Pertormance Analysis and HPC

Philip J. Mucci
Visiting Scientist
mucci@pdc.kth.se

University of Tennessee, Knoxville
mucci@cs.utk.edu

August 18th, 2004
High Performance Computing
Summer School at PDC

Outline

Why 1s Performance Analysis important?
Types of Performance Analysis

Different types of Tools

Hardware Performance Analysis

2 Example Tools to try on Lucidor with this
afternoons exercises

Performance Evaluation

* Traditionally, performance evaluation has been
somewhat of an art form:
— Limited set of tools (time & -p/-pg)
— Major differences between systems

- Lots of guesswork as to what was 'behind the numbers'
* Today, the situation is different.

— Hardware support for performance analysis

— A wide variety of Open Source tools to
choose from.

Why Performance Analysis?

e 2 reasons: Economic & Qualitative

e Economic: TIME IS MONEY

— Average lifetime of these large machines 1s 4 years
before being decommissioned.

— Consider the cost per day of a 4 Million Dollar
machine, with annual maintenance/electricity cost of

$300,000 (US). That's $1500.00 (US) per hour of
compute time.

— Many HPC centers charge departments by the CPU
hour

Why Performance Analysis 27

* Qualitative Improvements 1n Science

— Consider: Poorly written code can easily run 10 times
worse than an optimized version.

— Consider a 2-dimension domain decomposition of a
Finite Difference formulation simulation.

— For the same amount of time, the code can do 10
times the work. 400x400 elements vs. 1300x1300
elements

— Or 1t can do 400x400 for 10 times more time-steps.

— These could be the difference in resolving the
phenomena of interest!

Why Pertformance Analysis 37

e S0, we must strive to evaluate how our code 1S
running.
e Learn to think of performance during the entire

cycle of your design and implementation.

e Systems will be 1n place at PDC to recognize a

'slow' code that 1s consuming large amounts of
CPU time.

The Pertormance Lifecycle

PERFCRMANCE
CHARACTERIZATION OF
WHOLE APPLICAT IOMN

. gj’.-r;lf = pul-.-ir|,|||
rhpmoount *+ mpil

LR EET) #etllelack ties E

IMPROVE IDENTIFY LOCATION
PERFORMANCE \":lF BOTTLEMNECKS

=« ROSE] * Dhnaprot

-F&:W_r["lﬁpnﬁ : 'I'"|F.'|'I] ¥
* Hand Opzimization: » T

« Ajcarmate Tunlkg BIG SC I EHCE + T_-'.nm'.-:F_- caade aruhEls

& onbcrumenction

CODE

Rising Processor Complexity

* No longer can we easily trace the execution of a
segment of code.

— Static/Dynamic Branch Prediction
— Prefetching
— Out-of-order scheduling

— Predication

* So, just a measure of 'wallclock' time 1s not
enough.

* Need to know what's really happening under the
hood.

Processor Complexity

Intel® ltanium ™ Processor Block Diagram

"-T-'-l-'-ﬁ-l-l-'-'l-l'-l'.'-F-I-l-'-'-"-"-l-'-’v-"

BOC ~if—- L1 Instruction Cache and LB
&5 retchiPredetch Engine 14-32

Eranch -
3 Iasbructin = ;
Frediction Daale & bungles ﬂi‘;;df.‘

Control
O ks Paorgs

Faglster Stack Englne | Re-Mappin

Branoh & Pradicats
Regqisbors

128 Integer Registers

: I

Integer O gl-Poart
and ‘ L4

L3 Cache

MM Uinits Ciata Fln-ating
s Paimt
) anel Units
DTLE

=
[]

"J
[
'
s 5o
s |
il
[I [
i =
=
ol
e
|2
'
i len
]

|

L]

ECG
. Caontroller

omyreght W 2LC0 il ornniahon Fdniwis Sopeerclnste s Doers Conferénce

Measurement Methods

* Direct methods requires explicit instrumentation
in some form.

— Tracing

® Generate a record for each measured event.

e Useful only when evidence of performance anomalies 1s
present due to the large volume of data generated.

- Aggregate
* Reduce data at run-time avg/min/max measurements.

e Useful for application and architecture characterization
and optimization.

Measurement Methods 2

* Indirect methods requires no instrumentation
and can be used on unmodified applications.

* The reality 1s that the boundary between indirect
and direct 1s somewhat fuzzy.

— gprof (no source mods, but requires relink or
recompile)

Statistical Profiling

* Dr. Andersson introduced you to gprof.

* At a defined interval (interrupts), record
WHERE 1n the program the CPU is.

e Data gathered represents a probabilistic
distribution in the form of a histogram.

* Interrupts can be based on time or hardware
counter events with the proper infrastructure

like...

Amount

Statistical Profiling

Location

Amount

Hardware Statistical Profiling

s

Location

Performance Counters

Performance Counters are hardware registers dedicated to

counting certain types of events within the processor or system.
— Usually a small number of these registers (2,4,8)
- Sometimes they can count a lot of events or just a few
— Symmetric or asymmetric

Each register has an associated control register that tells 1t what to
count and how to do it.

— Interrupt on overflow
- Edge detection (cycles vs. events)
— User vs. kernel mode

Performance Counters

* Most high performance processors include hardware performance
counters.
- AMD Athlon and Opteron
- Compaq Alpha EV Series
- CRAY T3E, X1
— IBM Power Series
— Intel Itanium, Itanium 2, Pentium
- SGI MIPS R1xK Series
— Sun UltraSparc I+

— And many others...

Available Performance Data

Cycle count e Cache
Instruction count — I/D cache misses for different
— All instructions levels

_ Floating point — Invalidations

— Integer * TLB

— Load/store — Misses

Branches — Invalidations

— Taken / not taken

— Mispredictions
Pipeline stalls due to

— Memory subsystem

— Resource conflicts

PAPI

e Performance Application Programming Interface

* The purpose of PAPI 1s to implement a standardized portable
and efficient API to access the hardware performance monitor
counters found on most modern microprocessors.

* The goal of PAPI 1s to facilitate the optimization of parallel and
serial code performance by encouraging the development of
cross-platform optimization tools.

PAPI Preset Events

PAPI supports around preset events

Proposed set of events deemed most relevant for
application performance tuning

Preset events are mappings from symbolic names to
machine specific definitions for a particular hardware
resource.

— Total Cycles 1s PAPI_TOT_CYC
Mapped to native events on a given platform

PAPI also supports presets that may be derived from the
underlying hardware metrics

[Linux Performance Infrastructure

* Contrary to popular belief, the Linux
infrastructure 1s well established.

* PAPI is +7 years old.

* Wide complement of tools from which to
choose.

* Some are production quality.

* Sun, IBM and HP are now focusing on
Linux/HPC which means a focus on
performance.

Parallel Performance

“The single most important impediment to good
parallel performance is still poor single-node
performance.”

- William Gropp
Argonne National Lab

What 1s Good Parallel Performance?

* Single CPU performance 1s high.

e The code 1s scalable out to more than a few
nodes.

e The network 1s not the bottleneck.

* In parallel computation, algorithm design is the
key to good performance.

e You must reduce the amount of data that needs
to be sent around.

Beware The Fallacy
Linear Scalability

* But what about per/PE performance?

* With a slow code, overall performance of the
code 1s not vulnerable to other system
parameters like communication bandwidth,
latency.

* Very common on tightly integrated systems
where you can simple add PE's for performance.

Which Tool?

dAaprapgaa,

FERERIRLLELERL]

JENLIENLIENLINNLIENLINNLINNLINNLINNLINNLINELS

, Beha &
e nem—

- L I |

==

|

LR TN T

- [[

- = Jdar T

The Right Pertormance Tool

* You must have the right tool for the job.

* What are your needs? Things to consider:

— User Interface
* Complex Suite
* Quick and Dirty
— Data Collection Mechanism
* Aggregate
* Trace based

e Statistical

The Right Pertormance Tool 2

* Performance Data
— Communications (MPI)
— Synchronization (Threads and OpenMP)
- External Libraries
— User code

e Data correlation
— Task Parallel (MPI)
— Thread Parallel
e Instrumentation Mechanism

- Source
— Binary (DPCL/Dynlnst)
— Library interposition

The Right Pertormance Tool 3

 Data Management

— Performance Database
— User (Flat file)

e Data Visualization
— Run Time
— Post Mortem

— Serial/Parallel Display
- ASCII

2 E R C Fusion Sciences

AOQRSA3D

‘ AORSASD was ported and benchmarked on IBM and Compagq platforms. A

detailed performance analysis has begun using SvPablo and PAPI. The results
below are for a 400 Fourier mode run on 16 processors and 1 node of an IBM SP
(Nighthawk 11/ 375MHz). Time Profile of Total Execution Performance for ZGemm
Efficiency of LU Factorization Subroutines " Denisty of Mem Access 1
. other . .
= 14% load matrix Denisty of FLOPs 1.8
S pzgemm 2.8 23% MFLOP/s 664
’.; 7 L1 cache hit rate 0.98
» pztrsm 2.1 L2 cache hit rate 0.96
= 1 TLB misses 285034
= . .
0. pzlaswp | 0.63 @ Instruction Efficiency 5 load matrix
I -
S pzgetrf2 \1,1 m LU factorization (ScaLAPACK)
(D ‘ ‘ ‘ ‘ O other
; 0.5 : D g 5 o LU factorization
' ' ' (ScaLAPACK) Time Profile of LU Factorization Time Profile of PZGEMM
Instructions Completed / Cycles 63%
pzgemm other
87% 3%
MFLOP Rates for LU Factorization Subroutines
@ @ ZGEMM (Fgemm)
£ Pzgemm 648 P2Oelt2 | EMM (Fgemm) ' | m other
g . mpzlaswp 97%
S pztrsm \461 pztrsm Opztrsm
« 8 0% Epzgemm
(&)
E pzlaswp |0.1 pzlaswp mother
< - 6%
6%
0 200 400 600 800 ST
MFLOP/s 1%

Biology and Environmental Sciences
PERC A

4':' 1 T i 1

—— ariginal
ar —a— i2ad balapsed, FP-On iy

—e— |2ad bal, MPIFCRerMP

—e— |oad bal, MPIFCRenMP, Improved dynamics CAM performance measurements on IBM p690 cluster (and
E‘n e

i other platforms) were used to direct development process.

Graph shows performance improvement from performance

26 - : : il s
: tuning and recent code modifications.

20 ol i

15

Fimudaklen Years per Day

0

;] i | |:I|'I!,'5Iii:-5 =
= = S S dynamloes ——
I l i I g]
interface routines g

zprial processes it

i

&4
Frocassars

Profile of current version of CAM indicates that improving the
serial performance of the physics is the most important
optimization for small numbers of processors, and introducing
a 2D decomposition of the dynamics (to improve scalability) is
the most important optimization for large numbers of
processors.

SECoNCs per Jmulsticn Day

H 1e d2 b4 128 Fa
Frecaseors

Hardware Profiling and papiex

* A simple tool that generates performance
measurements for the entire run of a code.

* Requires no recompilation.
* Monitors all subprocesses/threads.
* QOutput goes to stderr or a file.

 Try running your code under papiex to measure
IPC or MFLOPS (the default).

Papiex v0.9 Example

> nodul e | oad perftools/1.1
> papi ex <application>

> papiex -e PAPI _TOT _CYC -e PAPI _TOT_INS --
<appl i cation>

> nmpirun -np 4 which papiex -f --
<appl i cation>

papiex v0.9 Output

--- papiex 0.9 hardware counter report ---.

Execut abl e: [af s/ pdc. kt h. se/ home/ m/ mucci/ npi P-2. 7/t esti ng/ a. out
Parent Process |D: 18115

Process | D: 18116

Host nane: h05n05. pdc. kt h. se

Start: Tue Aug 17 17:45:36 2004
Fi ni sh: Tue Aug 17 17:45:40 2004
Domai n: User

Real usecs: 3678252 (3s.)

Real cycles: 3310413694

Proc usecs: 16592 (0s.)

Proc cycles: 14932800

PAPI _TOT_CYC: 13962873

PAPI _FP_I NS: 285847

Event descri ptions:
Event: PAPI_TOT_CYC
Derived: No
Short: Total cycles
Long: Total cycles
Vendor Synbol: CPU _CYCLES
Vendor Long: CPU_CYCLES
Event: PAPI_FP_INS
Derived: No
Short: FP instructions
Long: Floating point instructions
Vendor Synbol: FP_OPS_RETI RED
Vendor Long: FP_OPS RETI RED

Papiex v0.9 Usage

Usage: papiex [-I|Lihvtmmukord] [-f [prefix]] [-e event]... -- <cnd> <cnd
opti ons>

- Li st the avail abl e events.
-L List all informati on about the avail abl e events.

- Print infornati on about the host nmachi ne.

-h Print this nessage.

-V Print version informtion.

-t Enabl e nonitoring of nultiple threads.

-m Enabl e nul ti pl exi ng of hardware counters.

-n Do not follow fork()'s.

-u Moni tor user node events. (default)

-k Moni t or kernel node events.

-0 Monitor transient node events.

-r Report getrusage() information. (no children included)
-d Enabl e debuggi ng out put.

-f[prefix] Qut put to <prefix><cnd>. papi ex. <host >. <pi d>. <ti d>.

-e event Monitor this hardware event.

Parallel Protiling

e Often we want to see how much time we are
spending communicating.

* Many tools to do this via “Tracing” the MPI
calls.

* A very good and simple tool available on
Lucidor 1s mp1P v2.7, it does online trace
reduction.

MpiP v2.7 Example

> nodul e | oad perftools/1.1

> nmodul e show perftools

* Follow the instructions to link your
C/C++/F77/F90 codes with mpiP.

* Run your code and examine the output in
<*.mp1P>.

MpiP v2.7 Output

@ Command : [/ afs/pdc.
/ t np/ SPnodes- mucci -0
@ Ver si on

@MPI P Build date
@Start tinme

kt h. se/ home/ ml mucci / nmpi P-2. 7/ testi ng/./sweep- ops- st ack. exe

2.7
Aug 17 2004, 17:04:36
2004 08 17 17:08: 48

@Stop tine 2004 08 17 17:08: 48
@ MPI P env var [null]
@ Col | ect or Rank 0
@ Col l ector PID 17412
@Final Qutput Dir .
@ MPI Task Assi gnment 0 h05n05-e. pdc. kt h. se
@ MPlI Task Assi gnnent 1 h05n35-e. pdc. kt h. se
@ MPI Task Assi gnment 2 h05n05-e. pdc. kt h. se
@ MPI Task Assi gnment 3 h05n35-e. pdc. kt h. se
@-- MPI Time (SECONAS) ---- - o m oo m oo oo oo
Task AppTi ne MPI Ti me MPI %

0 0. 084 0. 0523 62.21

1 0. 0481 0. 015 31.19

2 0. 087 0. 0567 65. 20

3 0. 0495 0. 0149 29.98

* 0. 269 0.139 51. 69

Cal

Barri er
Recv

Al | reduce
Bcast
Send

Cal

Al | r educe
Bcast
Send

Site Ti me App% MPI %
1 112 41.57 80. 42
1 26. 2 9.76 18. 89
1 0. 634 0.24 0. 46
1 0.3 0.11 0.22
1 0. 033 0.01 0. 02

Site Count Tot al Avrg Sent %
1 8 4. 8e+03 600 46.15
1 8 4. 8e+03 600 46.15
1 2 800 400 7.69

Mpi1P v2.7 Output 2

@-- Callsite Time statistics (all, mlliseconds): 16 ---------------------
Nanme Site Rank Count Max Mean M n App% MPI %
Al 'l reduce 1 0 2 0. 105 0. 087 0. 069 0.21 0. 33
Al 'l reduce 1 1 2 0.118 0. 08 0. 042 0. 33 1.07
Al 'l reduce 1 2 2 0.11 0. 078 0. 046 0.18 0. 27
Al 'l reduce 1 3 2 0.102 0. 072 0. 042 0.29 0. 97
Barrier 1 0 3 51.9 17.3 0.015 61.86 99.44
Barrier 1 1 3 0. 073 0. 0457 0.016 0.29 0.91
Barrier 1 2 3 54.9 18.8 0.031 64.90 99.53
Barrier 1 3 3 1.56 1.02 0. 035 6.20 20.68
Bcast 1 0 2 0. 073 0. 0535 0. 034 0.13 0.20
Bcast 1 1 2 0. 037 0. 023 0. 009 0.10 0.31
Bcast 1 2 2 0. 084 0. 046 0. 008 0.11 0.16
Bcast 1 3 2 0.03 0. 0275 0. 025 0.11 0. 37
Recv 1 1 1 14. 6 14. 6 14.6 30.48 97.71
Recv 1 3 1 11. 6 11. 6 11.6 23.37 77.98
Send 1 0 1 0. 013 0. 013 0. 013 0. 02 0. 02
Send 1 2 1 0. 02 0. 02 0. 02 0. 02 0. 04
Send 1 * 32 54.9 4.34 0. 008 51.69 100.00

Narme Site Rank Count Max Mean M n Sum
Al | reduce 1 0 2 800 600 400 1200
Al | reduce 1 1 2 800 600 400 1200
Al | reduce 1 2 2 800 600 400 1200
Al | reduce 1 3 2 800 600 400 1200
Bcast 1 0 2 800 600 400 1200
Bcast 1 1 2 800 600 400 1200
Bcast 1 2 2 800 600 400 1200
Bcast 1 3 2 800 600 400 1200
Send 1 0 1 400 400 400 400
Send 1 2 1 400 400 400 400
Send 1 * 18 800 577.8 400 1.04e+04

MPI Tracing and Jumpshot

* Sometimes we need to see the exact sequence of

messages exchanged

* For this, we can enabl
our application and using the Jumpshot tool.

between processes.

e MPI tracing by relinking

e Use the -mpilog option to the mpi compile line.

e After running, you will see a <app>.clog

e Next, translate the logtile to a scalable format

with slog.

>

>

>

Jumpshot 3 Example

nmodul e | oad perftools/1.1

nmpi cc -npilog exanple.c -o exanpl e
mpirun -np 4 exanpl e

cl og2sl og exanpl e. cl og

j unpshot exanpl e. sl og

Jumpshot Main Window

r;i“:;' ALLREDLUCE
53]

EARRIER
(Z) RCAST
i RECY

© EET I

forvwalrd anow

Select/Desclect

All Mone

Change Color

File Graph DitiSers Zoom Legend

Ewvent iZo_nk ws T s

Tirre: | B
£
|
3
1

E: [
(i

I 1 1 L 1]

L CLUNs O CCCE I 027 CUUNNE s C OO0 31 g) jon

ki —"e i ssco-os)

Y Diseonnected States ' Connected States

Frame |hTormatnmn

MamheEr ot LEdmes — 1
o urrent Frame . = i

] H.Fl—::ﬁﬂ.l;‘ﬂ g5 B Thread [ERELL

Lrame (peanians

PrEgliagg

|

Display

Pil@mt

Jumpshot

riker ey A
ipsedt limie B UEE sz

L A L A i

+ oo ni-Chperml o

Timeline

Mugcollanaon s Oy eralaons

i 3TL

Dl

1%k I Cluxe

L

)

I

R SRR o SRS) St R (|

1 H IR

ey

11

=K1

1ok« ‘R Lpao e wq- T T S T ot S IR UoTEe wowTemtse o CULown CUTOo Az g uLL

 HAT e EEE

ol | | k
i . .suli:mlli.jFi | = FARHIFA]_ﬂ FCAasT |];_- I AR | .i.th = AlLSTATRE

I!|-"_ EowTHasital 110 s |

Change SHentalan |

S5 Ways to Avoid Performance
Problems: Number 1

Never, ever, write your own code unless you
absolutely have to.

— Libraries, libraries, libraries!

— Spend time to do the research, chances are you will
find a package that suits your needs.

— Often you just need to do the glue that puts the
application together.

— The 90/10 Rule! 90% of time 1s spent in 10% of code.

S5 Ways to Avoid Performance
Problems: Number 2

Never violate the usage model of your
environment.

— If something seems impossible to accomplish 1n your
language or programming environment, you're
probably doing something wrong.

— Consider such anomalies as:

* Matlab in parallel on a cluster of machines.

* High performance Java.

— There probably is a better way to do it, ask around.

S5 Ways to Avoid Performance

Problems: Number 3
Always let the compiler do the work.

— The compiler 1s much better at optimizing most code
than you are.

— @Gains of 30-50% are reasonable common when the
right' flags are thrown.

— Spend some time to read the manual and ask around.

S5 Ways to Avoid Performance
Problems: 4

Never use more data than absolutely necessary.

— C: float vs. double.
— Fortran: REAL*4, REAL*8, REAL*16
— Only use 64-bit precision 1f you NEED it.

— A reduction in the amount of data the CPU needs
ALWAYS translates to a increase 1n performance.

— Always keep in mind that the memory subsystem and
the network are the ultimate bottlenecks.

S5 Ways to Avoid Performance

Problems: 5

Make friends with Computer Scientists

— Learning even a little about modern computer
architectures will result in much better code.

— 2 Challenges: Learn why the following statements are
almost always horribly slow on modern CPUs when

placed inside loops where Index 1s the loo

0 variable.

— 1) Var = Var + DataArray[Index Array[Ind
- 2)IF (VAR2 .EQ.I) THEN

- 2) DOESN'T REALLY MATTER

— 2) ENDIF

ex ||

Some Pertformance Tools

e TAU (U. Oregon)

— Source/dynamic instrumentation and tracing system

— http://www.cs.uoregon.edu/research/paracomp/tau/
* HPCToolkit (Rice U.)

— Command line statistical profiling (including shlibs)

— http://hipersoft.cs.rice.edu/hpctoolkit/
e PerfSuite and PSRUN (NCSA)

— Command line aggregate and statistical profiling

— http://perfsuite.ncsa.uiuc.edu

)

More Performance Tools %
e KOJAK (Juelich, UTK)

— Instrumentation, tracing and analysis system for MPI,
OpenMP and Performance Counters.

— http://www .1z-juelich.de/zam/kojak/
* SvPablo (UIUC)

— Instrumentation system for Performance Counters

— http://www-pablo.cs.uiuc.edu/Project/SVPablo
* Q-Tools (HP) (non-PAPI)

— Statistical profiling of system and user processes

— http://www.hpl.hp.com/research/linux/q-tools

More Pertformance Tools

* PapiEx: PAPI Execute

— Passive aggregate counter measurement tool.

— http://www.cs.utk.edu/~mucci/papiex
* DynaProf (P. Mucci, U Tenn)

— Dynamic instrumentation tool.

— http://www.cs.utk.edu/~muccir/dynaprof

Questions?

* This talk:

— http://www.cs.utk.edu/~mucci/latest/mucci_talks.html
* PAPI Homepage:

— http://icl.cs.utk.edu/papi
* How to reach me:

— mucc1@pdc.kth.se

* For those here at KTH, many on the PDC staff
are well versed in the art of performance. Use
them!

