Probes

Additional thread model support for IRIX, Tru64 and Solaris.

Thread support in vprof, perfometer probe

Integration with ParaProf from TAU for visualization of probe data.

1

Analysis of POP

Serial, 4 and 16 processor runs.

Both optimized and debug versions.

PAPI data
Entire run

Routine-specific

Getting the data was very difficult:
DPCL interferes with shared memory to adapter so
we need to use IP for communication. Ugh! This is
not a problem on machines with more memory on a
node, like seaborg.

1

POP Routine Breakdown

From previous production runs we know:
Function: Calls Excl. Incl. Descr.

tracer_update 800 39 55 update tracer fields at level k

state 6520 35 35 calc. density of water at level k

clinic 800 34 37 calculate forcing terms on

r.h.s. of baroclinic momentum

baroclinic_driver 20 31 136 explicit time integration of

baroclinic velocities

pcg 20 18 18 conjugate-gradient solver

w/precond.

Impvmixt 39 9 9 implicit vertical mixing of tracers

1

POP Routine Breakdown by File

 25.5% 17.2% 20.6% state_mod.f

 18.0% 15.7% 16.8% hmix_gm.f

 12.3% 13.8% 13.7% hmix_aniso.f

 9.7% 10.4% 10.2% vmix_kpp.f

 7.8% 8.9% 8.3% stencils.f

 3.5% 7.5% 6.3% vertical_mix.f

 4.7% 6.2% 5.6% advection.f

 3.6% 5.6% 4.8% baroclinic.f

 4.4% 2.5% 3.2% ../../../../../../../src/bos/usr/ccs/lib/libm/POWER/cosF.c

 2.4% 3.6% 3.1% solvers.f

 4.1% 2.3% 3.0% ../../../../../../../src/bos/usr/ccs/lib/libm/POWER/sinF.c

 0.9% 1.4% 1.1% tavg.f

 0.6% 1.2% 0.9% pressure_grad.f

 0.8% 0.7% 0.8% global_reductions.f

1

POP Routine Breakdown by Function

 25.5% 17.2% 20.6% .__state_mod_MOD_state

 18.0% 15.5% 16.8% .__hmix_gm_MOD_hdifft_gm

 12.3% 13.8% 13.7% .__hmix_aniso_MOD_hdiffu_aniso

 8.6% 5.0% 6.2% <unknown>

 2.9% 4.2% 3.7% .__stencils_MOD_hupw3

 1.8% 3.9% 3.2% .__vertical_mix_MOD_impvmixt

 2.4% 3.5% 3.1% .__solvers_MOD_pcg

 3.1% 2.7% 2.8% .__vmix_kpp_MOD_blmix

 2.1% 2.4% 2.3% .__advection_MOD_advt_upwind3

 2.3% 1.9% 2.1% .__stencils_MOD_ninept_4

 1.7% 2.0% 2.0% .__vmix_kpp_MOD_ri_iwmix

 2.0% 2.0% 2.0% .__vmix_kpp_MOD_wscale

 1.4% 1.8% 1.7% .__advection_MOD_advu

 1.2% 1.9% 1.7% .__baroclinic_MOD_tracer_update

1

POP Environment

Hardware: 2-way 200 Mhz. Power 3 Nodes

Memory: L1 32K/64K, L2 4MB, 2GB/node

Mpxlf Compiler/Runtime: 8.1.0.0

Flags:
-O3 -qstrict -qarch=auto -bmaxdata:0x80000000

Poe version: 3.2.0.14, css0, shared, ip

1

DynaProf Reports for POP

Change to one of the executable directories:
1proc-serial, 4proc, 16proc

Browse the data files where they exist.
Type “ ls pop-opt-all<cr>”

Type “ ls pop-opt-routine<cr>”

Type “ ls pop-debug-all<cr>”

Type “ ls pop-debug-routine<cr>”

1

Exercises 4 & 5: POP Performance

We will use a prebuilt, optimized version of POP for 2
processors, that runs for only 2 time steps.
Type “ cd 2proc-quick<cr>”

Exercises:
1) Measure entire run

2) Measure bottleneck routines

1

Exercise 4: Overall Performance

Type “vi pop-opt.ex4.dp<cr>”

Type “vi pop-opt.ex4.ll<cr>”

Type “llsubmit pop-opt.ex4.ll<cr>”

Type “ls pop-opt.papiprobe.[0-9]*<cr>”

Type “papiproberpt <file> | more<cr>”

1

Exercise 4: LoadLeveler Script

#@ job_name = pop-opt-ex4-dynaprof-2proc-quick
#@ account_no = perc
#@ class = regular
#@ job_type = parallel
#@ output = pop-opt.ex4.out
#@ error = pop-opt.ex4.err
#@ wall_clock_limit = 00:05:00
#@ network.MPI = css0,not_shared,ip
#@ environment = COPY_ALL
#@ notification = never
#@ node = 1
#@ tasks_per_node = 2
#@ shell = /usr/bin/csh
#@ queue
#
dynaprof -q -b -c pop-opt.ex4.dp

1

Global POP Performance for 1 CPU
Run: x1 Data, 2x2 Procs, 10 Steps

Raw Data Debug Optimized Metric Debug Optimized

PAPI_LD_INS 1.21E+011 2.104E+10 % Ld Ins 36.86 33.63
PAPI_SR_INS 2.02E+010 7.783E+09 % Sr Ins 6.17 12.44
PAPI_BR_INS 8.64E+009 5.043E+09 % Br Ins 2.63 8.06
PAPI_FP_INS 2.21E+010 2.251E+10 % FP Ins 6.75 35.98
PAPI_FMA_INS 1.04E+010 1.007E+10 % FMA Ins 3.16 16.09
PAPI_FPU_FDIV 2.551E+08 % FP Divide 0.41
PAPI_FPU_FSQRT 1.317E+08 % FP SQRT 0.21
PAPI_TOT_INS 3.28E+011 6.257E+10
PAPI_TOT_CYC3.63E+011 6.226E+10 MFLIPS 12.19 72.31

% MFLIPS Peak 3.05 18.08
IPC 0.90 1.00
Mem Opts/FLIP 6.38 1.28

PAPI_L1_LDM 1.03E+009 1.011E+09 % L1 Ld HR 99.15 95.19
PAPI_L1_STM 3.54E+008 3.475E+08 % L1 Sr HR 98.25 95.54
PAPI_L2_LDM 6.94E+008 6.894E+08 % L2 Ld HR 99.43 96.72
PAPI_FPU_IDL 1.66E+011 1.411E+10 % FPU Idle Cyc 45.77 22.66
PAPI_LSU_IDL 4.06E+010 1.483E+10 % LSU Idle Cyc 11.17 23.82
PAPI_MEM_RCY1.03E+011 1.368E+10 % Ld Stall Cyc 28.28 21.97
PAPI_MEM_SCY1.26E+011 2.413E+10 % Sr Stall Cyc 34.59 38.76
PAPI_STL_CCY 2.01E+011 3.367E+10 % No Ins. Cyc 55.25 54.08

1

POP Global Data Conclusions

L1/L2 Hit Rates are reasonable

But 50% of cycles do not complete an instruction,
regardless of optimization settings

And less than half of all floating point instructions are
FMA's.

Optimized code is stalled on stores nearly 40% of the
time

Optimizer does a good job of eliminating redundant
loads/stores.

1

Exercise 5: Routine Performance

Type “vi pop-opt.ex5.dp<cr>”

Type “vi pop-opt.ex5.ll<cr>”

Type “llsubmit pop-opt.ex5.ll<cr>”

Type “ls pop-opt.papiprobe.[0-9]*<cr>”

Type “papiproberpt <file> | more<cr>”

1

Exercise 5 cont.

AIX/Fortran 90 name mangling consist of 3 parts:
 Name of source file with 2 prepended underscores

 MOD

 Name of function

Example: vertical_mix.f, subroutine impvmixt
__vertical_mix_MOD_impvmixt

1

Exercise 5: DynaProf Script

poeload pop-opt

use papiprobe PAPI_TOT_CYC, PAPI_STL_CCY, PAPI_STL_ICY,
PAPI_MEM_RCY, PAPI_MEM_SCY, PAPI_LD_INS,
PAPI_SR_INS, PAPI_TOT_INS

instr module baroclinic.f

instr module solvers.f

instr module hmix_gm.f

instr module horizontal_mix.f

instr module vertical_mix.f

instr module vmix_kpp.f

instr function state_mod.f __state_mod_MOD_state

run

1

Exercises 4 & 5: Answers

Exercise 4
Type “ more pop-opt.proc*.report.ex4<cr>”

Exercise 5
Type “ more pop-opt.proc*.report.ex5<cr>”

1

POP Routine Performance for 1 CPU
Run: x1 Data, 8x2 Procs, 10 Steps

Exclusive Profile Timings

PAPI_TOT_CYC PAPI_STL_ICY PAPI_MEM_SCY PAPI_SR_INS

hdifft_gm 19.51 hdifft_gm 23.07 hdifft_gm 28 hdifft_gm 15.58
State 18.06 State 16.5 State 16.4 State 19.33
Pcg 3.41 Pcg 2.04 Pcg 3.3 Pcg 6.53
Impvmixt 3.26 Impvmixt 4.23 Impvmixt 3.13 Impvmixt 2.47
Blmix 2.83 Blmix 2.79 Blmix 3.22 Blmix 1.82
ri_iwmix 1.84 ri_iwmix 2.07 ri_iwmix 2.02 ri_iwmix 2.34
Wscale 1.74 Wscale 2.1 Wscale 0.85 Wscale 1.18

PAPI_STL_CCY PAPI_MEM_RCY PAPI_LD_INS PAPI_TOT_INS

hdifft_gm 23.04 hdifft_gm 35.39 hdifft_gm 16.49 hdifft_gm 14.73
State 16.81 State 9.27 State 19.32 State 23.59
Pcg 2.42 Pcg 4 Pcg 4.77 Pcg 3.45
Impvmixt 4.15 Impvmixt 3.56 Impvmixt 1.8 Impvmixt 2.25
Blmix 2.74 Blmix 4.01 Blmix 2.14 Blmix 3.58
ri_iwmix 2.05 ri_iwmix 0.95 ri_iwmix 1.44 ri_iwmix 1.75
Wscale 2.03 Wscale 0.24 Wscale 1.19 Wscale 1.58

1

POP Routine Data Conclusions

Stalls are overwhelming in the subroutines hdifft_gm
and state.

State, while having twice as many instructions, takes
up about the same amount of time.

hdifft_gm calls NO SUBROUTINES or LIBRARY
FUNCTIONS. All computation is explicit, thus it is a
good candidate for hand-optimization or library
replacement.

1

References

DynaProf and PAPI
http://www.cs.utk.edu/~mucci/dynaprof

http://icl.cs.utk.edu/projects/papi

DynInst
http://www.dyninst.org

http://www.paradyn.org

DPCL
http://oss.software.ibm.com/dpcl

1

References 2

GNU Binutils
http://ftp.gnu.org/gnu/binutils

http://sources.redhat.com/binutils

GNU Readline
http://cnswww.cns.cwru.edu/~chet/readline/rltop.html

http://ftp.gnu.org/gnu/readline

1

References 3

Libdwarf - DWARF Debugging Library
http://reality.sgi.com/davea

Libelf – ELF Object File Access Library
http://www.stud.uni-
hannover.de/~michael/software/english.html

1

Acknowledgments

This work was supported by DOE SciDAC via PERC

All PERC members contributed in some form or
another

We wish especially to thank
Today’ s assistants:

Tushar Mohan

Pat Worley

Ying Zhang

David Skinner from NERSC for helping with accounts

Tushar for setting up the modules and web page

1

Thank You.

