
Performance Optimization of
Scientific Applications

Philip J. Mucci
mucci@cs.utk.edu

Innovative Computing Laboratory,
UTK Knoxville, TN

PDC, KTH, Stockholm, Sweden

Outline

● Introduction
● Important Facts about RISC Architecture
● Performance Metrics and Issues
● Compiler Technology
● Serial Code Optimization
● MPI/OpenMP Optimization
● Numerical Libraries
● Performance Analysis Tools

Introduction

Performance

● What is performance?
● Latency
● Bandwidth
● Efficiency
● Scalability
● Execution time

● At what cost?

Performance Examples

● Operation Weather Forecasting Model
● Scalability

● Database search engine
● Latency

● Image processing system
● Throughput

What is Optimization?

● Finding hot spots & bottlenecks
(profiling)
● Code in the program that uses a

disproportional amount of time
● Code in the program that uses system

resources inefficiently
● Reducing wall clock time
● Reducing resource requirements

Types of Optimization

● Hand-tuning
● Preprocessor
● Compiler
● Parallelization

Steps of Optimization

● Integrate libraries
● Optimize compiler switches
● Profile
● Optimize blocks of code that dominate

execution time
● Always examine correctness at every

stage!

Performance Strategies

● Always use optimal or near optimal
algorithms.
● Be careful of resource requirements and

problem sizes.
● Maintain realistic and consistent input

data sets/sizes during optimization.
● Know when to stop.

The 80/20 Rule

● Program spends 80 % time in 20 % of
its code

● Programmer spends 20 % effort to get
80 % of the total speedup possible in
the code.

“The Law of Diminishing Returns”

How high is up?

● Profiling reveals percentages of time
spent in CPU and I/O bound functions.

● Correlation with representative low-
level, kernel and application
benchmarks.

● Literature search.
● Peak speed of CPU means little in

relation to most codes.
● Example: ISIS solver package

Don’t Sweat the Small Stuff
● Make the Common Case Fast (Hennessey)

● A 20% decrease of procedure3()results in
10% increase in performance.

● A 20% decrease of main()results in 2.6%
increase in performance

PROCEDURE TIME
main() 13%
procedure1() 17%
procedure2() 20%

procedure3() 50%

Considerations when
Optimizing

● Machine configuration, libraries and
tools

● Hardware and software overheads
● Alternate algorithms
● CPU/Resource requirements
● Amdahl’s Law
● Communication pattern, load balance

and granularity

Important Facts about RISC
Architecture

The Pipeline

● Instructions have latencies and
bandwidths.

● Important to keep the pipeline full.
● Avoid step by step dependencies in your

code.
● A -> B
● B -> C
● C -> D

The RISC Philosophy

● Reduced Instruction Set Architecture
● We can:

● Design, place and route more elegantly.
● Drive a higher clock rate
● Have a deeper pipeline.
● Expose opportunities for instruction

parallelism to the compiler.
● Guess what? Your Pentium is a RISC.

● CISC translated to RISC “micro-ops”.

The RISC Philosophy

● Reduced Instruction Set Architecture
● If we:

● Keep the number of instructions small.
● Keep the functionality of the instructions

orthogonal.
● Keep the instructions isolated to one piece

of hardware on chip.

Cache Architecture

● Small high-speed memories with block
access

● Divided into smaller units of transfer
called lines

● Address indicates
● Page number
● Cache line
● Byte offset

Caches exploit Locality

Spatial - If location X is being accessed,
it is likely that a location near X will be
accessed soon.

Temporal - If location X is being
accessed, it is likely that X will be
accessed again soon.

Cache Benchmark
http://www.cs.utk.edu/~mucci/cachebench

do i = 1,max_length

 start_time

 do j = 1,max_iterations

 do k = 1,i

 A(k) = i

 enddo

 enddo

 stop_time_and_print

enddo

Cache Performance

Cache Mapping

● Two major types of mapping
● Direct Mapped

Each memory address resides in only one
cache line. (constant hit time)

● N-way Set Associative
Each memory address resides in one of N
cache lines. (variable hit time)

● Origin is 2-way set associative, 2-way interleaved

2 way Set Associative Cache

distinct lines = size / line size * associativity

Every datum can live in any set
 but in only 1 line (computed from its address)

Which class? Least Recently Used

Line0
Set0

Line1
Set0

Line2
Set0

Line3
Set0

Line0
Set1

Line1
Set1

Line2
Set1

Line3
Set1

The Register Set

● Register access is almost free.
● Can be considered a level 0 cache.
● # of registers is also limited.
● Many processors contain virtual registers

that get renamed to physical registers at
execution time.

What is a TLB?

● Fully associative cache of virtual to
physical address mappings. Used if data
not in cache.

● Number is limited on many systems,
usually much less than physical
memory.

Contention for Shared
Resources

● Most SMP's these days have fewer
memory buses than processors.

● Most SMP's share some level of cache.
● Interconnect is also shared among

processes.

Performance Metrics and
Issues

Performance Metrics

● Wall Clock time - Time from start to
finish of our program

● MFLOPS - Millions of floating point
operations per second

● MIPS - Millions of instructions per
second

● Possibly ignore set-up cost

What about MFLOPS?

● Poor measures of comparison because
● They are dependent on the definition,

instruction set and the compiler
● Ok measures of numerical kernel

performance for a single CPU

EXECUTION TIME

What do we use for evaluation

● For purposes of optimization, we are
interested in:
● Execution time of our code over a range of

data sets
● MFLOPS of our kernel code vs. peak in

order to determine EFFICIENCY
● Hardware resources dominating our

execution time

Performance Metrics

For the purposes of comparing your
codes performance among different
architectures base your comparison
on time.

...Unless you are completely aware of all
the issues in performance analysis
including architecture, instruction sets,
compiler technology etc...

Fallacies
● MIPS is an accurate measure for comparing

performance among computers.
● MFLOPS is a consistent and useful measure of

performance among computers.
● Synthetic benchmarks predict performance for real

programs.
● Peak performance tracks observed performance.

(Hennessey and Patterson)

Basis for Performance Analysis

● Our evaluation will be based upon:
● Performance of a single machine on a
● Single (optimal) algorithm using
● Execution time

● Optimizations are portable

Asymptotic Analysis

● Algorithm X requires O(N log N) time on
O(N processors)

● This ignores constants and lower order
terms!

10N > N log N for N < 1024
10N*N < 1000N log N for N < 996

Amdahl’s Law

● The performance improvement is
limited by the fraction of time the faster
mode can be used.

Speedup = Perf. enhanced / Perf. standard
Speedup = Time sequential / Time parallel

Time parallel = Tser + Tpar

Amdahl’s Law

● Be careful when using speedup as a
metric. Ideally, use it only when the
code is modified. Be sure to completely
analyze and document your
environment.

● Problem: This ignores the overhead of
parallel reformulation.

Amdahl’s Law

● Problem? This ignores scaling of the
problem size with number of nodes.

● Ok, what about Scaled Speedup?
● Scale the problem size with the # procs.
● Results will vary given the nature of the

algorithm.
● Requires O() analysis of communication

and run-time operations.

Efficiency

● A measure of code quality?

E = Time sequential / (P * Time parallel)
S = P * E

● Sequential time is not a good reference
point.

Issues in Performance

● Brute speed (MHz and bus width)
● Cycles per operation (startup +

pipelined)
● Number of functional units on chip
● Access to Cache, RAM and storage

(local & distributed)

Issues in Performance

● Cache utilization
● Register allocation
● Loop nest optimization
● Instruction scheduling and pipelining
● Compiler Technology
● Programming Model (Shared Memory,

Message Passing)

Problem Size and Precision

● Necessity
● Density and Locality
● Memory, Communication and Disk I/O
● Numerical representation

● INTEGER, REAL, REAL*8, REAL*16

Parallel Performance Issues

● Single node performance
● Compiler Parallelization
● I/O and Communication
● Mapping Problem - Load Balancing
● Message Passing or Data Parallel

Optimizations

What is Optimization?

● Finding hot spots & bottlenecks
(profiling)
● Code in the program that uses a

disproportional amount of time
● Code in the program that uses system

resources inefficiently
● Reducing wall clock time
● Reducing resource requirements

Types of Optimization

● Hand-tuning
● Preprocessor
● Compiler
● Parallelization

Performance Strategies

● Use profiling tools before you optimize.
● Always use optimal or near optimal

algorithms.
● Be careful of requirements and problem

sizes.
● The largest bottleneck first.
● Maintain realistic and consistent input

data sets/sizes during optimization.
● Know when to stop.

Considerations when
Optimizing

Developer should be familiar with:
● Machine configuration, libraries and

tools
● Hardware and Software overheads
● Algorithm and alternatives
● CPU/Resource requirements
● Amdahl’s Law
● Communication patterns and load

balance

Correctness at Every Step

● Floating point arithmetic is not
associative. Which order is correct?

● Think about the following example:

sum = 0.0

do i = 1, n

 sum = sum + a(i)

enddo

sum1 = 0.0

sum2 = 0.0

do i = 1, n-1, 2

 sum1 = sum1 + a(i)

 sum2 = sum2 + a(i+1)

enddo

sum = sum1 + sum2

Compiler Technology

Understanding Compilers

● Compilers emphasize correctness rather
than performance

● On well recognized constructs,
compilers will usually do better than the
developer

● The idea? To express an algorithm
clearly to the compiler allows the most
optimization.

Compiler Technology

● Ideally, compiler should do most of the
work.

● Rarely happens in practice for real
applications.

● Getting better every day.

Compiler flags

● Many optimizations can be controlled
separately from -O<big>

● If possible, it's better to selectively
disable optimizations rather than reduce
the level of global optimization.

Exceptions

● Numerical computations resulting in
undefined results or requiring
assistance.

● Exception is generated by the
processor.

● Handled in software by the Operating
System.

● DENORM's are the worst.

Pointer Aliasing

● The compiler needs to assume that any
2 pointers can point to the same region
of memory.

● This removes many optimization
opportunities.

● Programmer knows much more about
pointer usage than compiler, try to
express it with directives.

Advanced Aliasing

● Typed: Only pointers of the same type
can point to the same region of
memory.

● Restricted: All pointers are assumed to
point to non-overlapping regions of
memory.

● Disjointed: All pointer expressions are
assumed to result in pointers to non-
overlapping regions of memory.

Software Pipelining

● Different iterations of a loop are
overlapped in time in an attempt to
keep all the functional units busy.

● Data needs to be in cache for this to
work well.

Interprocedural Analysis

● When analysis is confined to a single
procedure, the optimizer is forced to
make worst case assumptions about the
possible effects.

● IPA analyzes more of the code and
feeds that to the other phases.

● Usually, the code is generated at link
time.

IPA features

● Inlining across source files
● Common block padding
● Constant propagation
● Dead function/variable elimination
● Library reference optimizations

Inlining

● Replaces a subroutine call with the
function itself.

● Useful in loops that have a large
iteration count and functions that don’t
do a lot of work.

● Allows other optimizations.
● Most compilers will do inlining but the

decision process is conservative.

Serial Code Optimization

Parallel Performance

“The single most important
impediment to good parallel

performance is still poor
single-node performance.”

- William Gropp
Argonne National Lab

Guidelines for Performance

● I/O is slow
● System calls are slow
● Use your in-cache data completely
● When looping, remember the pipeline!

● Branches
● Function calls
● Speculation/Out-of-order execution
● Dependencies

Code Examples

● Many of the examples shown here are
canonical.

● In simple benchmarks, modern compilers
can optimize them fairly well.

● In a production code, they cannot.
● It is in your best interest, to learn how to

write fast (and bug free) code from the
beginning.

Array Optimization

● Array Initialization
● Array Padding
● Stride Minimization
● Loop Fusion
● Floating IF’s
● Loop Defactorization
● Loop Peeling
● Loop Interchange

● Loop Collapse
● Loop Unrolling
● Loop Unrolling and

Sum Reduction
● Outer Loop Unrolling

Array Initialization

● Static initialization requires:
● Disk space (if non-zero)
● Demand paging
● Extra Cache and TLB misses.

● Use only when you have to.
● Really, why use static at all?

Array Initialization

● Static initialization
REAL(8) A(100,100) /10000*1.0/

● Dynamic initialization
DO I=1, DIM1

DO J=1, DIM2

A(I,J) = 1.0

Memory Access

● Programs should be designed for
maximal cache benefit.
● Stride 1 access patterns
● Use entire cache lines
● Reusing data as soon as possible after first

reference
● Also, we should minimize page faults

and TLB misses.

Array Allocation

● Array’s are allocated differently in C and
FORTRAN.

1 2 3 4

5 6 7 8

9 10 11 12

C: 1 2 3 4 5 6 7 8 9 10 11 12

Fortran: 1 5 9 2 6 10 3 7 11 4 8 12

Array Referencing

● In C, outer-most index should change
fastest.

[x,Y]
● In Fortran, inner-most index should

change fastest.
(X,y)

Inter-Array Padding
● Common Block Example: dot product, miss per

element on 16KB Direct mapped cache, 4 byte
elements

common /xyz/ a(2048),b(2048)

common /xyz/ a(2048),pad(16),b(2048)

● Allocate is more difficult. Requires allocating
additional space and starting from different
offset.

Inter-Array Padding

● Data is often allocated in physically
contiguous memory and on a page
boundary.

● Look for data structures whose size is a
powers of two

● Know the associativity of your cache.
● Watch for performance anomalies.

Inter-Array Padding

Inter-Array Padding
a = a + b * c

Tuned Untuned Tuned
-O3

Untuned
-O3

Origin
2000 1064.1 1094.7 800.9 900.3

Intra-Array Padding

● Often required by matrix operations
when striding across each dimension.

● C: Trailing dimension of a power of
two is often a bad choice.

● Fortran: Leading dimension of a power
of two is often a bad choice.

● This depends on the degree of
associativity of the cache.

Intra-Array Padding
DGEMM

Tuned Untuned

Xeon 2.8 3.3

Stride Minimization

● We must think about spatial locality.
● Effective usage of the cache provides us

with the best possibility for a
performance gain.

● Recently accessed data are likely to be
faster to access.

● Tune your algorithm to minimize stride,
innermost index changes fastest.

Stride Minimization

● Stride 1
do y = 1, 1000

do x = 1, 1000

c(x,y) = c(x,y) + a(x,y)*b(x,y)

● Stride 1000
do y = 1, 1000

do x = 1, 1000

c(y,x) = c(y,x) + a(y,x)*b(y,x)

Stride Minimization

Untuned
-O3

Tuned
-O3

Origin
2000

67.24 23.27

IBM SP2 201.07 17.54

Cray T3E 37.61 37.66

Loop Fusion

● Loop overhead reduced
● Better instruction overlap
● Lower cache misses
● Be aware of associativity issues with

array’s mapping to the same cache line.

Loop Fusion

● Untuned

do i = 1, 50000

 x = x * a(i) + b(i)

enddo

do i = 1, 100000

 y = y + a(i) / b(i)

enddo

● Tuned

do i = 1, 50000

x = x * a(i) + b(i)

y = y + a(i) / b(i)

enddo

do i = 50001, 100000

 y = y + a(i) / b(i)

enddo

Loop Fusion
Untuned

-O3
Tuned

-O3

Origin
2000

276.37 191.06

IBM SP2 254.96 202.76

Cray T3E 1405.52 1145.91

Loop Interchange

● Swapping the nested order of loops
● Minimize stride
● Reduce loop overhead where inner loop

counts are small
● Allows better compiler scheduling

Loop Interchange

● Untuned

real*8 a(2,40,2000)

do i=1, 2000

 do j=1, 40

 do k=1, 2

 a(k,j,i) = a(k,j,i)*1.01

 enddo

 enddo

enddo

● Tuned

real*8 a(2000,40,2)

do i=1, 2

 do j=1, 40

do k=1, 2000

 a(k,j,i) = a(k,j,i)*1.01

enddo

 enddo

enddo

Loop Interchange

Untuned
-O3

Tuned
-O3

Origin
2000

73.85 55.23

IBM SP2 432.39 434.15

Cray T3E 241.85 241.80

Floating IF’s

● IF statements that do not change from
iteration to iteration may be moved out
of the loop.

● Compilers can usually do this except
when
● Loops contain calls to procedures
● Variable bounded loops
● Complex loops

Floating IF’s

● Untuned

do i = 1, lda

 do j = 1, lda

 if (a(i) .GT. 100) then

 b(i) = a(i) - 3.7

 endif

 x = x + a(j) + b(i)

 enddo

enddo

● Tuned

do i = 1, lda

 if (a(i) .GT. 100) then

 b(i) = a(i) - 3.7

 endif

 do j = 1, lda

 x = x + a(j) + b(i)

 enddo

enddo

Floating IF’s

Untuned
–O3

Tuned
 –O3

Origin
2000

203.18 94.11

IBM
SP2

80.56 80.77

Cray
T3E

160.86 161.21

Loop Defactorization

● Loops involving multiplication by a
constant in an array.

● Allows better instruction scheduling.
● Facilitates use of multiply-adds.

Gather-Scatter Optimization

● Untuned

do i = 1, n

 if (t(I).gt.0.0) then

 a(I)=2.0*b(I-1)

 end if

enddo

● Tuned

inc = 0

do i = 1, n

 tmp(inc) = i

 if (t(I).gt.0.0) then

 inc = inc + 1

 end if

enddo

do I = 1, inc

 a(tmp(I))=2.0*b((tmp(I)-1)

enddo

Gather-Scatter Optimization

● For loops with branches inside loops
● Increases pipelining
● Often, body of the loop is executed on

every iteration, thus no savings
● Solution is to split the loop with a

temporary array containing indices of
elements to be computed with

IF Statements in Loops

● Solution is to unroll the loop
● Move conditional elements into scalars
● Test scalars at the end of the loop body
do I = 1, n, 2

 a = t(I)

 b = t(I+1)

 if (a .eq. 0.0)

 end if

 if (b .eq. 0.0)

 end if

end do

Loop Defactorization

● Note that floating point operations are
not always associative.

(A + B) + C != A + (B + C)

● Be aware of your precision
● Always verify your results with

unoptimized code first!

Loop Defactorization

● Untuned

do i = 1, lda

 A(i) = 0.0

 do j = 1, lda

 A(i)=A(i)+B(j)*D(j)*C(i)

 enddo

enddo

● Tuned

 do i = 1, lda

 A(i) = 0.0

 do j = 1, lda

 A(i) = A(i) + B(j) * D(j)

 enddo

 A(i) = A(i) * C(i)

 enddo

Loop Defactorization
Tuned

-O3
Untuned

-O3

Origin
2000

371.95 559.17

IBM SP2 449.03 591.26

Cray T3E 3201.35 3401.61

Loop Peeling

● For loops which access previous
elements in arrays.

● Compiler often cannot determine that
an item doesn’t need to be loaded
every iteration.

Loop Peeling

● Untuned

 jwrap = lda

 do i = 1, lda

 b(i) = (a(i)+a(jwrap))*0.5

 jwrap = i

 enddo

● Tuned

b(1) = (a(1)+a(lda))*0.5

do i = 2, lda

 b(i) = (a(i)+a(i-1))*0.5

enddo

Loop Peeling
Tuned

-O3
Untuned

-O3

Origin
2000

61.06 63.33

IBM SP2 25.68 40.50

Cray T3E 72.93 90.05

Loop Collapse

● For multi-nested loops in which the
entire array is accessed.

● This can reduce loop overhead and
improve compiler vectorization.

Loop Collapse

● Untuned

 do i = 1, lda
 do j = 1, ldb

 do k = 1, ldc

 A(k,j,i) = A(k,j,i) + B(k,j,i) * C(k,j,i)

 enddo

 enddo

 enddo

Loop Collapse

● Tuned
 do i = 1, lda*ldb*ldc

 A(i,1,1) = A(i,1,1) + B(i,1,1) * C(i,1,1)

 enddo

● More Tuned (declarations are 1D)
 do i = 1, lda*ldb*ldc

 A(i) = A(i) + B(i) * C(i)

 enddo

Loop Collapse
Tuned Tuned

–O3
Tuned

2nd
Tuned 2nd

–O3

Origin
2000

400.25 143.01 410.58 77.86

IBM
SP2

144.75 31.57 144.18 31.54

Cray
T3E

394.19 231.44 394.92 229.86

Loop Unrolling

● Data dependence delays can be
reduced or eliminated.

● Reduce loop overhead.
● Usually performed well by the compiler

or preprocessor.

Loop Unrolling

● Untuned

do i = 1, lda

 do j = 1, lda

 do k = 1, 4

 a(j,i) = a(j,i) + b(i,k) * c(j,k)

 enddo

 enddo

enddo

Loop Unrolling

● Tuned (4)

do i = 1, lda

 do j = 1, lda

 a(j,i) = a(j,i) + b(i,1) * c(j,1)

 a(j,i) = a(j,i) + b(i,2) * c(j,2)

 a(j,i) = a(j,i) + b(i,3) * c(j,3)

 a(j,i) = a(j,i) + b(i,4) * c(j,4)

 enddo

enddo

Loop Unrolling

Tuned
-O3

Untuned
-O3

Origin
2000

61.06 63.33

IBM SP2 11.26 12.65

Cray T3E 36.30 24.41

Loop Unrolling and Sum
Reductions

● When an operation requires as input
the result of the last output.

● Called a Data Dependency.
● Frequently happens with multi-add

instruction inside of loops.
● Introduce intermediate sums. Use your

registers!

Loop Unrolling and Sum
Reductions

● Untuned

 do i = 1, lda

 do j = 1, lda

 a = a + (b(j) * c(i))

 enddo

 enddo

Loop Unrolling and Sum
Reductions

● Tuned (4)

 do i = 1, lda

 do j = 1, lda, 4

 a1 = a1 + b(j) * c(i)

 a2 = a2 + b(j+1) * c(i)

 a3 = a3 + b(j+2) * c(i)

 a4 = a4 + b(j+3) * c(i)

 enddo

 enddo

 aa = a1 + a2 +a3 + a4

Loop Unrolling and Sum
Reductions

Untuned
–O3

2
Tuned

2
Tuned
–O3

4
Tuned

-O3

8
Tuned

-O3

16
Tuned

-O3

Origin
2000

454 4945 352 350 350 330

IBM
SP2

281 6490 563 281 281 263

Cray
T3E 865 10064 564 340 231 860

Outer Loop Unrolling

● For nested loops, unrolling outer loop
may reduce loads and stores in the
inner loop.

● Compiler may perform this optimization.

Outer Loop Unrolling

● Untuned
● Each flop requires two loads and one store.

 do i = 1, lda

 do j = 1, ldb

 A(i,j) = B(i,j) * C(j)

 enddo

 enddo

Outer Loop Unrolling

● Tuned
● Each flop requires 5/4 loads and one store.

 do i = 1, lda, 4

 do j = 1, ldb

 A(i,j) = B(i,j) * C(j)

 A(i+1,j) = B(i+1,j) * C(j)

 A(i+2,j) = B(i+2,j) * C(j)

 A(i+3,j) = B(i+3,j) * C(j)

 enddo

 enddo

Outer Loop Unrolling
Tuned

-O3
Untuned

-O3

Origin
2000

28.85 34.52

IBM SP2 74.67 286.11

Cray T3E 14.33 30.91

Cache Blocking

● Takes advantage of the cache by
working with smaller tiles of data

● Only really beneficial on problems with
significant potential for reuse

● Merges naturally with unrolling and
sum-reduction

Cache Blocking

● Untuned
REAL*8 A(M,N)

REAL*8 B(N,P)

REAL*8 C(M,P)

DO J=1,P

 DO I=1,M

 DO K=1,N

 C(I,P) = C(I,P) +

 A(I,K)*B(K,J)

 ENDDO

 ENDDO

ENDDO

● Tuned
DO JB=1,P,16
 DO IB=1,M,16
 DO KB=1,N
 DO J=JB,MIN(P,JB+15)
 DO I=IB,MIN(M,IB+15)
 C(I,P) = C(I,P) +
 A(I,K)*B(K,J)
 ENDDO
 ENDDO
 ENDDO
 ENDDO
 ENDDO
ENDDO

Indirect Addressing
XX(I) = XX(I) * Y(A(I))

● One of the most difficult constructs to
optimize.

● Consider using a sparse solver package.
● Otherwise, consider doing blocks of

operations. Instead of sparse degree 1,
use blocked sparse format with
prefetching.

● Redundant computations are ok.

Loop structure

● IF/GOTO and WHILE loops inhibit some
compiler optimizations.

● Some optimizers and preprocessors can
perform transforms.

● DO and for() loops are the most highly
tuned.

Strength Reduction

● Reduce cost of mathematical operation
with no loss in precision, compiler might
do it.
● Integer multiplication/division by a

constant with shift/adds
● Exponentiation by multiplication
● Factorization and Horner’s Rule
● Floating point division by inverse

multiplication

Strength Reduction
Horner’s Rule

● Polynomial expression can be rewritten
as a nested factorization.

Ax^5 + Bx^4 + Cx^3 + Dx^2 + Ex + F =

((((Ax + B) * x + C) * x + D) * x + E) * x + F.

● Also uses multiply-add instructions
● Eases dependency analysis

Strength Reduction
Horner’s Rule

Tuned
-O3

Untuned
-O3

Origin
2000

74.20 74.09

IBM SP2 40.69 74.71

Cray T3E 61.70 160.05

Strength Reduction
Integer Division by a Power of 2

● Shift requires less cycles than division.
● Both dividend and divisor must both be

unsigned or positive integers.
● Divides are often costly.

● Consider also multiplying times the inverse.

Strength Reduction
Integer division by a Power of 2

● Untuned

IL = 0

DO I=1,ARRAY_SIZE

 DO J=1,ARRAY_SIZE

 IL = IL + A(J)/2

 ENDDO

 ILL(I) = IL

ENDDO

● Tuned

IL = 0

ILL = 0

DO I=1,ARRAY_SIZE

 DO J=1,ARRAY_SIZE

 IL = IL + ISHFT(A(J),-1)

 ENDDO

 ILL(I) = IL

ENDDO

Strength Reduction
 Integer division by a Power of 2

Tuned
-O3

Untuned
-O3

Origin
2000

210.71 336.44

IBM SP2 422.65 494.05

Cray T3E 771.28 844.17

Strength Reduction
Factorization

● Allows for better instruction scheduling.
● Compiler can interleave loads and ALU

operations.
● Especially benefits compilers able to do

software pipelining.

Strength Reduction
Factorization

● Untuned
XX = X*A(I) + X*B(I) + X*C(I) + X*D(I)

● Tuned
XX = X*(A(I) + B(I) + C(I) + D(I))

Strength Reduction
Factorization

Tuned
-O3

Untuned
-O3

Origin
2000

51.65 48.99

IBM SP2 57.43 57.40

Cray T3E 387.77 443.45

Subexpression Elimination
Parenthesis

● Parenthesis can help the compiler
recognize repeated expressions.

● Some preprocessors and aggressive
compilers will do it.

● Might limit aggressive optimizations

Subexpression Elimination
Parenthesis

● Untuned
XX = XX + X(I)*Y(I)+Z(I) + X(I)*Y(I)-Z(I) + X(I)*Y

(I) + Z(I)

● Tuned
XX = XX + (X(I)*Y(I)+Z(I)) + X(I)*Y(I)-Z(I) + (X

(I)*Y(I)+Z(I))

Subexpression Elimination
Type Considerations

● Changes the type or precision of data.
● Reduces resource requirements.
● Avoid type conversions.
● Processor specific performance.

● Do you really need 8 or 16 bytes of
precision?

Subexpression Elimination
Type Considerations

● Consider which elements are used
together?
● Should you be merging your arrays?
● Should you be splitting your loops for

better locality?
● For C, are your structures packed tightly in

terms of storage and reference pattern?

F90 Considerations

● WHERE statements
● ARRAY syntax
● ALLOCATE placement
● OO complication

● Class dependencies
● Code fragmentation
● Operator overloading
● Inlining

F90 WHERE

● This construct is basically a masking
operator for array operations.

● It results in an IF statement for every
operation.

● Consider copying to temporary and then
multiplying by mask array.

F90 ARRAY

● Be aware that specifying sections of
arrays often implies a copy.

● Often this is done more than once in
your code.

● Consider doing it yourself and saving
the result for reuse.

F90 ALLOCATE

● Recent experiments have shown that
ALLOCATE often returns data on a page
boundary.

● Very dangerous for caches with low
associativity.

C/C++ Considerations

● Use STL and the C++ operators.
● Dynamic typing and polymorphism isn't

free.
● Use inline, const and restrict

keywords.
● Easy to become memory/pointer bound

with operator overloading.
● OO complication as before.

STL and C++

● The goal of STL is to export more of the
author's intent to the compiler.

● Many classes run much faster than
handwritten code in applications
● Strong typing
● The compiler can tell what you're doing vs.

just making a function call on a pointer.

Parallel Optimization

Parallel Performance

“The single most important
impediment to good parallel

performance is still poor
single-node performance.”

- William Gropp
Argonne National Lab

What is Good Parallel
Performance?

● Single CPU performance is high.
● The code is scalable out to more than a

few nodes.
● The network is not the bottleneck.
● In parallel computation, algorithm design

is the key to good performance.
● You must reduce the amount of data

that needs to be sent around.

Beware The Fallacy
Linear Scalability

● But what about per/PE performance?
● With a slow code, overall performance of

the code is not vulnerable to other
system parameters like communication
bandwidth, latency.

● Very common on tightly integrated
systems where you can simple add PE's
for performance.

Parallel Optimization

● Two programming models.
● Message Passing
● Shared Memory

Parallel Performance

● Architecture is characterized by
● Number of CPU’s
● Connectivity
● I/O capability
● Single processor performance

MPP Optimization

● Programming
● Message passing (MPI, MPI-2, Shmem)
● Shared memory (OpenMP directive based)

● Algorithms
● Data or Functional Parallelism
● SIMD, MIMD
● Granularity (fine, medium, coarse)
● Master/Worker or Hostless

Choosing a Data Distribution

● The main issue in choosing a data layout for
dense matrix computations is:
● load balance, or splitting the work reasonably

evenly among the processors throughout the
algorithm

Possible Data Layouts
● 1D block and cyclic column distributions

● 1D block-cyclic column and 2D block-cyclic
distribution used in ScaLAPACK

Two-dimensional Block-Cyclic Distribution

● Ensure good load balance -->
Performance and scalability,

● Encompasses a large number of (but not all)
data distribution schemes,

● Need redistribution routines to go from one
distribution to the other.

Load Balancing

● Static
● Data/tasks are partitioned among existing

processors.
● Problem of finding an efficient mapping

● Dynamic
● Master/Worker model
● Synchronization and data distribution

problems

Traditional Message Passing

● Node 1 needs X bytes from node 0
● Node 0 calls a send function (X bytes

from address A)
● Node 1 calls a receive function (X bytes

into address B)

Remote DMA

● Node 1 needs X bytes to addr. A from
node 0 at addr. B

● Either:
● Node 0 sends RDMA PUT (X bytes from

addr. A to Node 1 addr. B)
● Node 1 sends RDMA GET to Node 0 (X

bytes from addr. A to Node 1 addr. B)

Memory Window's

● Node 0: Declare comm. region between
addr. A and B.

● Node 1: Declare comm. region between
addr. C and D.

● Either node issues a PUT or GET.

MPI Optimization

Communication Issues

● Startup time, latency or overhead
● Bandwidth
● Network contention and congestion
● Bidirectionality
● Communication API
● Dedicated Channels

Communication Issues

● Startup time and bandwidth
● Startup time is higher than the time to

actually transfer a small message.
● Send larger messages fewer times, but try

to keep everyone busy.
● Contention can be reduced by uniformly

distributing messages.

Message Passing Interface

● Provides numerous send/recv modes.
● Asynchronous
● One-sided

● Provides optimized collective
operations.

● Supports customized data types.
● Is a standard and is highly portable.

Message Passing

● Upon message arrival
● If node B has not posted a receive the

data is buffered until the receive function
is called.

● Else the data is delivered directly to the
address given to the receive function. No
copy!

● The amount of buffering is implementation
dependent.

Posting a Receive

● Means that the application has informed
the communication layer about a
message to be received (soon).

● Matching done in software, not
hardware:
● context, rank and tag.

● User should provide as much
information as possible to MPI to
reduce matching operation.

MPI Protocol

● Often 2 or 3 message size ranges.
● Short messages:

● Send right away, buffer, match and copy at
receiver.

● Medium messages.
● Send first chunk, ask for more space or

match, return with dest. addr. or wait.
● Long

● Send first chunk, return with dest. addr.

MPI Latency
Infiniband vs. Myrinet

MPI Bidirectional Bandwidth
Infiniband vs. Myrinet

Message Passing

● It is possible for sends and receives to
be
● Nonblocking(send) or Posted(receive)
● Synchronous(send)
● Buffered
● Blocking

Message Passing

Buffering - Temporary storage of data.
Posting - Temporary storage of an address.
Nonblocking - Refers to an function A that

initiates an operation B and returns to the
caller before the completion of B.

Blocking - The function A does not return to
the caller until the completion of operation B.

Polling/Waiting - Testing for the completion
of a nonblocking operation.

MPI Message Passing

● MPI introduces communication modes
dictating semantics of completion of
send operations.
● Buffered - When transmitted or buffered,

space provided/limited by application, else
error.

● Ready - Only if receive is posted, else
error.

● Synchronous - Only when receive begins to
execute, else wait. Useful for debugging.

MPI Message Passing

● In addition
standard - MPI will decide if/how much

outgoing data is buffered. If space is
unavailable, completion will be delayed
until data is transmitted to receiver. (Like
PVM)

Immediate - nonblocking, returns to the
caller ASAP. May be used with any of the
above modes.

MPI Message Passing

● Ready sends can remove a handshake
for large messages.

● There is only one receive mode, it
matches any of the send modes.

MPI Optimizations

● We are primarily interested in
MPI_ISEND, MPI_IRECV, MPI_IRSEND

● Why? Because your program could be
doing something useful while sending
or receiving! You can hide much of the
cost of these communication
operations.

MPI Message Passing

● To test for the completion of a message
use

MPI_WAITxxx and MPI_TESTxxx

where xxx is all, any, some or NULL.

● Remember you must test ISEND’s as
well as IRECV’s before you can reuse
the argument.

MPI Data Types

● For array transfers MPI has user
defined data types to gather and
scatter data to/from memory.

● Try to use MPI_TYPE_[H]VECTOR()or
MPI_TYPE_[H]INDEXED()

● Avoid MPI_TYPE_STRUCT()

MPI Performance Tips

● Send big messages, infrequently.
● Avoid, small frequent messages.
● Think about the actual communication

pattern.
● Use a collective operation.

MPI Performance Tips

● Reduce number of unexpected,
unmatched messages.

● Always post receives as early as
possible.

● Take advantage of bidirectionality in the
communication link.
● MPI_sendrecv()

MPI Performance Tips

● Avoid data translation and derived data
types unless necessary for good
performance.

● Avoid wildcard receives.
● Align application buffers to double

words and page sizes.

MPI Performance Tips

● Pipeline communication/computation.
● On most systems, the data can move

without CPU intervention.
● Take advantage of this fact!
● Avoid constructions like:

● MPI_IRECV()
● MPI_ISEND()
● MPI_WAIT()

● Here, no useful work is done while waiting!

MPI Collective Communication

● Unlike PVM, with MPI you should use
the collective operations. They are likely
to be highly tuned for the architecture.

● These operations are very difficult to
optimize and are often the bottlenecks
in parallel applications.

MPI Collective Communication
MPI_Barrier()

MPI_Bcast()

MPI_Gather[v]() MPI_Scatter[v]()

MPI_Allgather[v]()

MPI_Alltoall[v]()

MPI_Reduce()

MPI_AllReduce()

MPI_Reduce_Scatter()

MPI_Scan()

Message Passing Optimization
Nearest Neighbor Example 1

N slave processors available plus Master,
M particles each having (x,y,z)
coordinates.

1) Master reads and distributes all
coordinates to N processors.

2) Each processor calculates its subset of
M/N and sends it back to the master.

3) Master processor receives and outputs
information.

Message Passing Optimization
Nearest Neighbor Example 2

1) Master reads and scatters M/N coordinates to N
processors.

2) Each processor receives its own subset and makes a
replica.

3) Each processor calculates its subset of M/N
coordinates versus the replica.

 4) Each processor sends to the next processor its replica
of M/N coordinates.

5) Each processor receives the replica. Goto 3) N-1
times.

6) Each processor sends its info back to the Master

Message Passing Optimization
Nearest Neighbor Example

● Example 1 works better only when:
● There are a small number of particles
● You have an super efficient broadcast

● Example 2 works better more often
because:
● Computation is pipelined. Note that slave

processor 0 is already busy before
processor 1 even gets its input data.

OpenMP Optimization

Thread Level Parallelism

● Data parallelism: different processors
running the same code on different
data. (SPMD)

● Task parallelism means different
processors are running different
procedures. (MPMD)

OpenMP

● Designed for quick and easy parallel
programming for SMP (and NUMA)
machines.

● Insert compiler directives in code that
implicitly spawn threads.

● Usually placed around loops but can
work for any piece of structured code.
● One entry, one exit.

OpenMP Data Parallelism

 j = 0

c$omp parallel do shared(j),private(i)

do i=1,n

 j += i

 end do

OpenMP Task Parallelism

c$omp parallel private(i)

do i=1,n

 if (i=1) call sub1(...)

 if (i=2) call sub2(...)

 if (i=3) call sub3(...)

 if (i=4) call sub4(...)

end do

Parallel Overhead

● Creating/Scheduling threads
● Communication
● Synchronization
● Partitioning

Parallel Overhead

● For data parallel programming we can
estimate some of the parallel overhead.

● Time the code with only one thread
● OMP_NUM_THREADS environment

variable.
● Compare with code compiled without

OpenMP turned on.

Reducing Parallel Overhead

● Don’t parallelize ALL the loops.
● Parallelize the big loops.
● Privatize variables where possible

● Create per thread temporaries with
● PRIVATE, FIRSTPRIVATE, THREADPRIVATE

Reducing Parallel Overhead

● Use task parallelism.
● Lower overhead
● More code runs in parallel
● Requires a parallel algorithm

Improving Load Balance

● Change the way loop iterations are
allocated to threads.
● Change the scheduling type
● Change the chunk size

Improving Load Balance

● Scheduling
– setenv OMP_SCHEDULE <type>

– c$omp schedule(<type>)
● STATIC,[<chunk> - default, iterations

equally and sequentially allocated per
processor.

● RUNTIME – use the OMP_SCHEDULE
environment variable. Default, static.

Improving Load Balance

● Scheduling
● DYNAMIC,[<chunk>] - iterations are

allocated per processor during run-time.
When the amount of work is unknown.

● GUIDED,[<chunk>] - guided self
scheduling. Each processor starts with a
large number and finishes with a small
number.

OpenMP Gotcha's

● False sharing
● Shared variables that ping-pong between

processors cache lines
● Hyperthreading

● Conflicting over shared resources
● OMP_NUM_THREADS to physical number

of CPU's if doing data-parallel.
● Locking

Automatic Parallelization

● Let the compiler do the work.
● Advantages

● It’s easy
● Disadvantages

● Only does loop level parallelism.
● It wants to parallelize every loop iteration

in your code.

Numerical Libraries

Optimized Arithmetic Libraries

● Advantages:
● Subroutines are quick to code and

understand.
● Routines provide portability.
● Routines perform well.
● Comprehensive set of routines.

● Disadvantages
● Can lead to vertical code structure
● May mask memory performance problems

Think you can do it yourself?

● 512x512 Matrix Multiply
● Naïve (next page)

● ~200 Mflops (gcc 3.4)
● Advanced (next page)

● ~1000 Mflops (gcc 3.4)
● ATLAS

● ~2500 Mflops (gcc 3.4)

 do kb = 1,kk,blk
 ke = min(kb+blk-1,kk)
 do ib = 1,ii,blk
 ie = min(ib+blk-1,ii)
 do i = ib,ie
 do k = kb,ke
 TB(k-kb+1,i-ib+1) = B(i,k)
 end do
 end do
 do jb = 1,jj,blk
 je = min(jb+blk-1,jj)
 do j = jb,je,2
 do i = ib,ie,2
 T1 = 0.0d0
 T2 = 0.0d0
 T3 = 0.0d0
 T4 = 0.0d0
 do k = kb,ke
 T1 = T1 + TB(k-kb+1,i-ib+1)*C(k,j)
 T2 = T2 + TB(k-kb+1,i-ib+2)*C(k,j)
 T3 = T3 + TB(k-kb+1,i-ib+1)*C(k,j+1)
 T4 = T4 + TB(k-kb+1,i-ib+2)*C(k,j+1)
 enddo
 A(i,j) = A(i,j)+T1
 A(i+1,j) = A(i+1,j)+T2
 A(i,j+1) = A(i,j+1)+T3
 A(i+1,j+1) = A(i+1,j+1)+T4
 enddo
 enddo
 enddo
 enddo
 enddo

A(i,j) = A(i,j) + B(i,k) * C(k,j)

Optimized Arithmetic Libraries

● BLAS: Basic Linear Algebra Subroutines
● PBLAS: Parallel version

● LAPACK: Linear Algebra Package
● ScaLAPACK: Parallel version

BLAS

● Common Matrix/Matrix, Matrix-Vector,
Vector-Vector. REAL/DOUBLE/COMPLEX

● Reference version available from UT.
● Vendor versions offer high

performance.
● MKL on Intel
● ACML on AMD

● Multithreaded are usually available.
• http://www.netlib.org/blas/index.html

Level 1, 2 and 3 BLAS
● Level 1 BLAS

Vector-Vector
operations

● Level 2 BLAS
Matrix-Vector
operations

● Level 3 BLAS
Matrix-Matrix
operations

+ *

*

+ *

Goto/ATLAS BLAS

● If you don't have a vendor BLAS:
● K. Goto has hand coded many BLAS

routines.
● Near peak performance

● ATLAS: Automatic Tuned Linear Algebra
Software
● Generates near optimal BLAS and a few

LAPACK routines for ANY architecture by
brute force.

LAPACK

● F77 routines for solving
● systems of simultaneous linear equations

and eigenvalue problems
● matrix factorizations (LU, Cholesky, QR,

SVD, Schur, generalized Schur)
● Related computations such as reordering

and conditioning.
● Built on the level 1, 2 3 BLAS Single,

Double, Complex, Double Complex
• http://www.netlib.org/lapack/index.html

LAPACK -- Release 3.0
● Add functionality

● divide and conquer SVD,
● error bounds for GLM and LSE,
● new expert drivers for GSEP,
● faster QRP,
● faster solver for the rank-deficient LS (xGELSY),
● divide and conquer least squares
● ...

ScaLAPACK Functionality
● Orthogonal/unitary transformation routines
● Prototypes

● Packed Storage routines for LLT, SEP, GSEP
● Out-of-Core Linear Solvers for LU, LLT, and QR
● Matrix Sign Function for Eigenproblems
● SuperLU and SuperLU_MT
● HPF Interface to ScaLAPACK

ScaLAPACK Documentation

● Documentation
● ScaLAPACK Users’ Guide

http://www.netlib.org/scalapack/slug/scalapack_slug.html

● Installation Guide for ScaLAPACK
● LAPACK Working Notes

● Test Suites for ScaLAPACK, PBLAS,
BLACS

● Example Programs
http://www.netlib.org/scalapack/examples/

● Prebuilt ScaLAPACK libraries on netlib

Parallelism in ScaLAPACK
● Level 3 BLAS block

operations
● All the reduction routines

● Pipelining
● QR Algorithm, Triangular

Solvers, classic factorizations
● Redundant

computations
● Condition estimators

● Static work assignment
● Bisection

● Task parallelism
● Sign function eigenvalue

computations
● Divide and Conquer

● Tridiagonal and band
solvers, symmetric
eigenvalue problem and Sign
function

● Cyclic reduction
● Reduced system in the band

solver

Narrow Band and Tridiagonal
Matrices

● The ScaLAPACK routines solving narrow-
band and tridiagonal linear systems assume
● the narrow band or tridiagonal coefficient matrix to

be distributed in a block-column fashion, and
● the dense matrix of right-hand-side vectors to be

distributed in a block-row fashion.
● Divide-and-conquer algorithms have been

implemented because they offer greater
scope for exploiting parallelism than the
corresponding adapted dense algorithms.

PETSc

● Generalized sparse solver package for
solution of PDEs.

● Multiple preconditioners and explicit and
implicit methods.

● Highly optimized for compressed block
storage.

● Serial and Parallel versions.

SuperLU

● LU factorization sparse solver package.
● Highly optimized for compressed block

storage.
● Serial and Parallel versions.

FFTW and UHFFT

● 1,2,3D FFT's on a variety of data types.
● Very good performance.
● Serial and Parallel versions.

VSIPL

● Vector Signal Image Processing Library
● Filters
● Stencils
● Convolutions
● Wavelet
● Serial and Parallel versions.

EISPACK

● LAPACK for Eigenvalue problems
● Serial and Parallel versions.

Performance Analysis Tools

Performance Evaluation

● Traditionally, performance evaluation has
been somewhat of an art form:
● Limited set of tools (time & -p/-pg)
● Major differences between systems
● Lots of guesswork as to what was 'behind the

numbers'
● Today, the situation is different.

● Hardware support for performance analysis
● A wide variety of Open Source tools to

choose from.

Why Performance Analysis?
● 2 reasons: Economic & Qualitative
● Economic: TIME IS MONEY

● Average lifetime of these large machines is 4
years before being decommissioned.

● Consider the cost per day of a 4 Million
Dollar machine, with annual
maintenance/electricity cost of $300,000
(US). That's $1500.00 (US) per hour of
compute time.

Why Performance Analysis 2?

● Qualitative Improvements in Science
● Consider: Poorly written code can easily run

10 times worse than an optimized version.
● Consider a 2-dimension domain

decomposition of a Finite Difference
formulation simulation.

● For the same amount of time, the code can
do 10 times the work. 400x400 elements vs.
1300x1300 elements

● Or it can do 400x400 for 10 times more
time-steps.

Why Performance Analysis 3?

● So, we must strive to evaluate how our
code is running.

● Learn to think of performance during the
entire cycle of your design and
implementation.

Processor Complexity

Rising Processor Complexity

● No longer can we easily trace the
execution of a segment of code.
● Static/Dynamic Branch Prediction
● Prefetching
● Out-of-order scheduling
● Predication

● So, just a measure of 'wallclock' time is
not enough. Need to know what's really
happening under the hood.

Direct Measurement Methods
● Instrumentation based

● Tracing
● Generate a record for each measured event.
● Useful only when evidence of performance

anomalies is present due to the large volume
of data generated.

● Aggregate
● Reduce data at run-time avg/min/max

measurements.
● Useful for application and architecture

characterization and optimization.

Measurement Methods 2

● Indirect methods requires no
instrumentation and can be used on
unmodified applications.

● The reality is that the boundary between
indirect and direct is somewhat fuzzy.
● gprof (no source mods, but requires relink or

recompile)

Statistical Profiling

● At a defined interval (interrupts), record
WHERE in the program the CPU is.

● Data gathered represents a probabilistic
distribution in the form of a histogram.

● Interrupts can be based on time or
hardware counter events with the proper
infrastructure like...

External Timers

● /usr/bin/time <command> returns 3 kinds.
● Real time: Time from start to finish
● User: CPU time spent executing your code
● System: CPU time spent executing system

calls
● Warning! The definition of CPU time is

different on different machines.

External Timers

● Sample output (from Linux)
0.56user 0.12system 0:03.80elapsed 18%CPU

(0avgtext+0avgdata 0maxresident)k

0inputs+0outputs (55major+2684minor)pagefaults
0swaps

1) User
2) System
3) Real
4) Percent of time spent on behalf of this process, not including

waiting.
5) Text size, data size, max memory
6) 0 input, 0 output operations
7) Page faults (major, minor), swaps.

Internal Timers

● gettimeofday(), part of the C
library obtains seconds and
microseconds since Jan 1, 1970.

● second(), Fortran 90.
● Latency is not the same as resolution.

● Many calls to this function will affect your
wall clock time.

Internal Timers

● clock_gettime() for POSIX, usually
implemented as gettimeofday().

● MPI_Wtime() returns elapsed wall
clock time in seconds as a double.

Hardware Performance
Counters

● On/off chip registers that count
hardware events

● Many different events.
● OS accumulates counts into 64-bit

quantities.
● Both user and kernel modes can be

measured.
● Explicit counting or statistical

histograms based on counter overflow.

Performance Counters
● Most high performance processors include hardware

performance counters.
● AMD Athlon and Opteron
● Compaq Alpha EV Series
● CRAY T3E, X1
● IBM Power Series
● Intel Itanium, Itanium 2, Pentium
● SGI MIPS R1xK Series
● Sun UltraSparc II, III, IV
● IBM Blue Gene
● And many others...

Performance Counters
● Performance Counters are hardware registers dedicated

to counting certain types of events within the processor
or system.
● Usually a small number of these registers (2,4,8)
● Sometimes they can count a lot of events or just a few
● Symmetric or asymmetric

● Each register has an associated control register that
tells it what to count and how to do it.
● Interrupt on overflow
● Edge detection (cycles vs. events)
● User vs. kernel mode

• Cycle count
• Instruction count

– All instructions
– Floating point
– Integer
– Load/store

• Branches
– Taken / not taken
– Mispredictions

• Pipeline stalls due to
– Memory subsystem

– Resource conflicts

• Cache
– I/D cache misses for

different levels
– Invalidations

• TLB
– Misses
– Invalidations

Some Hardware Performance
Counter Events

Statistical Profiling

Location

A
m

ou
nt

Tim
e

Hardware Statistical Profiling

Location

A
m

ou
nt

Tim
e

Cache Misses

PAPI

• Performance Application Programming Interface

• The purpose of PAPI is to implement a standardized
portable and efficient API to access the hardware
performance monitor counters found on most
modern microprocessors.

• The goal of PAPI is to facilitate the optimization of
parallel and serial code performance by
encouraging the development of cross-platform
optimization tools.

PAPI Preset Events
● PAPI supports around preset events
● Proposed set of events deemed most relevant

for application performance tuning
● Preset events are mappings from symbolic

names to machine specific definitions for a
particular hardware resource.
● Total Cycles is PAPI_TOT_CYC

● Mapped to native events on a given platform
● PAPI also supports presets that may be derived

from the underlying hardware metrics

Linux Performance Tools
● Contrary to popular belief, the Linux

infrastructure is well established.
● PAPI is 8 years old.
● Wide complement of tools from which to

choose.
● Some are production quality.
● Sun, IBM and HP are now focusing on

Linux/HPC which means a focus on
performance.

Which Tool?

The Right Performance Tool

● What are your needs? Things to
consider:
● User Interface

● Complex Suite
● Quick and Dirty

● Data Collection Mechanism
● Aggregate
● Trace based
● Statistical

The Right Performance Tool 2

● Performance Data
● Communications (MPI)
● Synchronization (Threads and OpenMP)
● External Libraries
● User code

● Data correlation
● Task Parallel (MPI)
● Thread Parallel

● Instrumentation Mechanism
● Source/Binary/Library interposition

The Right Performance Tool 3

● Data Management
● Performance Database
● User (Flat file)

● Data Visualization
● Run Time
● Post Mortem
● Serial/Parallel Display
● ASCII

Hardware Profiling and Papiex

● A simple tool that generates
performance measurements for the
entire run of a code.

● Requires no recompilation.
● Monitors all subprocesses/threads.
● Output goes to stderr or a file.
● Try running your code under papiex to

measure IPC or MFLOPS (the default).

Papiex v0.9 Example
> module load perftools/1.1

> papiex <application>

> papiex -e PAPI_TOT_CYC -e PAPI_TOT_INS
-- <application>

> mpirun -np 4 `which papiex` -f --
<application>

papiex v0.9 Output

Executable: /afs/pdc.kth.se/home/m/mucci/mpiP-2.7/testing/a.out
Parent Process ID: 18115
Process ID: 18116
Hostname: h05n05.pdc.kth.se
Start: Tue Aug 17 17:45:36 2004
Finish: Tue Aug 17 17:45:40 2004
Domain: User
Real usecs: 3678252 (3s.)
Real cycles: 3310413694
Proc usecs: 16592 (0s.)
Proc cycles: 14932800
PAPI_TOT_CYC: 13962873
PAPI_FP_INS: 285847

Event descriptions:
Event: PAPI_TOT_CYC
 Derived: No
 Short: Total cycles
 Long: Total cycles
 Vendor Symbol: CPU_CYCLES
 Vendor Long: CPU_CYCLES
Event: PAPI_FP_INS
 Derived: No
 Short: FP instructions
 Long: Floating point instructions
 Vendor Symbol: FP_OPS_RETIRED
 Vendor Long: FP_OPS_RETIRED

Papiex v0.9 Usage
Usage: papiex [-lLihvtmnukord] [-f [prefix]] [-e event]... -- <cmd>

<cmd options>

 -l List the available events.

 -L List all information about the available events.

 -i Print information about the host machine.

 -h Print this message.

 -v Print version information.

 -t Enable monitoring of multiple threads.

 -m Enable multiplexing of hardware counters.

 -n Do not follow fork()'s.

 -u Monitor user mode events. (default)

 -k Monitor kernel mode events.

 -f[prefix] Output to <prefix><cmd>.papiex.<host>.<pid>.<tid>.

 -e event Monitor this hardware event.

Parallel Profiling

● Often we want to see how much time we
are spending communicating.

● Many tools to do this via “Tracing” the
MPI calls.

● A very good and simple tool available on
Lucidor is mpiP v2.7, it does online trace
reduction.

MpiP v2.7 Example
> module load perftools/1.1

> module show perftools

● Follow the instructions to link your
C/C++/F77/F90 codes with mpiP.

● Run your code and examine the output
in <*.mpiP>.

MpiP v2.7 Output

@--- MPI Time (seconds) ---
Task AppTime MPITime MPI%
 0 0.084 0.0523 62.21
 1 0.0481 0.015 31.19
 2 0.087 0.0567 65.20
 3 0.0495 0.0149 29.98
 * 0.269 0.139 51.69

@--- Aggregate Time (top twenty, descending, milliseconds) ----------------
Call Site Time App% MPI%
Barrier 1 112 41.57 80.42
Recv 1 26.2 9.76 18.89
Allreduce 1 0.634 0.24 0.46
Bcast 1 0.3 0.11 0.22
Send 1 0.033 0.01 0.02

@--- Aggregate Sent Message Size (top twenty, descending, bytes) ----------
Call Site Count Total Avrg Sent%
Allreduce 1 8 4.8e+03 600 46.15
Bcast 1 8 4.8e+03 600 46.15
Send 1 2 800 400 7.69

MpiP v2.7 Output 2

@--- Callsite Time statistics (all, milliseconds): 16 Name Site Rank
Count Max Mean Min App% MPI%
Allreduce 1 0 2 0.105 0.087 0.069 0.21 0.33
Allreduce 1 1 2 0.118 0.08 0.042 0.33 1.07
Allreduce 1 2 2 0.11 0.078 0.046 0.18 0.27
Allreduce 1 3 2 0.102 0.072 0.042 0.29 0.97
Barrier 1 0 3 51.9 17.3 0.015 61.86 99.44
.
.
.
@--- Callsite Message Sent statistics (all, sent bytes) Name Site
Rank Count Max Mean Min Sum
Allreduce 1 0 2 800 600 400 1200
Allreduce 1 1 2 800 600 400 1200
Allreduce 1 2 2 800 600 400 1200
Allreduce 1 3 2 800 600 400 1200
Bcast 1 0 2 800 600 400 1200
Bcast 1 1 2 800 600 400 1200
Bcast 1 2 2 800 600 400 1200
Bcast 1 3 2 800 600 400 1200
Send 1 0 1 400 400 400 400
Send 1 2 1 400 400 400 400
Send 1 * 18 800 577.8 400 1.04e+04

@--- End of Report --

MPI Tracing and Jumpshot
● Sometimes we need to see the exact

sequence of messages exchanged
between processes.

● For this, we can enable MPI tracing by
relinking our application and using the
Jumpshot tool.

● Works with any MPI by linking with the
Jumpshot MPI tracing library.

Jumpshot 3 Example
> module load perftools/1.1

> mpicc -mpilog example.c -o example

> mpirun -np 4 example

> clog2slog example.clog

> jumpshot example.slog

Jumpshot Main Window

Jumpshot Timeline

PerfSuite from NCSA
● Command line tool similar to IRIX's

perfex command.
● Does aggregate counting of the

entire run. Also provides statistical
profiling.

● Uses library preloading.
● Output is XML or Plain Text.

● Machine information
● Raw counter values
● Derived metrics

PSRUN Sample Output
Index Description Counter Value
==

 1 Conditional branch instructions mispredicted..................... 4831072449
 2 Conditional branch instructions correctly predicted.............. 52023705122
 3 Conditional branch instructions taken............................ 47366258159
 4 Floating point instructions...................................... 86124489172
 5 Total cycles... 594547754568
 6 Instructions completed... 1049339828741
 7 Level 1 data cache accesses...................................... 30238866204
 8 Level 1 data cache hits.. 972479062
 9 Level 1 data cache misses.. 29224377672
 10 Level 1 instruction cache reads.................................. 221828591306
 11 Level 1 cache misses... 29312740738
 12 Level 2 data cache accesses...................................... 129470315862
 13 Level 2 data cache misses.. 15569536443
 14 Level 2 data cache reads... 110524791561
 15 Level 2 data cache writes.. 18622708948
 16 Level 2 instruction cache reads.................................. 566330907
 17 Level 2 store misses... 1208372120
 18 Level 2 cache misses... 15401180750
 19 Level 3 data cache accesses...................................... 4650999018
 20 Level 3 data cache hits.. 186108211
 21 Level 3 data cache misses.. 4451199079
 22 Level 3 data cache reads... 4613582451
 23 Level 3 data cache writes.. 38456570
 24 Level 3 instruction cache misses................................. 3631385
 25 Level 3 instruction cache reads.................................. 17631093
 26 Level 3 cache misses... 4470968725
 27 Load instructions.. 111438431677
 28 Load/store instructions completed................................ 130391246662
 29 Cycles Stalled Waiting for memory accesses....................... 256484777623
 30 Store instructions... 18840914540
 31 Cycles with no instruction issue................................. 61889609525
 32 Data translation lookaside buffer misses......................... 2832692

PSRUN Sample Output

Statistics
==
Graduated instructions per cycle....................................... 1.765
Graduated floating point instructions per cycle........................ 0.145
% graduated floating point instructions of all graduated instructions.. 8.207
Graduated loads/stores per cycle....................................... 0.219
Graduated loads/stores per graduated floating point instruction........ 1.514
Mispredicted branches per correctly predicted branch................... 0.093
Level 1 data cache accesses per graduated instruction.................. 2.882
Graduated floating point instructions per level 1 data cache access.... 2.848
Level 1 cache line reuse (data).. 3.462
Level 2 cache line reuse (data).. 0.877
Level 3 cache line reuse (data).. 2.498
Level 1 cache hit rate (data).. 0.776
Level 2 cache hit rate (data).. 0.467
Level 3 cache hit rate (data).. 0.714
Level 1 cache miss ratio (instruction)................................. 0.003
Level 1 cache miss ratio (data).. 0.966
Level 2 cache miss ratio (data).. 0.120
Level 3 cache miss ratio (data).. 0.957
Bandwidth used to level 1 cache (MB/s)................................. 1262.361
Bandwidth used to level 2 cache (MB/s)................................. 1326.512
Bandwidth used to level 3 cache (MB/s)................................. 385.087
% cycles with no instruction issue..................................... 10.410
% cycles stalled on memory access...................................... 43.139
MFLOPS (cycles).. 115.905
MFLOPS (wallclock)... 114.441
MIPS (cycles).. 1412.190
MIPS (wallclock)... 1394.349
CPU time (seconds)... 743.058
Wall clock time (seconds).. 752.566
% CPU utilization.. 98.737

HPCToolkit from Rice U.
● Use event-based sampling and statistical

profiling to profile unmodified
applications: hpcrun

● Interpret program counter histograms:
hpcprof

● Correlate source code, structure and
performance metrics: hpcprof/hpcquick

● Explore and analyze performance
databases: hpcviewer

HPCToolkit Goals
● Support large, multi-lingual applications

● Fortran, C, C++, external libraries (possibly binary only) with
thousands of procedures, hundreds of thousands of lines

● Avoid
– Manual instrumentation
– Significantly altering the build process
– Frequent recompilation

• Collect execution measurements scalably and efficiently
– Don’t excessively dilate or perturb execution
– Avoid large trace files for long running codes

• Support measurement and analysis of serial and parallel codes

• Present analysis results effectively
● Top down analysis to cope with complex programs
● Intuitive enough for physicists and engineers to use
● Detailed enough to meet the needs of compiler writers

• Support a wide range of computer platforms

HPCToolkit Sample Output

TAU from U. Oregon
● Integrated toolkit for parallel and serial

performance instrumentation,
measurement, analysis, and visualization

● Open software approach with technology
integration

● Robust timing and hardware
performance support using PAPI

● TAU supports both profiling and tracing
models.

Some TAU Features

● Function-level, block-level, statement-
level

● Support for callgraph and callpath
profiling

● Parallel profiling and Inter-process
communication events

● Supports user-defined events
● Trace merging and format conversion

TAU Instrumentation
● Source code both manual and automatic.

● C, C++, F77/90/95 (Program Database
Toolkit (PDT))

● OpenMP (directive rewriting (Opari), POMP
spec)

● Object code
● pre-instrumented libraries (e.g., MPI using

PMPI)
● Executable code

● dynamic instrumentation (pre-execution)
(DynInstAPI)

TAU Parallel Display

TAU Program Display

● KOJAK (Juelich, UTK)
● Instrumentation, tracing and analysis system for

MPI, OpenMP and Performance Counters.
● Provides automated diagnosis of many common

parallel performance problems.
● Q-Tools (HP) (non-PAPI, IA64 only)

● Statistical profiling of system and user processes
● DynaProf (Me)

● Dynamic instrumentation tool.

More Performance Tools

Conclusion

5 Ways to Avoid Performance
Problems: Number 1

Never, ever, write your own code unless
you absolutely have to.
● Libraries, libraries, libraries!
● Spend time to do the research, chances are

you will find a package that suits your
needs.

● Often you just need to do the glue that puts
the application together.

● The 80/20 Rule! 80% of time is spent in
20% of code.

5 Ways to Avoid Performance
Problems: Number 2

Never violate the usage model of your
environment.
● If something seems impossible to

accomplish in your language or
programming environment, you're probably
doing something wrong.

● Consider such anomalies as:
● Matlab in parallel on a cluster of machines.
● High performance(?!) Java.

● There probably is a better way to do it, ask
around.

5 Ways to Avoid Performance
Problems: Number 3

Always let the compiler do the work.
● The compiler is much better at optimizing

most code than you are.
● Gains of 30-50% are reasonably common

when the 'right' flags are thrown.
● Spend some time to read the manual and

ask around.

5 Ways to Avoid Performance
Problems: Number 4

Never use more data than absolutely
necessary.
● C: float vs. double.
● Fortran: REAL*4, REAL*8, REAL*16
● Only use 64-bit precision if you NEED it.
● A reduction in the amount of data the CPU

needs ALWAYS translates to a increase in
performance.

● Remember that the memory subsystem and
the network are the ultimate bottlenecks.

5 Ways to Avoid Performance
Problems: Number 5

Always make friends with a computer
scientist!
● Learning just a little about modern computer

architecture will result in much better code.

Questions?

● Email: mucci@cs.utk.edu
● For those here at KTH, many on the PDC

staff are well versed in the art of
performance. Use them!

HTTP References
http://www.openmp.org

http://www.netlib.org

http://http://www-unix.mcs.anl.gov/petsc/petsc-2/

http://crd.lbl.gov/~xiaoye/SuperLU

http://www.netlib.org/eispack

http://www2.cs.uh.edu/~mirkovic/fft/parfft.htm

http://www.fftw.org

http://www.intel.com/software/products/mkl

http://www.cs.utexas.edu/users/flame/goto

http://www.netlib.org/atlas

http://www.vsipl.org

HTTP References
http://www.cs.utk.edu/~mucci/latest/mucci_talks.html

http://icl.cs.utk.edu/papi

http://www.fz-juelich.de/zam/kojak/

http://www.hpl.hp.com/research/linux/q-tools

http://www.cs.utk.edu/~mucci/papiex

http://www.cs.utk.edu/~mucci/dynaprof

http://www.cs.uoregon.edu/research/paracomp/tau/

http://hipersoft.cs.rice.edu/hpctoolkit/

http://perfsuite.ncsa.uiuc.edu

http://www.cs.utk.edu/~mucci/MPPopt.html

Thanks

