Linux Multicore Performance Analysis and
Optimization in a Nutshell

Philip Mucci
mucci at eecs.utk.edu

NOTUR 2009
Trondheim, Norway

NOTUR2009 Philip Mucci, Multicore Optimization

Schedule

* 10:15 Begin

e (1:00)
e 11:15 - 11:30 Coffee
e (1:30)
e 13:00 — 14:00 Lunch
e (2:00)

e 16:00 Finish
e 18:00 Beer

NOTUR2009 Philip Mucci, Multicore Optimization

Outline

« Commentary « Programming Models

« HW/SW Overview « Multicore

» Working With the Optimization
Compiler Performance Analysis

* Single Core
Optimization

NOTUR2009 Philip Mucci, Multicore Optimization

Initial Commentary

NOTUR2009 Philip Mucci, Multicore Optimization

Optimization is an Art Form

 As such, this tutorial is partially subjective.

« Expect some contradictions to your
experience(s).

- Don't panic.
« Negative comments (on the tutorial) are
welcomed (afterwards).
- Please include “bug fixes”.
- mucci at eecs.utk.edu

NOTUR2009 Philip Mucci, Multicore Optimization

What's so special about Multicore?

e Parallel programming is somewhat easier...
- Shared address space means direct access to data.

« Multicore is a great latency hiding mechanism.

- Most computers are doing many different activities at
once. (What about us?)

« We really can't get much faster without liquid
cooling.

e Multicore appears to lower power and cooling
requirements per FLOP.

NOTUR2009 Philip Mucci, Multicore Optimization

ion

imizat

Philip Mucci, Multicore Opt

NOTUR2009

What's so hard about Multicore?

 For 30+ years, we've been optimizing for cache.
— Compilers are still limited by static analysis

- Most developers technical computing are not
(supposed to be) computer architects

- Languages have further abstracted performance
- DRAM ignores Moore's Law
- Memory controllers are neither bigger or smarter

« Butit's "easy” to put multiple cores on a die!

NOTUR2009 Philip Mucci, Multicore Optimization

Evaluation of Multicore

e Lots of high GF cores with many shared
resources means more work for you.

« Resource constraints must be examined system
wide, with attention to per-core performance.
- Size/speed of dedicated cache/TLB
- Memory bandwidth and latency per-core
- On/Off-chip communications per-core

« PCI, 1/0O, Interprocessor, Interconnect

NOTUR2009 Philip Mucci, Multicore Optimization

Multicore Performance

 Cores generally don't "know” about each other

- They communicate only through cache and memory.

- No dec
dispatc

e External

icated instructions to do sync, comm,
n, must be done by (slow) software.

pandwidth limited by pins and power.

e Starvation is a very real issue at every shared

resource.

Some extreme examples:

- Intel's Hyper Threading
- IBM's POWER4 Turbo vs. HPC

NOTUR2009

Philip Mucci, Multicore Optimization 10

NOTUR2009

Architecture Overview

Philip Mucci, Multicore Optimization

11

Multicore Architecture Overview

e Hardware

- Caches, Coherency and Prefetching
- Translation Lookaside Buffers (TLB)
- Hardware Multithreadeding (SMT/HT)

e Software
— Threads vs. Processes

NOTUR2009 Philip Mucci, Multicore Optimization

12

Multicore and Memory Bandwidth

 Biggest bottleneck is memory bandwidth and
memory latency.

— Multicore has made this (much) worse in order to
claim increased peak performance.

At least 3 major approaches:

- Make cores as fast/slow as main memory (SiCortex,
Tensilica)

- Add faster/closer memory pipes (Opteron, Nehalem)

- Streaming compute engines (NVIDIA,AMD),
vectorized memory pipelines (Convey).

NOTUR2009 Philip Mucci, Multicore Optimization 13

Multicore, SMP and NUMA

* Single socket multicores are SMP's.
- Cost of memory access is uniform to every core
- Less work for programmer, OS, etc.
- Not possible to scale (well)

 Crossbar works, but ultimately you have to slow nearest
neighbors down.

« NUMA — Non Uniform Memory Access

- All memory is not the same.
- Problem: Memory can be “far” from the CPU

NOTUR2009 Philip Mucci, Multicore Optimization

14

Caches

e Small high-speed memories to keep data "close”
to the processor.

- Memory is moved in and out of caches in blocks
called "lines”, usually 32 to 256 bytes.

« Multiple levels of cache, with at least one level
being dedicated to a single core. i.e.

- 32K Level 1 -> 1 core
- TMB Level 2 -> 2 cores, 1 die
- 8MB Level 3 -> 4 cores, 1 package

NOTUR2009 Philip Mucci, Multicore Optimization

15

Caches Exploit Locality

 Spatial — If I look at address M(n), it is likely that
M(n = z) will be used, where z is small.

« Temporal — If | look at address M(n) at time t, it is
likely that M(n) will be used again at time t + t',
where t' is small.

« If true for one core, for us (technical-computing)
true for multicore.

- So how do we still make caches Correct
(consistent/coherent) and Effective (fast)?

NOTUR2009 Philip Mucci, Multicore Optimization 16

Cache Architecture

e Memory cannot live anywhere in a cache.

« Cache associativity — The number of unique
places in a cache where any given memory item
can reside.

- Location is determined by some bits in the physical
or virtual address..

- Direct mapped means only one location.

 But very, very fast.

- Higher associativity is better, but costly in terms of
gates and complexity (power and performance).

NOTUR2009 Philip Mucci, Multicore Optimization

17

Why do we care?

 Tuning for cache yields most of your
performance gain.

« On multicore true, but opportunity for creating
contention.

- It can happen: A cache unfriendly code may run
faster than the same code highly tuned without
thought to contention.

 Data layout and algorithm design.

« And you thought multicore was free
performance...

NOTUR2009 Philip Mucci, Multicore Optimization

18

Cache Consistency

e For correctness, cores must see a consistent view
of memory through the caches.

e Thus the caches communicate with a protocol
that indicates the state of each cache line. Most
common i1s MESI.

- M — modified, E — exclusive
- S —shared, | — invalid

e Method of communication may be different.

(Snoop, directory, broadcast etc...)

NOTUR2009 Philip Mucci, Multicore Optimization

19

Coherency and Cache
Inclusivity/Exclusivity

« Most caches are inclusive.
- Data kept in multiple levels at the same time

« With multiple cores, more than one level can
keep MESI states.

- In Nehalem, L3 keeps state per socket, L1 and L2 per
core

 Transitions to E, I, S are often performance hits.

- But they can be identified with the right tools and
insight.

NOTUR2009 Philip Mucci, Multicore Optimization 20

Coherency Example (25x4C)

Core 0 reads line:

E (e ol Bl ol

E (1000) -

Core 2 reads line:

Sl - i e || 2

E (1010) -

Core 6 writes line;

L] - |1 - - M -

I (0000) E (0010)

Courtesy Daniel Molka of T.U. Dresden
NOTUR2009 Philip Mucci, Multicore Optimization

NOTUR2009

Coherency Example part 2

Core 4 reads line (no write back to memory):

I [-1]- S| -S| -

| (0000) M (1010)

Core 0 reads line (write back to memory):

S|-|I]- S| -S| -

F (1000) S (1010)

Courtesy Daniel Molka of T.U. Dresden
Philip Mucci, Multicore Optimization

22

Hardware Prefetching

e Automatic

- Streams of reference automatically predicted by the
hardware.

- N consecutive misses trigger fetch of lines ahead.

- Usually unit line stride and one or two streams.
e On/Off can sometimes be controlled by the BIOS.

e Prefetch Instructions

- Many variants, separate from the above, but may
trigger it. Can even be invalid addresses.

NOTUR2009 Philip Mucci, Multicore Optimization 23

Software Prefetching

« Compiler usually sprinkles in these instructions

- To do a good job, it needs to predict misses or find
slots to hide them.

e Pragmas and Intrinsics
- High level manual placement

 Explicit

- Programmer puts in assembly primitives

NOTUR2009 Philip Mucci, Multicore Optimization

24

TLB

« Memory is divided up into pages.
- Pages can be variable size. (4K,64K,4M)

« A page of logical (virtual) address space can have
a physical address.

- Computing this address is expensive!

« So we keep a cache of them around: the TLB.
- It is usually fully associative and multi-level.
- A TLB miss can be very expensive.

NOTUR2009 Philip Mucci, Multicore Optimization

25

Memory Pages and the TLB

« Each TLB entry covers one page.

- Big pages are good for lowering TLB misses.

- But the OS moves data in pages!

« A miss in all levels of the TLB is also called a
page fault.

NOTUR2009

f the data is in physical memory, then this is a minor
page fault.

f the data is on disk, this is a major page fault.

Philip Mucci, Multicore Optimization 26

SMT and Hyperthreading

 Simultaneous Multithreading

- Hyperthreading is Intel's name for it

- Share physical resources on a chip among multiple
hardware threads except context (PC and regs)

- Goal is to attempt to hide latency of instructions.

- When one instruction stalls, try another thread, OS
does not need to context switch.

- To the OS, it's an SMP

e This really only works when you've got a rich
and diverse instruction mix among threads.

NOTUR2009 Philip Mucci, Multicore Optimization 27

Vector Instructions

e Instructions that operate on more than one
operand.

- More accurately called micro-vector instructions

- Real vector machines do this on 1000's of items.

e Intel's SSE 2,3,4 are examples

- A register contains a number of Byte, Int, Float, etc...

e Hardware is free to schedule and move data in
larger chunks.

- Restrictions on alignment, accuracy, etc...

NOTUR2009 Philip Mucci, Multicore Optimization

28

Threads and Processes

e Operating systems support threads and
processes.

— A thread is an execution context; machine state
scheduled by the operating system.

- A process is a thread plus virtual memory, files, etc.
A process can contain multiple threads.

 Each thread in a process shares everything except state
(stack, registers and program counter)

e Both are managed by the operating system.

NOTUR2009 Philip Mucci, Multicore Optimization 29

OS Scheduling and Threads

e On Linux, threads are free to bounce around.

— Other threads can steal the CPU as can OS work like
hard and soft interrupts.

- OS's do this to provide “fairness”.

- Linux does understand a cost penalty when moving a
thread from one core to another.

- Rescheduling a new thread often involves a cache
and TLB flushing.

e For technical computing (often SPMD), this is
bad for performance.

NOTUR2009 Philip Mucci, Multicore Optimization 30

OS and System Calls

 System calls are function calls that ask the OS to
do something.

- Going to the OS (crossing from user to kernel
domain) is slow.

« Argument checking
» Data copies

« Rescheduling points

« Function calls are cheap, just register bits.

« Many system calls contain locks, are serialized
or are not scalable.

NOTUR2009 Philip Mucci, Multicore Optimization

31

e To tune, you need to have some background.

Architecture Summary

Single core performance comes first!

e With multicore, we will tune:

NOTUR2009

‘0 use all of the cache

‘0 avoid cache conflicts

‘0 minimize shared resource contention
« Memory bandwidth, OS, I/O, Comm

Minimize NUMA effects

Philip Mucci, Multicore Optimization

32

NOTUR2009

Working With the Compiler

Philip Mucci, Multicore Optimization

33

Optimizing with the Compiler

e It can't read your mind, only your code.

 Correctness is always emphasized over
performance.

 For popular” and “simple” constructs, the
compiler will usually do a better job than you.

e But as code gets more abstract, it can't guess the
things that matter!

- Loop lengths, alignment, cache misses, etc...

NOTUR2009 Philip Mucci, Multicore Optimization

34

Understanding Compilers

« The best things you can do to work with the
compiler are:

- Learn a compiler well and stick with it.

- Clearly express your intentions to the compiler
through:

« Well structured code
« Compiler directives
« Compile time options

- Extensive array to control different behaviors.

NOTUR2009 Philip Mucci, Multicore Optimization

35

Correctness and Compilers

« We often talk about getting “correct” answers.
- IEEE has a standard for correctness (IEEE754)

- Applications relax that standard for performance and
because correct is somewhat arbitrary.

« Consider the following:

suml = 0.0
sum = 0.0 sum? = Uslt
doi=1, n do i=1, n-1, 2 _
sum = sum + a (i) suml = suml + a(})
enddo sum2 = sum2 + a(i+l)
enddo

sum = suml+sum2

NOTUR2009 Philip Mucci, Multicore Optimization 36

Inlining

« Replacing a subroutine call with the code from
the original function.
« Good because:

- Function calls inside loops (often) inhibit
vectorization.

- Function calls are not free, they take cycles and
cycles to set up and tear down.

« Has potential to bloat code and stack.

NOTUR2009 Philip Mucci, Multicore Optimization

37

Vectorization

« Generate code that takes advantage of vector
Instructions.

- Helped by inlining, unrolling, fusion, SWP, IPA, etc.
« The entire motivation behind using accelerators
- GPGPUs and FPGAs

e« x86, PPC, MIPS all have variants of vector
Instructions:

— SSE, AltiVec, etc...

NOTUR2009 Philip Mucci, Multicore Optimization 38

IPO/IPA

e Interprocedural Optimization/Analysis

- Compiler can move, optimize, restructure and delete
code between procedures and files.

e Generates intermediate code at compile time.

 Generates object code during final link.

- As with SWP, exposes more opportunities to
optimization passes.

« Stronger typing of pointers, arguments and data
structures can vastly increase effectiveness.

NOTUR2009 Philip Mucci, Multicore Optimization

39

Software Pipelining

« Consider more than one iteration of a loop.

- Keep more intermediate results in registers and
cache.

 To use it, the compiler must predict:
— Loop count
- Inter-iteration dependencies
- Aliasing

« Optimization can be a trade off.

- Loop set up and tear down can be costly.

NOTUR2009 Philip Mucci, Multicore Optimization

40

Pointer Aliasing

« The most efficient optimization is deletion.
- Especially loads and stores!

« Compilers must assume that memory (by
pointers) has changed or overlaps.
- Unless you help it to conclude otherwise.

 This is called the pointer aliasing problem. It is
really bad in C and C++.

- Can be controlled on command line and through
keywords.

NOTUR2009 Philip Mucci, Multicore Optimization 41

Types of Aliasing

o Strict
- Pointers don't alias if they are different types.
« Typed
- Pointers of the same type can alias and overlap.

e Restricted
- Pointers of same type are assumed to not overlap.

 Disjointed
- All pointer expressions result in no overlap.

NOTUR2009 Philip Mucci, Multicore Optimization 42

Profile Directed Feedback

e a.k.a Feedback Directed Optimization

 Collect data about what the code really does and
then adapt.

- Old idea, but (still) not very well developed.

 Important for:
- Branches (I-cache/ITLB misses, BP misprediction)

- Loop bounds (unroll, SWP, jam, etc)

e Future will be to make most decisions based on
real data.

NOTUR2009 Philip Mucci, Multicore Optimization

Compiler Flags

« All compilers support the -0 (n) flag.

- This flag actually turns on lots of other optimizations.

» Better to start at -O (big) and disable
optimizations rather than other way around.

- Develop your knowledge of what to turn off.

- Compiler documentation is usually clear about
which n can result in wrong answers.

NOTUR2009 Philip Mucci, Multicore Optimization

44

GNU Compiler Flags

e —-03 -ffast-math -funroll-all-loops
-msse3 -fomit-frame-pointer
-march=native -mtune=native

- -Q —--help=optimizers

e Sometimes you need -fno-strict-aliasing
o get correct results.
- —02 and higher assume strict aliasing.

 Feedback directed optimization:
— First time use —-fprofile-generate
- Subsequent times use -fprofile-use

NOTUR2009 Philip Mucci, Multicore Optimization 45

PathScale Compiler Flags

« —Ofast is equivalent to:

- -03 -ipa -OPT:Ofast -ffast-math -fno-
math-errno -fomit-frame-pointer

« Takes most of the same flags as GCC.
« To find out what the compiler is doing:

— =-LNO: vintr_verbose=1
— -LNO: simd_verbose=1

« Feedback directed optimization:
- First time use -fb_create fbdata
- Subsequent times use -fb_opt fbdata

NOTUR2009 Philip Mucci, Multicore Optimization 46

Intel Compiler Flags

« —fast equals -03 -ipo -xT -static
-no-prec-div
- —ip is subset of —ipo for single files
- —shared-intel to allow tools to work
« To find out what the compiler is doing:
- —opt-report [0123], -opt-report-file f£f
« Feedback directed optimization
— First time use -prof-gen

- Subsequent times use -prof-use

NOTUR2009 Philip Mucci, Multicore Optimization

47

Intel Compiler Directives

e C (#pragma) or Fortran (\DEC$)

e Prefetching

- [no]prefetch varl[,var2]
- GCC: _ builtin prefetch()

e Software Pipelining (of Loop)
- [no] swp

NOTUR2009 Philip Mucci, Multicore Optimization

48

Intel Compiler Directives

* Loop Count
- loop count (n)

e No Loop Interdepedencies (w/SWP)
- 1vdep

« Loop Unroll
— [no]Junroll (n)

 Loop Split

- distribute point

NOTUR2009 Philip Mucci, Multicore Optimization

49

Limiting Aliasing

e restrict keyword
- Part of the C99 standard (-std=c99 with GCC)

— A pointer refers to uniqgue memory.
 Writes through this pointer will not affect anyone else.

- Allows very good optimization!

« —fstrict-aliasing allows aliasing only for
pointers of the same type.
- For GCC and many compilers, auto when >= -02

NOTUR2009 Philip Mucci, Multicore Optimization

50

Aligning Data

 Specitying alignment eliminates manual padding.

e Intel says:

« Align 8-bit data at any address.

« Align 16-bit data to be contained within an aligned four-byte word.
« Align 32-bit data so that its base address is a multiple of four.

« Align 64-bit data so that its base address is a multiple of eight.

« Align 80-bit data so that its base address is a multiple of sixteen.

« Align 128-bit data so that its base address is a multiple of sixteen.

/* Intel, align to 16 bytes */
__declspec(align(16)) unsigned long lock;

/* GCC */

unsigned long lock _ attribute ((aligned(16)));

NOTUR2009 Philip Mucci, Multicore Optimization

Other Important C/C++ Keywords

« static
- In global scope, used only in this file.
e const
- Data or location never changes.
e volatile
- Data may change from an alias outside of scope.
e inline

— Inline all the time.

NOTUR2009 Philip Mucci, Multicore Optimization

52

NOTUR2009

Serial Code Optimization

Philip Mucci, Multicore Optimization

53

“The single most important impediment to good
parallel performance is still single-node
performance”

William Gropp, Argonne National Lab.

s/parallel/multicore; s/node/core;

NOTUR2009 Philip Mucci, Multicore Optimization

54

Guidelines for Performance

« Cache gets you all of your performance.
« Compilers like to optimize loops without.

- Function calls

- Side effects

- Pointers that can overlap
- Dependencies

 Function calls are not free
 System calls are slower
e |/O Is even worse

NOTUR2009 Philip Mucci, Multicore Optimization

55

Loop and Array Optimizations

« Allocation * Fusion

 Unit Stride Reference ¢ Defactorization

e Initialization * Peeling

 Padding « Collapse
 Packing Floating IF's

e Stride Minimization e Indirect Addressing
 Blocking Gather/Scatter

« Unrolling

NOTUR2009 Philip Mucci, Multicore Optimization 56

Code Examples

o All of the examples that follow are contrived.

— Compilers can optimize them very well.

e In production codes, these patterns are harder to
Spot.
- And thus poorly optimized.

e Write the simplest code first, make sure it's
correct.

- Debugging a highly optimized loop is terrible work.

NOTUR2009 Philip Mucci, Multicore Optimization 57

Array Allocation

« As we know, arrays are allocated differently in C
and Fortran.

1 2 3 4
> 6 T 8
9 10 1 12

(12345 6789 I0 11 12
Fortran: 1 5 9 2 6 10 3 7 11 4 8 12

NOTUR2009 Philip Mucci, Multicore Optimization

58

Unit Stride Access

« Unit stride is always best.
- Small stride (< line size) is also ok.

« When data comes in, think about using as much
of it as possible as soon as possible.

« When touching large amounts of memory, TLB
misses faults can be a concern.

NOTUR2009 Philip Mucci, Multicore Optimization

59

Array Referencing

e In C, outer most index should move the fastest.
X, Y]

* In Fortran, inner-most should change the fastest.
(X,y)

NOTUR2009 Philip Mucci, Multicore Optimization

60

Array Initialization

« No one really uses formal static initialization
anymore. Waste space, restricts program, etc.

- But static bounds were great for optimizers.
« C and Fortran now dialects allow:
- Dynamic array allocation on the stack.
- Run time specification of array bounds.
« Opinions vary on this.
- Simpler and more expressive the code, the better.
- Array addressing can waste a lot of cycles.

NOTUR2009 Philip Mucci, Multicore Optimization

61

Array Padding

« Memory often needs to be padded to avoid
cache line conflicts.

- Fortran common block is a contiguous region of
memory.

— Lots of codes just use powers of 2. Yikes!

« Same can easily be true of dynamically allocated
memory.

e Some elements on systems love aligned data.
- 1/O, Infiniband
— But caches on multicore do not!.

NOTUR2009 Philip Mucci, Multicore Optimization 62

Intra-Array Padding

e Same problem can happen when accessing a
single array.

- Consider striding across each dimension as in a
transpose.

 This can be avoided by allocating extra space.
- C: Avoid leading dimension of power of 2

- Fortran: Avoid trailing dimension of power of 2.

« As with previous item, depends on associativity
of the cache.

NOTUR2009 Philip Mucci, Multicore Optimization 63

Structure Packing

« Unaligned access to data is usually slower.
 So align items on word, double-word or bigger.

 Pack from smallest to largest, maybe add
padding?

 But this is a multicore problem! (more later)

struct { | ——— 1
short s; - . .
int 1i; - S ru?d i .
char c; : YZt _.p,
void *p; 1 1/
P short s;
}
char c;

}

NOTUR2009 Philip Mucci, Multicore Optimization 64

Stride Minimization
Loop Interchange

« Always think about spatial and temporal locality.

 Often, this is just an oversight of the original
implementor.

« With simple loops, compiler will interchange
them for you.

do i=1, 2000 do i=1, 2
do =1, 40 do =1, 40
do k=1, 2 do k=1, 2000
a(k,j,1i) = alk,j,i)*1.01 a(k,j,i) = a(k,j,i)*1.01
enddo enddo
enddo enddo
enddo anddo

NOTUR2009 Philip Mucci, Multicore Optimization

65

Cache Blocking

e Standard transformation

- Most compilers are decent at it, if the loop is simple
and has no subroutine calls or side-effects

« Goal is to reduce memory pressure by making
use of the caches.

- Helps when potential for re-use is high.
- Naturally blends with sum reduction and unrolling.

e Good for multicore too but, some caches are
shared! And which loop should we parallelize?

NOTUR2009 Philip Mucci, Multicore Optimization 66

DO J=1,P
DO I=1,M
DO K=1,N

ClIyB) = ClLyB)

A(I,K)*B(K,J)
ENDDO
ENDDO
ENDDO

NOTUR2009

Cache Blocking

DO JB=1,P, 16
DO IB=1,M,16
DO KB=1,N
DO J=JB,MIN (P, JB+15)
DO I=IB,MIN (M, IB+15)
C(I,P) = C(I,P) +
A(I,K)*B(K,J)
ENDDO
ENDDO
ENDDO
ENDDO
ENDDO
ENDDO

_>

Philip Mucci, Multicore Optimization

Loop Unrolling

« Standard transformation to improve processor
pipeline utilitization and reduce loop overhead.

- More work per iteration
« Compilers are very good except when
- Function calls inside
- Inter-iteration dependencies
- Global variables
- Pointer aliasing

NOTUR2009 Philip Mucci, Multicore Optimization

68

do i =1, lda
do 7 = 1, lda

do k = 1,
a(j,1)
enddo
enddo
enddo

4

Loop Unrolling

a{31) +bhbii; k) * clj. k)

NOTUR2009

do j = 1, lda
a(j,1i) = a(j,1)

a(j,1i)

a(j,i) = a(j,i)

alj,1) = alj,1)

[
i
|_|..
I
+ + + +

Philip Mucci, Multicore Optimization

b(i, 1)
b(i,2)
b(i,3)
b(i,4)

c(j,1)
c(]j,2)
c(j,3)
c(j,4)

69

Loop Unrolling & Sum Reduction

 When an loop has a data dependency that
introduces serialization.

e Solution is to unroll and introduce intermediate
registers.

ad = a4 + b
enddo

enddo

aa = al + a2z +a3 + a4

NOTUR2009 Philip Mucci, Multicore Optimization

(Outer) Loop Unroll and Jam

« Reduce register pressure
« Decrease loads and stores per iteration

DOI =1, N, 2
DOJ =1, N, 4
DOK=1, N
A(I,J) = A(I,J) + B(I,K) * C(K,J)
A(I+1,J) = A(I+1,J) + B(I+1,K) * C(K,J)
DO I =1, ENDDO
DO J =1, N 2 562 Ly L
DOK=1, N A(I,J+1) = A(I,J+1) + B(I,K) * C(K,J+1)
A(I,J) = A(I,J) + B(I,K) A(I+1,J+1) = A(I+1,J+1) + B(I+1,K) * C(K,J+1)
ENDDO ENDDO
ENDDO e S = L, W
ENDDO A(I,J+2) = A(I,J+2) + B(I,K) * C(K,J+2)
T A(I+1,J+2) = A(I+1,J+2) + B(I+1,K) * C(K,J+2)
ENDDO

DOK=1, N
A(I,J+3) = A(I,J+3) + B(I,K) * C(K,J+3)
A(I+1,J+3) = A(I+1,J+3) + B(I+1,K) * C(K,J+3)
ENDDO
ENDDO
ENDDO

NOTUR2009 Philip Mucci, Multicore Optimization

71

(Outer) Loop Unroll and Jam

 Be careful loop body does not become too large.
- Should have enough registers for int. results.

DOI =1, N, 2
DOJ =1, N, 4 I
DOK=1, N
A(I,J) = A(I,J) + B(I, DO I =1, N, 2
A(I+1,J) = A(I+1,J) + DO J =1, N, 4
DOK=1, N A(I,J) = A(I,J) + B(I,K) * C(K,J)
A(I,J+1) = A(I,J+1) + A(I+1,J) = A(I+1,J) + B(I+1,K) * C(K,J)
A(I+1,J+1) = A(I+1,J+1 A(I,J+1) = A(I,J+1) + B(I,K) * C(K,J+1)
ENDDO A(I+1,J+1) = A(I+1,J+1) + B(I+1,K) * C(K,J+1)
DOK=1, N A(I,J+2) = A(I,J+2) + B(I,K) * C(K,J+2)
A(I,J+2) = A(I,J+2) + A(I+1,J42) = A(I+1,J+42) + B(I+1,K) * C(K,J+2)
A(I+1,J42) = A(I+1,J+2 A(I,J+3) = A(I,J+3) + B(I,K) * C(K,J+3)
ENDDO A(I+1,J43) = A(I+1,J43) + B(I+1,K) * C(K,J+3)
DOK=1, N e
A(I,J+3) = A(I,J+3) + LR
A(I+1,J+3) = A(I+1,J+3 R
ENDDO
ENDDO

ENDDO

NOTUR2009 Philip Mucci, Multicore Optimization

72

Outer Loop Unrolling

e Goal is to reduce number of loads and stores on
inner loops with invariants

- More results can be kept in registers or in cache

« Compilers not quite as good at this.

do 1 =1, lda, 4

do] = 1, 1ldb
do i = 1, 1lda

i . A{i,7) = B(1,]) * C(3])

g . A(i+1,3) = B(i+1,3) * C(3)
L A —_— . . -+ _'l] r f
Bids;) Bli;7]) C(]) > E{i"‘z;j} _ E{i+2,j} * ':{:l]'
enddo . .) i . .
A(i+3,]) = B(1i+3,3) * C(])
endao
enddo
enddo

NOTUR2009 Philip Mucci, Multicore Optimization 73

Loop Jam/Fusion

* Merge two loops that access (some) similar data
to:

- Reduce loop overhead, Improve instruction mix,
Lower cache misses

 Fusion can create associativity conflicts

do 1 =1, 50000 do 1 =1, 50000
x =x % a(i) + bi{i) x =% % a{i) + bii)
enddo ¥ =% #+ ati) f bia)
do i = 1, 100000 enddo
vy =y + a(i) / bi{i) do 1 = 50001, 100000
enddo vy =vyv + a(i) /7 b(i)
enddo

NOTUR2009 Philip Mucci, Multicore Optimization

Loop Defactorization

« Reduce the number of array elements referenced,
to reduce cache traffic.

 But floating point operations are not always
associative.

(A+B)+C =A+ (B + (C)
« Verify that your results are still “correct”

NOTUR2009 Philip Mucci, Multicore Optimization

75

Loop Defactorization

do 1 =1, lda do 1i = 1, lda
A(i) = 0.0 A{i} = 0.0
gda 7 =1 lds de] = 1, lda
A{1)=A({1)+B(J)*D(3)*C (1) Eid) = Alx) - BL]) * D)
enddo enddo
enddo Af(i}) = A({i) * C(i)
enddo

NOTUR2009 Philip Mucci, Multicore Optimization

76

Loop Peeling

e For loops which access previous elements in
arrays.

« Compiler cannot determine that an item does not
need to be reloaded on every iteration.

jwrap = lda b{(l) = (a(l)+a(lda))*0.5
do i.= 1, 1da do i = 2, lda
b(i) = (a(i)+a(jwrap))*0.5 b(1) = (a(1)+a(i-1))*0.5
jwrap = i enddo

NOTUR2009 Philip Mucci, Multicore Optimization

77

Loop Collapse

e Reduce address computation and loop nesting.

« Reduces loop overhead and increases chance of
vectorization.

do 1 = 1, lda

do j = 1, 1ldb
do k = 1, ldc
A(k,Jj,1) = A(k,J,1) + B(k,;]J,1) * C(k,],1)
enddo
enddo
enddo

NOTUR2009 Philip Mucci, Multicore Optimization 78

Loop Collapse

 This can be especially effective in C and C++,
where often macros are used to compute multi-
dimensional array offsets.

do 1 = 1, lda*ldb*ldc
A(i,1,1) = A(1i,1,1) + B(i,1,1) * C(i,1,1)
enddo

do 1 =1, lda*ldb*ldc
A(i) = A(1) + B(i) * C(i)

enado

NOTUR2009 Philip Mucci, Multicore Optimization

79

If statements in Loops

« We already know many optimizations that this
inhibits.

« Unroll loop, move conditional elements into
scalars early, test scalars at end of loop.

do I =1, n, 2
a = t(I)
b = £t(I+1)
if (a .eqg. 0.0)
end 1f
if (b .eg. 0.0)
end 1f

end do

NOTUR2009 Philip Mucci, Multicore Optimization 80

Floating IF's

« |F statements that do not change from iteration to
iteration can be hoisted.

« Compilers are usually good at this except when:

- Loops contain calls to procedures
- Loops have variable bounds

- Loops reference global variables that may be aliased
to data in the IF statement.

NOTUR2009 Philip Mucci, Multicore Optimization

Floating IF's

do 1 = 1, lda do 1 = 1, lda
do J = 1, lda if (a(i) .GT. 100) then
if (a(i) .GT. 100) then b{i}) = af{i) - 3.7
b(i) = a(i) - 3.7 endif
endif do § = 1, lda
X = x + a(j) + b(i) X =x + al{j) + bi{i)
enddo enddo
enddo enddo

NOTUR2009 Philip Mucci, Multicore Optimization

82

Some Results

« Taken years ago on 3 different architectures with
the best compilation technology at that time.

e Percent is of -O3 version but untuned.

Arch A Arch B Arch C
Stride Minimization 35% 9% 100%
Fusion 69% 80% 81%
Interchange 75% 100% 100%
Floating IF's 46% 100% 101%
Loop Defactor 66% 76% 94%
Loop Peeling 97% 64 % 81%
Loop Unrolling 97% 89% 67%
Loop Unroll + SumR 7% 100% 39%
Outer Loop Unrolling 83% 26% 46%

NOTUR2009 Philip Mucci, Multicore Optimization

Indirect Addressing

X(1) = X(I) * Y(A())
 Very hard for a compiler to optimize.

 Very difficult for “normal” memory subsystems.

- Most memory subsystems are just bad at pseudo-
random accesses.

- Hardware prefetch can mitigate, but can also hurt
« When you have this construct, either:

- Consider using a sparse solver package.

- Block your data into small cache-line sized chunks
and do some redundant computation.

NOTUR2009 Philip Mucci, Multicore Optimization 84

Gather-Scatter Optimization

 For loops with conditional work.

« Split loop to gather indirect array where work
needs to be done.

« Can increase pipelining, effectiveness of
prefetching and enable other loop optimizations.

- Depends on amount of work per iteration and
locality of reference.

NOTUR2009 Philip Mucci, Multicore Optimization 85

Gather-Scatter Optimization

dn 1 =21 n
if {ELI)..oE. 0.0

a(Il)=2.0*b(I-1)

end 1if
enddo

NOTUR2009

inc = 0
g 1.= 1. 7
tp (Inc) o= 3
1E (ExI)-gt.0.0) then

inc = inc + 1

end 1if
enddo
do I =1, ineg
a(tmp(I))=2.0*b((tmp(I)-1)
enddo

Philip Mucci, Multicore Optimization

OOC and C++ Considerations

 Extensive use creates much greater memory
oressure, lots and lots of pointers.

e Dynamic typing and polymorphism is not free.
« Make use of inline, const and restrict keywords
« Use STL, Boost and other support libraries

- Expresses more of author's intent to compiler to
increase performance.

— But be careful with multicore of the above.

NOTUR2009 Philip Mucci, Multicore Optimization 87

Fortran Considerations

e WHERE statements
« ALLOCATE alignment

 Array shapes, sizes, slices etc.

NOTUR2009 Philip Mucci, Multicore Optimization

88

Fortran 90 Arrays

 The () syntax is very useful.
 But this can hide significant amount of data
movement, often repeatedly.

— Pollutes the caches

- Creates temporaries that may have pathological
alignment, especially with 'assumed shapes'

« Consider creating an explicit temporary if you
need to pass slices around.

NOTUR2009 Philip Mucci, Multicore Optimization

89

Fortran 90 WHERE statements

« A construct for masking array operations

« Generated code is often required to be a loop
containing an if statement.

- Highly inefficient
« Consider multiplying by a 0 or 1T mask array with
the same shape into a temporary.

NOTUR2009 Philip Mucci, Multicore Optimization 90

Optimized Arithmetic Libraries

« Usually, it's best NOT to write your own code.

- Many good programmers are focussed on multicore
development

« Advantages:
- Performance, Portability, Prototyping

- Let someone else solve the hard problems.

« Disadvantages:
- Extensive use can lead to vertical code structure.
- May make performance debugging difficult.

NOTUR2009 Philip Mucci, Multicore Optimization 91

do kb
ke

do ib

ie

o

1,kk,blk
min (kb+blk-1,kk)
1,ii,blk
min (ib+blk-1,ii)
= ib,ie
do k = kb, ke
TB (k-kb+1,i-ib+1) = B(i, k)

e Sample DGEMM® e ™

&
=8

do jb = 1,33,blk
_ 1 je = min (jb+blk-1,33)
(old Pentium 1V) el Lo
.o de i = ib,ie, 2
e Najve T1 = 0.0d0
TZ = 0.0d0
_ (k,J) T3 = 0.0d0
;Z()() hV1F: T4 = 0.0d0
do k = kb, ke
[/A\(J\/Elr](:(e(j -:> Tl Tl + TB(k-kb+l,i-ib+1)*C(k,3j)
T2 T2 + TB(k-kb+l,i-ib+2)*C(k,3)

T3 + TB(k-kb+l,i-ib+1)*C(k,j+1)
T4 + TB(k-kb+l,i-ib+2)*C(k,j+1)

-1 GF =

enddo

o Optlmal A(i,9) = A(L,§)+T1
A(i+l,q) = A(i+l, j)+T2
A(i,j+1) = A(i,j+1)+T3
- 2.5GF A(i+1,§+1) = A(i+l,3j+1)+T4
. enddo
 Think you can dc enddo
enddo

arnAA~

NOTUR2009 Philip Mucci, Multicore Optimization

NOTUR2009

Multicore Programming

Philip Mucci, Multicore Optimization

93

Multithreaded Programming

« Here we will cover three popular models:
- MPI
- Pthreads (C and C++)
- OpenMP

« We will talk a bit about
- PGAS languages

NOTUR2009 Philip Mucci, Multicore Optimization

94

Expressing Parallelism

« Data parallelism

- Programmer specifies chunk of work to be done in
parallel.

« Same operation on every thread, using different data
 OpenMP, UPC, Co-Array Fortran, etc...

« Functional (or task) parallelism

- Programmer partitions work by thread or function.
e MPI, Pthreads, Cilk, etc...

NOTUR2009 Philip Mucci, Multicore Optimization

95

Message Passing

« Program explicitly exchanges data.

« Semantics are send/receive (identified by tag) or
get/put (direct to address).

« Ordering and consistency are somewhat implicit.
- Synchronization usually not needed

 Designed for distinct address spaces.
- Nothing really shared other than task ID's

e MPI, PVM, SHMEM, Sockets

NOTUR2009 Philip Mucci, Multicore Optimization

96

Shared Memory

« Data is exchanged implicitly as part of an
expression.

- Load/store or language feature.
« No guarantee of ordering or consistency
- Synchronization is needed.

* Programs share everything

- Or in higher level models, data that is declared
shared.

e One can be used to implement the other...

NOTUR2009 Philip Mucci, Multicore Optimization

97

MPI and Multicore

« MPI was originally designed for distributed
memory machines.

- Receiver is not expected to be in the same address
space of the sender.

- Data was expected to be copied, packed, sent,
received, unpacked, copied, etc...

- Much work has been done to “eliminate the copies”.

 You can get a 4 byte message across a wire in Tus these
days (if you do it 1000's of times and average)

- But that's still way more expensive than 2ns.

NOTUR2009 Philip Mucci, Multicore Optimization 98

MPI and Multicore 2

e MPI-2 introduced some get/put primitives to
introduce more direct access to remote memory.

- Not nearly as lightweight or flexible as they should
nave been, thus limited acceptance.

- Require synchronization.

« Most MPI's were not previously safe for threads.

- You had to run multiple processes on a multicore
machine.

- Things are different now.

NOTUR2009 Philip Mucci, Multicore Optimization 99

MPI and Multicore 3

« Many MPI's are now both thread safe and tuned
for on-node, shared memory operation.

« This means you can easily use MPI for multicore
programming.
- Advantages to this are:

« Explicit coding of data exchange and synchronization.
Code may be easier to read and tune.

- Disadvantages are:

 You can lose a substantial amount of performance.
Granularity of parallelism must be coarse. Programming
model is limited.

NOTUR2009 Philip Mucci, Multicore Optimization

100

Pthreads

« Assembly language of thread programming.
— A Pthread is an OS thread
- Not for you Fortran programmers.
 Basic primitives are Create, Join and Mutex
e Used in combination with “messages” to create
different models.
- master/worker model
- gang model (master is a worker)
- pipeline (dataflow)

NOTUR2009 Philip Mucci, Multicore Optimization 101

Pthreads

« With pthreads, everything is shared except
variables declared on the stack.

- Extreme care must be used to coordinate access to
global data structures.

-~ Reads and writes need to be consistent.

- Different cores should be working with different
cache lines.

* 3 types of synchronization

— Mutex, condition variables and rwlocks.

NOTUR2009 Philip Mucci, Multicore Optimization

102

Pthread Dot Product Example

#include <pthread.h>

struct dot_struct{

g

double dotout;
double #*X;
double =*Y,;

int N;

void *ddot_serial (void #*vds)

{

int i, N;
double *X, *Y, dot;
struct dot_struct *ds = vds;

N = ds->N;

if (N > 0)

{
X = ds->X;
Y = ds->Y;

dot = X[0] = Y[0];
for (i=1; i < N; i++)
dot += X[i] * Y[i];
ds->dotout = dot;
}
else ds->dotout = 0.0;
return(NULL) ;

NOTUR2009

double ddot_pt(int NT, int N, double *X, double *Y) {

double dot;

int i, n;

pthread_t *mythrs;
struct dot_struct #*dss;

dss = malloc(sizeof (struct dot_struct)*(NT));
mythrs = malloc(sizeof (pthread_t)*(NT-1));

n =N/ NT;

for (i=1; i < NT; i++) {
dss[i].N = (i != 1) 7 n : n + N - n*NT;
dss[i].X = X; dss[i].Y = Y;

pthread_create(mythrs+i-1, NULL, ddot_serial, dss+i);
X += dss[i].N;
Y += dss[i].N;
}
dss[0].N = n; dss[0].X = X; dss[0].Y = Y;
ddot_serial(dss);
dot = dss[0] .dotout;
for (i=1; i < NT; i++) {
pthread_join(mythrs[i-1], NULL);
dot += dss[i] .dotout;
}
free(dss);
free (mythrs) ;
return(dot);

Philip Mucci, Multicore Optimization

103

Pthread Work Queue Example

struct workq {

} *workhead;
int nwork=0;

#define CHUNK 16
#define THRESH 4

pthread _mutex_t

wglock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t

wqcond = PTHREAD_COND_INITIALIZER;

void AddWork(struct workq *p) {

struct workq *last;

for(n=0,last=p; last->next;
last = last->next, n++);

pthread_mutex_lock(&wqglock);

last->next = workhead;

workhead = p;

nwork += n;

if (nwork == n)
pthraad_cund_hrﬂadcast(&wqcnnd];

pthread_mutex_unlock(&wqlock) ;

void DoAllWork()
{
struct workqg *mywork;
int mynwork=0;
while(1) {
if (mynwork == 0) {
pthread_mutex_lock(&wqlock) ;
while (!workhead)
pthread_cond_wait (&wgcond, &wglock);
LOCKED = 1;
}
else if (mynwork < THRESH && workhead)
LOCKED = !pthread_mutex_trylock(&wglock)
if (LOCKED)
{
if (workhead)
mywork = GetWrkChunk (mywork,&mynwork)
pthread_mutex_unlock(&wglock);
¥
DoThisWork(mywork) ;
mywork = FreeWorkNode (mywork);
mynwork-—;
}
}

Thanks to Clint Whaley
NOTUR2009 Philip Mucci, Multicore Optimization 104

Logical Parallelism

 Separate processors from programmers view of
threads.

- Make chunks or work and threads separate.

« Make queues of work for each thread.
- Send work to threads in chunks.

- If a thread finishes, get more work.

e |deally, the programmer should not have to think
about processors, just think in parallel!

NOTUR2009 Philip Mucci, Multicore Optimization

105

OpenMP

 Designed for quick and easy parallel
programming of shared memory machines.

» Works by inserting compiler directives in code,
usually around loops.

« Threads are started implicitly and “fed” work.

NOTUR2009 Philip Mucci, Multicore Optimization 106

OpenMP Directives

 Parallelization
- parallel, for, do, workshare, section, sections, task
- single, master

e Data placement and handling

- shared, private, threadprivate, copyprivate,
firstprivate, lastprivate, reduction

 Synchronization

— barrier, ordered, critical, atomic, flush, nowait

NOTUR2009 Philip Mucci, Multicore Optimization 107

NOTUR2009

OpenMP Data Parallelism

! SOMP
! SOMP

! SOMP
! SOMP

PROGRAM WORKSHARE

INTEGER N, I, J
PARAMETER (N=100)

REAL AA(N,N), BB(N,N), CC(N,N), DD(N,N),

Some initializations
DOI =1, N
DO J =1, N
AA(J,I)
BB(J,I)
ENDDO
ENDDO
PARALLEL SHARED (AA,BB,CC,DD,FIRST, LAST)
WORKSHARE
CC = AA * BB
DD = AA + BB
FIRST = CC(1,1) + DD(1,1)
LAST = CC(N,N) + DD(N,N)
END WORKSHARE
END PARALLEL
END

I 1.0
J+ 1.0

FIRST, LAST

Philip Mucci, Multicore Optimization

108

NOTUR2009

OpenMP Data Parallelism

#include <omp.h>
##define CHUNKSIZE 100
#define N 1000

main ()

{

int i, chunk;

float a[N], b[N], c[N];

/* Some initializations */
for (i=0; i < N; i++)

af[i] = b[i] =1 * 1.0;
chunk = CHUNKSIZE;

#pragma omp parallel shared(a,b,c,chunk) private (i)
{

#pragma omp for schedule (dynamic,chunk)
for (i=0; i < N; i++)
c[i] = a[i] + b[i];

} /* end of parallel section */

}

Philip Mucci, Multicore Optimization

109

NOTUR2009

OpenMP Task Parallelism

! SOMP
! SOMP
! SOMP

! SOMP

! SOMP
! SOMP

PROGRAM VEC_ADD SECTIONS
INTEGER N, I

PARAMETER (N=1000)

REAL A(N), B(N), C(N), D(N)

Some initializations
DOI =1, N
A(I) =I * 1.5
B(I) =1 + 22.35
ENDDO

PARALLEL SHARED (A,B,C,D), PRIVATE (I)
SECTIONS
SECTION
DOI =1, N
C(I) = A(I) + B(I)
ENDDO
SECTION
DOI =1, N
D(I) = A(I) * B(I)
ENDDO
END SECTIONS
END PARALLEL
END

Philip Mucci, Multicore Optimization

110

CILK

« “Logical” task parallelism in a ANSI C
- Handful of new keywords, spawn and join.

- Work-stealing scheduler: programmer just thinks in
parallel, scheduler does the work

« Mostly Open Source
- http://supertech.csail.mit.edu/cilk

« Commercial compilers also available (Cilk++)
- C++, parallel loops
- http://www.cilk.com

NOTUR2009 Philip Mucci, Multicore Optimization 111

http://supertech.csail.mit.edu/cilk
http://www.cilk.com/

Cilk Example

int fi b (int n) {
If (n<2) return (ny;

el se |
int x,y; cilk int fi b (int n) |
x = fi b(n-1); if (n<2) return (ny;
y = fi b(n-2); el se |
return (x+y); int x,vy;
) X = spawn fi b(n-1);
) y = spawn fi b(n-2);
return (x+y);
J
J

© Charles E. Leiserson
http://supertech.csail.mit.edu/cilk/lecture-1.pdf

NOTUR2009 Philip Mucci, Multicore Optimization 112

http://supertech.csail.mit.edu/cilk/lecture-1.pdf

Unified Parallel C

e Shared memory parallel extension to C
- shared, relaxed and strict keywords

- Intrinsinc functions for sync, get/put, collectives,
worksharing, 1/0

 Easy to program, but for performance...

- Remote references on on single data items when they
are used (not before)

- Compiler must hoist and aggregate comm.

« OS and Commerical: http://upc.Ibl.gov/

NOTUR2009 Philip Mucci, Multicore Optimization 113

http://upc.lbl.gov/

NOTUR2009

UPC Example

shared int our hits[THREADS]; /* single writer */
main (int argc, char **argv) {

int i, hits, trials = 1000000;

double pi;

seed48 ((MYTHREAD+1l) * THREADS) ;
for (1=0; i<trials; i++)

hits += hit()
our hits[MYTHREAD] = hits;
upc_barrier;

for (i=0,hits=0; i<THREADS; i++)
hits += our_hits[i];

pi = 4.0*hits/trials;

printf ("Thread %d estimates pi = %g”, MYTHREAD, pi)

Philip Mucci, Multicore Optimization

114

Co-Array Fortran

 Small set of extensions to Fortran 95 standard for
SPMD parallelism.

- Similar to UPC but much simpler.
 [n|:] notation after arrays to denote processor.
« Performance issues are more serious.

- Not as nearly expressive as UPC.

e Part of Fortran 2008. G95 has some support. Cray
nas commercial product.

* http://www.co-array.org/

NOTUR2009 Philip Mucci, Multicore Optimization 115

http://www.co-array.org/

Co-Array Fortran Example

X(:) = Y(:)I[Q]
X = Y[PE]
Y[PE] = X
Y[:] = X

Y[LIST] = X
Z(:) = Y[:]
S = MINVAL(Y[:])

NOTUR2009

REAL, DIMENSION(N) [*] :: X,Y ! declare X,Y as parallel

collect from Q

get from Y[PE]

put into Y[PE]

broadcast X

broadcast X over subset of LIST PE's
collect all Y

min (reduce) all Y

Philip Mucci, Multicore Optimization 116

Other PGAS languages

e Titanium (Java-like)

e Fortress (ML/Haskell-like)
e Chapel (C/Java-like)

e X10 (Java-like)

« Ok, but let's remember what happened to HPF,
/PL, Split-C, etc...

NOTUR2009 Philip Mucci, Multicore Optimization 117

Question

« ”"When should I be trying to use CUDA over
(my) multicore CPU? My experience with CUDA

is that I am very good at writing very slow
CUDA code.”

NOTUR2009 Philip Mucci, Multicore Optimization 118

Answer

« When you've:

- Had entirely too many great days in a row and
need a change.

- Don't want to go to church but still wish to be
punished for your all your sins.

- Voted for or (ever) supported George Bush.
e Save it for the platform on which it was made for.

NOTUR2009 Philip Mucci, Multicore Optimization 119

Multicore Optimization

NOTUR2009 Philip Mucci, Multicore Optimization 120

What is Good Parallel Performance?

« Single core performance is consistently high.
- But how high is up?

« The code exhibits decent scaling.
- Strong scaling: Total problem size is fixed.

- Weak scaling: Problem size per processor is fixed.

e Interprocessor, Sync, Comm, I/O are not the
oottlenecks.

e It all starts with a good parallel algorithm.

NOTUR2009 Philip Mucci, Multicore Optimization 121

Reported Linear Scalability(?)

« When you see linear scaling graphs, be
(somewhat) suspicious.

 Linear scalability is easy(ier) when per-core
performance is low!

 The faster a single core computes, the more
vulnerable it is to other bottlenecks.

- Memory, Sync, Comm, 1/O

 So producing a linear graph, does not make your
program efficient.

NOTUR2009 Philip Mucci, Multicore Optimization 122

Multicore Optimization

e Use multicore-tuned libraries.

« Reduce memory bandwidth requirements of
algorithm

- Make it cache friendly
- Help the compilers tune the loops

« Reduce synchronization
- Bigger chunks of work to each thread

e Reduce cache contention
- Alignment, blocking, locks, etc..

NOTUR2009 Philip Mucci, Multicore Optimization

123

Expressing Parallelism

 Important things to remember:
- Granularity must always be as large as possible.
- Synchronization and communication are expensive.

e Initiating parallel work is not “free”.

NOTUR2009 Philip Mucci, Multicore Optimization 124

Libraries

« Do you really need to write the solver yourself?
» No!
- Single core is hard enough.
- You have to be willing to change your storage format.

« Vendor math libraries are probably best at this.

e ScalaPack, PetSC, SuperLU, FFTW, EISPACK,
VSIPL, SPRNG, HYPRE etc etc.

 But if it's not your bottleneck, then it doesn't
matter.

NOTUR2009 Philip Mucci, Multicore Optimization 125

Optimal Usage of O.S. Libraries

e |deally, you should compile the libraries with the
same compiler and flags you use on your binary.

- Vendor compilers are best, but may be fussy.

e Specialize as much as possible for your platform.

- Unless you know it needs to run in many places.

e Many optimization flags (especially IPO and the
like), need to be set for every stage.

e How can you check?

- You need a good sys-admin or do it yourself.

NOTUR2009 Philip Mucci, Multicore Optimization 126

What is a Multicore Library?

« They come in two forms, yet both can be called
“multithreaded”.

e« Monolithic

- Your (serial) program calls a (library) routine which
uses all the cores to solve the problem.

e The library spawns/joins threads as necessary.
- Good: It can't get much easier to use.
- Bad: Memory contention and parallel overhead.

NOTUR2009 Philip Mucci, Multicore Optimization 127

What is a Multicore Library?

 Really parallel

- Your (parallel) program creates it's own threads and
each calls the library on the relevant portion of data.

 You control the degree of parallelism.

- Good: The library can dictate alignment, placement,
etc through allocators. Overhead can be amortized.

- Bad: Increase in complexity and plenty of room for
error.

NOTUR2009 Philip Mucci, Multicore Optimization 128

Multicore Libraries

 Your code can be a hybrid.

- MPI program running on every node, linked against a
Intel MKL that spawns it's own threads.

e How should one use them?

- HPL (Linpack): MPI between nodes and multi-
threaded BLAS on node is usually slower than MPI.

« But HPL runs at > 75% of peak, DGEMM sometimes 90%!
- Your real code won't get anywhere near that.

 So go with what's simple.

NOTUR2009 Philip Mucci, Multicore Optimization 129

VSIPL

 Vector Signal Image Processing Library
e Filters

e Stencils

e Convolutions

e Wavelets

e Serial and Parallel versions

NOTUR2009 Philip Mucci, Multicore Optimization 130

LAPACK/ScaLAPACK

« Comprehensive solver package for dense systems
of linear equations
- Eigenvalue problems
- Factorizations
- Reordering/Conditioning

— Parallel and serial versions

- Some out of core solvers and packaged storage
routines

e ATLAS/BLAS/etc...

NOTUR2009 Philip Mucci, Multicore Optimization 131

PETSc

« Generalized sparse solver package for solution of
PDE's

 Contains different preconditions, explicit and
implicit methods

e Storage format is highly optimized for
performance

e Serial, Parallel and threaded

NOTUR2009 Philip Mucci, Multicore Optimization 132

FFTW

« Multidimensional FFTs
- Serial, threaded and parallel
- Variety of radix sizes and data types

NOTUR2009 Philip Mucci, Multicore Optimization 133

SuperLU

LU factorization of sparse matrices
- Highly optimized
— Compressed block storage formats
- Serial, parallel and threaded

NOTUR2009 Philip Mucci, Multicore Optimization 134

The Cost of Threading

» Starting, stopping and scheduling them requires
the OS to do expensive work.

- TLB/Cache flushing

e Most multicore paradigms create and destroy
real OS threads.

- So do not use them as function calls!
- Keep threads around and send them work.

« Case example: FDTD from Oil patch

NOTUR2009 Philip Mucci, Multicore Optimization

135

Load Balance

 Balancing the work between cores can be an
Issue.

- OpenMP and CILK can provide dynamic scheduling
of iterations

- Pthreads you are on your own

e Ok, but we still must consider cache line
contention when choosing a data layout.

NOTUR2009 Philip Mucci, Multicore Optimization 136

4 Sample Data Layouts

1D Block : BRI
1D Cyclic Column

« 1D Block-Cyclic
« 2D Block-Cyclic
« Which one creates of o el

contention?

NOTUR2009 Philip Mucci, Multicore Optimization 137

Multithreading “Gotchas”

* False Sharing

- Data moves back and forth between different core's
caches.

e Associativity conflicts

 Improper alignment
e |Invalidations

- Two threads writing the same location causing the
value to be flushed.

 Synchronization
- Locking, barriers, etc.

NOTUR2009 Philip Mucci, Multicore Optimization 138

NOTUR2009

False Sharing

Core #0 Core #1

cache linel 0] 0

)

1]o]

-
~

I x[1]++
I L

http://isdlibrary.intel-dispatch.com/isd/1588/MC _Excerpt.pdf
Philip Mucci, Multicore Optimization

{Ol+

139

http://isdlibrary.intel-dispatch.com/isd/1588/MC_Excerpt.pdf

Types of False Sharing

e Read-Write contention
— One core writes cache line, another one reads it

* Write-Write contention
- Many cores writing to same cache line

« Next example has both types.
e Read-Read is perfectly OK!

NOTUR2009 Philip Mucci, Multicore Optimization 140

Loop Structure

do k=1, nz ! The nmagnetic fi el d update
do j=1, ny ! Electric fi eld update is very sinilar.
do i=1, nx
Hx(i,j, k) = Hx(i,j,k) + &
((EV(I;l;k‘fl)-EV(I;I /k))*deZ + &
(Ez(i,j,k Y-Ez(i,j+1,k))*Chdy)
Hy(i,j, k) = Hy(i,j,ky + &
((Ez(i+1,j,k)-Ez(i,j,k))=Chdx + &
(Ex(i ,j,k)-Ex(i,j,k+1))*Cbdz)
Hz(i,j, k) = Hz(i,j, k) + &
((Ex(|,1+1 Ky -Ex(i], k))*Cbdy + &
(By(i,j ,k)-Ey(i+1,j,k))=Chdx)
end do
end do
end do

NOTUR2009 Philip Mucci, Multicore Optimization 141

Memory Contention & OpenMP

“ea_ bench (leap—frog+PEC OBC) ;; opleron

— OCriginal code
= = Paddad coda
0.6 < E arrays n"32k apan
<» Hamays n*32k apart
2
g D 5 ST [N SRR R R gL o R R R L SR SRR B | ol M = RS S — T © e p d
[
0.4 | !
i 3 D @ D OO O O O O O D Q QOO0 DD
DS 1 | | |
50 100 160 200 250 300 a50
Nx- Ny- F'~.I‘r

L1 eache hit rale { =PAPI_L1_DCH/{PAPI_L1_DCH+PAPI_L1_DCM})

L ' ' ! !

ARy

=M =M
x W 7

NOTUR2009 Philip Mucci, Multicore Optimization 142

Hx(1:
Hy(1:
Hz(1:
Ex(1:
Ey(1:
Ez(1:

NOTUR2009

Improved Padding

nx +padHx(1),1:ny +padHx(2), 1:
nx +padHy(1),1:ny +padHy(2), 1:
nx +padHz(1),1:ny +padHz(2), 1:
nx+1+padEx(1), 1: ny+1 +padEx(2), 1:
nx+1+padEy(1), 1: ny+1+padEy(2), 1:
nx+1+padEz(1), 1: ny+1 +padEz(2), 1:

Philip Mucci, Multicore Optimization

nz +padHx(3))
nz +padHy(3))
nz +padHz(3))
nz +1 +padEx(3))
nz +1 +padEy(3))
nz+1 +padEz(3))

143

Managing Memory Contention

e Make sure shared (even read only) data is
cacheline aligned.

« Use thread private variables to compute results,
then merge to shared arrays.

« With OpenMP: use default (none) in your
parallel clauses

- Shared is default type, could cause contention!

NOTUR2009 Philip Mucci, Multicore Optimization 144

Cache Blocking for Multicore

 Generally, block for the largest non-shared
cache.

— L2 on Nehalem.

« Depending on the speed difference and amount
of work per iteration, L1 may be better.

e Never block for the shared cache size.

NOTUR2009 Philip Mucci, Multicore Optimization

145

MultiCore and Locking

e Access to shared data structures & critical
sections must be protected (and ordered).

- Sometimes even if access is atomic.
« Numerous ways to accomplish this.

- Unix has (horribly slow) semaphores.

- Pthreads has rwlocks, mutexes and condition
variables.

- OpenMP has explicit locks and directives.

NOTUR2009 Philip Mucci, Multicore Optimization

146

Locking

I//

« Make locked regions as “small” as possible.

e Time

- Locks should not be taken around any primitive that
does not execute deterministically.

» Space

~- Instructions - do minimal work while performing the
ock.

- Data - lock items, not entire structures.

« Remember that locks always ping-pong in the
cache.

NOTUR2009 Philip Mucci, Multicore Optimization 147

Locking Example

e Consider a multithreaded server where all
threads read from the same socket into a shared

FIFO for processing.

- Lock the FIFO, read into it, increment and unlock.

« Trade memory for performance here.

- We could lock each buffer in FIFO, but that would
cause gaps.

- Instead, make temporary message buffers which we
copy into the FIFO when full. We only lock FIFO
when the data is ready!.

NOTUR2009 Philip Mucci, Multicore Optimization 148

Structure Packing Again

« Our single core optimization can be terrible for
multicore.

- Because we have increased our memory bandwidth!

 So here, pack from largest to smallest.

- Some compilers have #pragma pack

struct { | = 1
short s; - . .
int 1i; S ru?d i .
char c; Yot _.P,
void *p; int 1,
short s;
}
char c;

}

NOTUR2009 Philip Mucci, Multicore Optimization 149

Structure Packing,
Padding and Locking

« What if we are locking each structure?
« What happens after lock is acquired?
« What if structures are allocated together?

« Usage dictates method, what we will be
accessing and when.

struct {
unsigned long lock;
void *next;

| void *p;

| int i;

short s;

char c;

unsigned long pad[5];

NOTUR2009 Philip Mucci, Multicore Optimization 150

Global Data and Threads

« We know there is nothing wrong with shared
read-only data.

« Unless it happens to be in the same cache line as
something that gets written.

- That line gets invalidated and must be reloaded.

« Solution is to pad, align or use a thread specific
variable.

unsigned long read write a;
unsigned long read only b;
unsigned long read write c;

NOTUR2009 Philip Mucci, Multicore Optimization 151

Thread Specific Data

 a.k.a Thread Local Storage: give each thread a
private copy.
- Great way to reduce contention.
— Only most systems, this is very fast.
- Variants exist in C and C++: the __thread keyword.
« When a thread dies (join, exit), it's gone!

int i first val = 101;
thread int i = i_first val;

extern _thread struct sEate s;
static _ thread char *p;

NOTUR2009 Philip Mucci, Multicore Optimization 152

NUMA, Threading and
First Touch Placement

« The OS uses a first touch policy to place
physical pages.
- The first time it is written, it is placed.

« This means you want to parallelize your
initialization!

NOTUR2009 Philip Mucci, Multicore Optimization

153

NUMA, Threading and
First Touch Placement

SIOMP DO

DOI =1, H
A(I) = 0

ENDDO

Thanks to Matthias Muller and HLRS

NOTUR2009 Philip Mucci, Multicore Optimization 154

Multicore and Memory Allocation

« Many memory allocators do their best to align
buffers to page boundaries.

- This can be very bad for multicore due to false

sharing, especially for caches with low associativity.

- Be wary of your F90 allocate or your malloc/new.
- 3" party OS replacements are available

« Many malloc/new/free implementations are not
often scalable for many-core.

NOTUR2009 Philip Mucci, Multicore Optimization

155

The Hoard Memory Allocator

« A fast, scalable, drop-in replacement memory

allocator that addresses: ~ ~ cochesscraten - Specdur
. 19 Hoard
— Contention 10|
. § 6 | 4
- False sharing 5ap
'] |

— Per-CPU overhead 2 4 6 8 10 12 14

Hunber of processors

threadtest - Speedup

12 | " Hoard —— ' ' |
1 /

2 q [g8 10 12 14

Hunber of processors

Speedup

e Y e N e

NOTUR2009 Philip Mucci, Multicore Optimization 156

Mapping Threads to Processors

e How should you run your code?
- It depends on what the code does.

 There is generally a sweet spot for M threads on
N cores of a single socket. (M<N)
- Usually depends on:
« How tightly synchronized and balanced computation is

« Memory bandwidth requirements
* |/O and Comm traffic

« Oversubscription (more threads than cores) is
usually never a good thing unless...

NOTUR2009 Philip Mucci, Multicore Optimization 157

OS Scheduling and Threads

« Threads can bounce from core to core.
 You do have some control over this.

- Run-time on the command line
- Or directly inside the code

« But you cannot prevent Linux from scheduling
something else onto your CPU.

- Unless you boot the kernel with special options
(isolcpus) or the massage system a bit.

« On a NUMA system, this can be really bad.

NOTUR2009 Philip Mucci, Multicore Optimization 158

OS Scheduling and Threads

e For serial and threaded codes...

Print affinity mask of process PID 24732
> taskset -p 24732
pid 24732's current affinity mask: £

Print CPU list of process PID 24732
> taskset -c -p 4695
pid 24732's current affinity mask: 0-3

Set running process to only use CPU's 1 and 2

> taskset -c -p 1,2 4695

pid 4695's current affinity list: 0-3
pid 4695's new affinity list: 1,2

Launch bash shell with all CPU's to choose from
> taskset Oxffffffff /bin/bash

Launch bash shell with CPU's to choose from
> taskset -c 0-3 /bin/bash

NOTUR2009 Philip Mucci, Multicore Optimization 159

OS Scheduling and Threads

« Even MPI supports this now...

Tell OpenMPI to bind each process

> mpirun —-mca mpl paffinity alone 1 -np ...

Tell SLURM to bind each task to a core/socket

> srun —-ntasks-per-core=N —--ntasks-per-socket=M ...

More advanced SLURM binding 8 ranks, 4 nodes, 2 per socket, 1 per core (-B S[:C[.T]])
> srun —-n 8 -N 4 -B 2:1

Even more advanced SLURM binding

> srun —-cpu bind=cores —-cpu bind=verbose ...
> srun —--cpu bind=map cpu:0,2,3 —-cpu bind=verbose ...
> srun —--cpu bind=help —-cpu bind=verbose ...

NOTUR2009 Philip Mucci, Multicore Optimization 160

Types of Load Balancing

e Static

- Data/tasks are split amongst processors for duration
of execution.

- Problem: How do we choose an efficient mapping?
* Dynamic
- Work is performed when resources become available

e How much work and when?

- Problem: Requires periodic synchronization and data
exchange

NOTUR2009 Philip Mucci, Multicore Optimization 161

Measuring OpenMP Overhead

e« OMP NUM THREADS sets the number of
threads to use.

- If not set, it defaults to the number of cores in a
system. (As reported by /proc/cpuinfo on Linux,
Hyperthreaders beware...)

e Set this to 1,2,etc. and time regions of your code.
e Time without OpenMP as well.

NOTUR2009 Philip Mucci, Multicore Optimization 162

Managing Parallel Overhead in
OpenMP

e Don't parallelize all your loops.
— Just the ones that matter.

« Use conditional parallelism.

 Specify chunk size to each loop.
- As big as possible.
« Make sure the compiler can unroll the loop.

« Merge parallel regions.
 Avoid barriers with NOWAIT.

NOTUR2009 Philip Mucci, Multicore Optimization 163

OpenMP Overhead and Parallel
Regions

#pragma omp parallel for]] l
for () { ... } | | |

#pragma omp parallel for

for () { ... } 1 | |

#pragma omp parallel

{
#pragma omp for
for () { ... } | I I |

#pragma omp for [1 1 r

for () { ... } | 1 1 I
}

Thanks to Matthias Muller and HLRS

NOTUR2009 Philip Mucci, Multicore Optimization 164

Rough Overheads of OpenMP

 These are very approximate.
Operation Minimum overhead acalability
(cycles)
Hit L1 cache 1-10 Constant
Function call 10-20 Constant
Thread ID 10-50 Constant, log, linear
Integer divide a0-100 Constant
Static do/for, no barrier 100-200 Constant
Miss all caches 100-300 Constant
Lock acquisition 100-300 Depends on contention
Dynamic do/for, no barrier 1000-2000 Depends on contention
Barrier 200-500 Log, linear
Parallel a00-1000 Linear
Ordered 5000-10000 Depends on contention

Thanks to Matthias Muller and HLRS

NOTUR2009

Philip Mucci, Multicore Optimization

165

OpenMP Conditional Parallelism

« Execute in parallel if expression evaluates to true.

« Very powerful technique for mitigating parallel
overhead.
- parallel if (expression)
— parallel for if (expression)

« Expression should evaluate to 1/yes or 0/no.

NOTUR2009 Philip Mucci, Multicore Optimization 166

OpenMP Conditional Parallelism

for(i=0; i<n; i++)
#pragma omp parallel for if (n-i > 100)
for(j=i+l; j<n; j++)
for(k=i+l1l; k<n; k++)
a[j1[k] = al[jl[k] -alil[k]*a[i][3] / al3j]1[3j]

NOTUR2009 Philip Mucci, Multicore Optimization 167

Performance of Conditional

Parallelism
2,50E+08
2,00E+08 = A
1,50E+08 . '-,.
1,00E+08 5 h e
5,00E+07 r
0,00E+00 - — . g
L B R B ‘_F@
Thanks to Matthias Muller and HLRS
NOTUR2009 Philip Mucci, Multicore Optimization

scalar
2 threads
- -= - jf-clause

168

OpenMP Thread Specific

e firstprivate (list)

- All copies get value in master at beginning.
e lastprivate (list)

- All copies get value in last iteration/section.
« threadprivate (list)

- Data is global data, but private in parallel regions.

« common blocks etc. Use COPYIN or undefined.

NOTUR2009 Philip Mucci, Multicore Optimization 169

OpenMP and Barriers

e Most constructs have an implicit barrier and flush
at the end.

- do, for, sections, workshare, single
- We must work to limit when this happens.
« The NOWAIT clause eliminates the barrier, then
insert a barrierbarrier and/or £1ush youself.
 Also, you can use master instead of single.

— But then thread O will do the work, so it better be
ready.

NOTUR2009 Philip Mucci, Multicore Optimization 170

OpenMP and Critical Sections

e If you can't use a reduction to update a
shared variable and you need to use
critical:

- Only thread at a time executing the code.

e But it's better to use atomic

- This will take advantage of special instructions
instead of using locking.

NOTUR2009 Philip Mucci, Multicore Optimization

171

Barrier Removal Exercise

« What's could be wrong with the below advice?

Replace

#pragma omp for « Good: But we've reduced overhead and

for (i=0; i<size; i++) increased work per iteration.

4 ali] = 1.0/a[i]; « Bad: We're increasing memory bandwidth
pragma omp for)

for (i=0; i<size; i++) and cache pollution. (No data reused)
b[i] = b[i]*2.0 » This is better for multicore:

with
#pragma omp for nowait

#pragma omp for for (i=0; i<size; i++)
for (i=0; i<size; i++) { a[i] = 1.0/a[i];
af[i] = 1.0/a[i]; #pragma omp for
b[i] = b[i]*2.0; for (i=0; i<size; i++)
} b[i] = b[i]*2.0

Thanks to Matthias Muller and HLRS

NOTUR2009 Philip Mucci, Multicore Optimization 172

OpenMP Reduction

e OpenMP has special knowledge of reduction
operations.

- A shared variable that is updated by all threads
must be updated atomically.

e OpenMP has a shortcut: reduction (op:var)
* You tell OpenMP how to combine the data.

NOTUR2009 Philip Mucci, Multicore Optimization 173

Reduction By Hand

#pragma omp parallel for private(privIndx, privDbl)
for (i = 0; i < arraySize; i++)

{
for (privindx = 0; privIndx < 16; privIndx++)

{

privDbl = ((double)privIndx) / 16;

yv[i] = sin(exp(cos(-exp(sin(x[i]))))) +
cos (privDbl) ;

/* Here, each thread reads globalCount
add 1 to the value, and write the
new value back to globalCount. */

#pragma omp critical
{ globalCount = globalCount + 1; }

}

NOTUR2009 Philip Mucci, Multicore Optimization 174

Reduction

#pragma omp parallel for private(privIndx, privDbl) \
reduction(+ : globalCount)
for (1 = 0; 1 < arraySize; i++)
{
for (priviIndx = 0; privIndx < 16; privIndx++)

{

privDbl = ((double)privIndx) / 16;

y[1i] = sin(exp(cos(-exp(sin(x[i]))))) +

cos (privDbl) ;

/* Here, each thread reads globalCount
add 1 to the wvalue, and write the
new value back to globalCount. */

globalCount = globalCount + 1;

}

NOTUR2009 Philip Mucci, Multicore Optimization 175

When Approaching a

(nasty) Loop Nest with OpenMP

e If F90, rewrite with loops instead of (:).

- Make everything explicit.

« Rewrite a few versions, unrolling each level
individually. Look for opportunities to:

Re-use data (cache)

Reduce memory bandwidth.

- Move temps into variables (register).

e Stage shared data in per thread privates or to use
reductions.

- Make work per iteration as large as possible.

NOTUR2009

Philip Mucci, Multicore Optimization

176

OpenMP Scheduling

e Controls the allocation of work to threads.
- A form of load balancing.

« By default, OpenMP will allocate a small fixed
number of iterations to each thread.

 This can be changed at compile time or run-time.
— SCHEDULE (type) clause

- runtime means refer to OMP_SCHEDULE env. var.
OMP SCHEDULE=dynamic ./a.out

NOTUR2009 Philip Mucci, Multicore Optimization 177

OpenMP Scheduling

. SOMP PARALLEL DO SCHEDULE (type)

e pragma parallel for schedule (type)
- STATIC[,size] — default
- DYNAMIC[,size] — allocate iterations at runtime

- GUIDED[,size] - start with big chunks, end with
small chunks

— RUNTIME
e For DYNAMIC and GUIDED, default size is 1!

NOTUR2009 Philip Mucci, Multicore Optimization 178

MPI Tips

e Overlap comm. and compute

- Ideally a background thread can send the data while
this thread can continue.

- MPI_ISEND, MPI_IRECV, MPI_ ISENDRECV,
MPI_ IRSEND, MPI WAITxxx, MPI TESTxxxx

« Use native data types.

« Send big messages not small ones.
« Make sure receiver arrives early.

e Minimize collectives.

NOTUR2009 Philip Mucci, Multicore Optimization 179

MPI Tips 2

e Avoid wildcard receives

 Attempt to align application buffers to (at least) 8
bytes

« Avoid data translation and derived data types.

« Always think about overlapping comm and
compute

NOTUR2009 Philip Mucci, Multicore Optimization 180

Performance Analysis Tools

NOTUR2009 Philip Mucci, Multicore Optimization 181

Performance Analysis

e What's really meaningful?
- Wall Clock time

« MFLOPS, MIPS, etc are useless.

- What are comparing it to? Peak? Ask your vendor to
send you a code that performs at peak.

 For purposes of optimization, we need data over
a range of data sets, problem sizes and number
of nodes.

NOTUR2009 Philip Mucci, Multicore Optimization 182

Comparisons

« For the purposes of comparing performance data,
time is the best place to start.

- Unless you are completely aware of architecture,
compiler, run-time systems, etc...

« Hennessey and Patterson: Fallacies of
Performance

- Synthetic benchmarks predict performance of real
programs

- Peak performance tracks observed performance

NOTUR2009 Philip Mucci, Multicore Optimization 183

Performance Measurement Methods

* Instrumentation

- Tracing

- Aggregate
e Sampling

- IP Profiling, stack-walking
 Simulation

- Instruction cracking and emulation

NOTUR2009 Philip Mucci, Multicore Optimization 184

The Problem with Tracing

 Tracing generates a record with a timestamp for
every event, say function invocation. This
presents numerous problems.

- Measurement pollution
— Data management
- Visualization

e Cure is worse than the disease.

e Tracing often reserved for the worst and most
intermittent problems.

NOTUR2009 Philip Mucci, Multicore Optimization 185

Aggregated Profiling

By using simple start, stop and accumulate points
in the code, a relatively complete picture of the
overall execution can be obtained.

 This loses temporal performance information.

- i.e. problem X started at time Y

« However, significant problems still 'bubble' to
the top of the overall profile.

- If it doesn't show there, it's not important.

NOTUR2009 Philip Mucci, Multicore Optimization 186

Statistical Profiling

« Upon defined periodic events, record where in
the program the CPU is.

« Gather data into a histogram, the shape of which
approaches the actual profile over time.

e Periodic events can be clock ticks or other events

based on hardware performance counters, like
cache misses.

NOTUR2009 Philip Mucci, Multicore Optimization 187

Understanding Timers

e Real time, Wall Clock time: A measure of time
that doesn't stop, as when using a stop watch.

e User time: Time when the CPU is executing your
process and is executing your code (not OS
code)

 System time: Time when the CPU is executing
your process and is executing OS code on your

behalf.
« CPU utilization is usually (U + S)/R

NOTUR2009 Philip Mucci, Multicore Optimization 188

Timing Utilities

e Linux /usr/bin/time
- Wall time
- User time
- System time

« Above two are added up for all threads

- Minor/major page faults.

e This is different than 'time' from tcsh.

NOTUR2009 Philip Mucci, Multicore Optimization 189

Wallclock Time

« Usually accurate to a few microseconds.
o C
- gettimeofday ()
- clock gettime ()
e Fortran
— second ()
— etime ()
* Both
- MPI Wtime ()
- OMP_GET WTIME ()

NOTUR2009 Philip Mucci, Multicore Optimization 190

CPU Time

« Can be system, user or both.
- Usually summed over all threads.

- Not nearly as accurate as wallclock time.

o C
- clock ()
- getrusage ()
- clock gettime()
— times ()
e Fortran
— dtime ()

NOTUR2009 Philip Mucci, Multicore Optimization

191

Hardware Performance Analysis

« No longer can we easily understand the
performance of a code segment.

— QOut of order execution

Branch prediction
Prefetching

Register renaming

« A measure of wallclock is not enough to point to
the culprit. We need to know what's happening
“under the hood”.

NOTUR2009

Philip Mucci, Multicore Optimization 192

Hardware Performance Counters

« On/off chip registers that count hardware events

- Often 100's of different events, specialized to the
processor, usually just a few registers to count on.

e OS support accumulates counts into 64 bit
quantities that run only when process is running.

- User, kernel and interrupt modes can be measured
separately

- Can count aggregate or use them as sampling triggers

NOTUR2009 Philip Mucci, Multicore Optimization 193

Sample Performance Counter Events

e Cycles Loads, Stores

e Instructions e Ratios of these

+ Floating point ops counters are indicative
« Branches mispredicted of performance

lems.
« Cycles stalled on problems

memory

e Cache lines
invalidated

NOTUR2009 Philip Mucci, Multicore Optimization 194

Statistical Profiling 2

Amount

NOTUR2009 Philip Mucci, Multicore Optimization 195

Hardware Metrics for Multicore

« Absolutely! But the metrics are different for each
Processor.

— Load/store to Cache miss ratio

* On a loop that should not miss, misses mean contention.

e Cache state transitions

- You can actually count transitions to E and | on some
platforms.

e Interprocessor traffic

- Can isolate offending processor/thread.

NOTUR2009 Philip Mucci, Multicore Optimization 196

PAPI

 Performance Application Programming Interface

A standardized, portable and efficient API to
access the hardware performance counters.

« Goal is to facilitate the development of cross-
platform optimization tools.

« Patching kernel is required.
- Stable and supported patches. (perfctr & perfmon)
- Many HPC systems have already been patched.

NOTUR2009 Philip Mucci, Multicore Optimization 197

PAPI Events

e Performance counters are measured in terms of
events

- Symbol names for something to count

- Events have different names/meanings for different
vendors/processors/revisions etc

- Some native events are mapped to general names in
PAPI

« And all the problems associated with such abstractions

« PAPI supports derived events

NOTUR2009 Philip Mucci, Multicore Optimization

198

O.S. Linux Performance Tools

e From the desktop world, most are familiar with:
- gprof, valgrind, oprofile
 Linux performance tools are actually well

established:
- Most are not 'production' quality, lacking proper

 Testing, Documentation, Integration

- But some are better than others, all can be useful in
the proper situations

NOTUR2009 Philip Mucci, Multicore Optimization

199

The Right Tool for the Job

)

ELRICIE Y

)]

]

PRI
i
4

FLUE T W

isangsakazymata

—rrar
I /BN B Trarmuec e o e R0y
- ——

....................
.......

.|

- D ﬁ'r- "-l_-.l Il_' '\--..'

-l."

|||||||||||||

-.[l I sl +_||||. .lln

Thanks to Felix Wolf Juellch

NOTUR2009 Philip Mucci, Multicore Optimization 200

Issues to Consider

* Usage Performance Data
- GUI — MPI, Pthreads,
- ASCII OpenMP
- Simplicity vs... — Libraries
e Collection — Processor
— Instrumentation - /O
— Direct vs Indirect * Experiment
- Tracing management

e Visualization

NOTUR2009 Philip Mucci, Multicore Optimization 201

Tools

e ompP « TAU

« mpiP e Scalasca

« HPCToolkit » valgrind

e PerfSuite e gprof

e PapiEx e Non-OS

e GPTL - Vampir

. pfmon - SlowSpotter

NOTUR2009 Philip Mucci, Multicore Optimization 202

ompP: The OpenMP Profiler

 Provides easy to read reports at end of execution.

- Based on source code instrumentation

e Report on each OpenMP primitive
— Flat Profiles
- Callgraph Profiles
- Hardware counter values

« Overhead Analysis
 Scalability Analysis

NOTUR2009 Philip Mucci, Multicore Optimization 203

ompP: Usage

« Recompile code with wrapper.
- Works on all compilers: source to source.
- Optional: hand-instrument user regions.

 Set environment variables if necessary.
« Run and read report!

NOTUR2009 Philip Mucci, Multicore Optimization 204

#fpragma omp parallel

ompP: Flat Region Profile

{ TID execT
#pragma omp critical 0 3.00
{ 1 1.00

sleep (1) 2 2.00
} 3 4.00

NOTUR2009

SUM 10.01

Components:

Region number

R00002 main.c (34-37)

execC

B R R R

(default) CRITICAL
enterT

bodyT

1.

Source code location and region type
Timing data and execution counts, depending on the particular

construct

One line per thread, last line sums over all threads

00

1.00
1.
1
4

00

.00
.00

2

.00
.00

0
1.
3
6

00

.00
.00

exitT
0.00
0.00
0.00
0.00
0.00

PAPI_TOT_INS
1595

6347

1595

1595

11132

Hardware counter data (if PAPI is available and HW counters are

selected)

Data is exact (measured, not based on sampling)

Philip Mucci, Multicore Optimization

205

NOTUR2009

32.

32

10.

10

16.
16.

[*00]
[+01]
[+02]
[=03]
TID
0
1
2

SUM

ompP: Call Graphs

Incl. CPU time

22 (100.0%)
02 (31.10%) USERREG

03 (49.74%) USERREG
03 (49.74%) CRITICAL

critical.ia64.ompp
R00004 main.c (42-46) PARALLEL
R00001 main.c (19-21) ('fool') USER REGION
execT/I execT/E execC
1.00 0.00 1
3.00 0.00 1
2.00 0.00 1
4.00 0.00 1
10.01 0.00 4
critical.ia64.ompp
R00004 main.c (42-46) PARALLEL
R00001 main.c (19-21) ('fool') USER REGION
R00003 main.c (33-36) (unnamed) CRITICAL
execT execC bodyT/I bodyT/E
1.00 1 1.00 1.00
3.00 1 1.00 1.00
2.00 1 1.00 1.00
4.00 1 1.00 1.00
10.01 4 4.00 4.00

[APP 4 threads]
.06 (99.50%) PARALLEL +-R00004 main.c (42-46)

| -RO0001 main.c (19-21)
.02 (31.10%) CRITICAL | +-R00003 main.c (33-36) (unnamed)
+-R00002 main.c (26-28)

enterT
.00
.00
.00
.00
.00

o WKRrLNO

exitT

(e lelelNeNe]

.00
.00
.00
.00
.00

('fool')

('foo02')

+-R00003 main.c (33-36) (unnamed)

Philip Mucci, Multicore Optimization

206

ompP: Overhead Analysis

Total runtime (wallclock) : 172.64 sec [32 threads]
Number of parallel regions : 12
Parallel coverage : 134.83 sec (78.10%)
Parallel regions sorted by wallclock time:

Type Location Wallclock (%)
R0O0011 PARALL mgrid.F (360-384) 55.75 (32.29)
R00019 PARALL mgrid.F (403-427) 23.02 (13.34)
RO0009 PARALL mgrid.F (204-217) 11.94 (6.92)

SUM 134.83 (78.10)

Overheads wrt. each individual parallel region:

Total Ovhds (%) = Synch (%) + Imbal (%) + Limpar (%) + Mgmt (%)
R0O0011 1783.95 337.26 (18.91) .00 (0.00) 305.75 (17.14) .00 (0.00) 31.51 (1.77)
R0O0019 736.80 129.95 (17.64) .00 (0.00) 104.28 (14.15) .00 (0.00) 25.66 (3.48)
R0O0009 382.15 183.14 (47.92) .00 (0.00) 96.47 (25.24) .00 (0.00) 86.67 (22.68)
RO0015 276.11 68.85 (24.94) .00 (0.00) 51.15 (18.52) .00 (0.00) 17.70 (6.41)

O O O o
O O O o

Overheads wrt. whole program:

Total Ovhds (%) = Synch (%) + Imbal (%) + Limpar (%) + Mgmt (%)

R0O0011 1783.95 337.26 (6.10) 0.00 (0.00) 305.75 (5.53) 0.00 (0.00) 31.51 (0.57)
R00009 382.15 183.14 (3.32) 0.00 (0.00) 96.47 (1.75) 0.00 (0.00) 86.67 (1.57)
R00005 264.16 164.90 (2.98) 0.00 (0.00) 63.92 (1.16) 0.00 (0.00) 100.98 (1.83)
R00007 230.63 151.91 (2.75) 0.00 (0.00) 68.58 (1.24) 0.00 (0.00) 83.33 (1.51)
SUM 4314.62 1277.89 (23.13) 0.00 (0.00) 872.92 (15.80) 0.00 (0.00) 404.97 (7.33)

NOTUR2009 Philip Mucci, Multicore Optimization 207

ompP: Performance Properties

Property P00001 'ImbalanceInParallellLoop' holds for
'LOOP muldoe.F (68-102)', with a severity (in percent) of 0.1991

Deductions by ompP about what the problem is.
WaitAtBarrier
ImbalancelnParallel[Region/Loop/Workshare/Sections]
ImbalanceDueToNotEnoughSections
InbalanceDueToUnevenSectionDistribution
CriticalSectionContention
LockContention
FrequentAtomic
InsufficienWorkInParallelLoop
UnparallelizedIn[Master/Single]Region

NOTUR2009 Philip Mucci, Multicore Optimization 208

Valgrind

« A tool infrastructure for debugging and
performance evaluation.

« Works by instruction emulation and tracing.
- Code can run up to 100x slower.
- But can catch errors that other tools can't.

e Many tools

- memcheck, cachegrind, callgrind, massif, helgrind,

drd

— cachegrind is based on simulated machine model
(not real hardware)

NOTUR2009 Philip Mucci, Multicore Optimization 209

Valgrind: Helgrind

e Detects
— Pthreads API errors
— Deadlocks and Data races
- Broken for GNU OpenMP
e valgrind -—-tool=helgrind <app>

Thread #1 unlocked a not-locked lock at Ox7FEFFFA90

at 0x4C2408D: pthread mutex unlock (hg intercepts.c:492)
by 0x40073A: nearly main (tc09 bad unlock.c:27)

by 0x40079B: main (tc09 bad unlock.c:50)
Lock at Ox7FEFFFA90 was first observed

at 0x4C25D01: pthread mutex init (hg_intercepts.c:326)
by 0x40071F: nearly main (tc09 bad unlock.c:23)

by 0x40079B: main (tc09 bad unlock.c:50)

NOTUR2009 Philip Mucci, Multicore Optimization

210

e D

Valgrind: DRD

etects
Pthreads API errors

Deadlocks, Data races and Lock contention
Broken for GNU OpenMP

e valgrind -tool=drd —-var-info=yes <app>

NOTUR2009

==10668== Acquired at:

==10668== at 0x4C267C8: pthread mutex lock
(drd pthread intercepts.c:395)
==10668== by 0x400D92: main (hold lock.c:51)

==10668== Lock on mutex Ox7fefffd50 was held during 503 ms (threshold:
10 ms).

==10668== at O0x4C26ADA: pthread mutex unlock
(drd_pthread intercepts.c:441)
==10668== by 0x400DB5: main (hold lock.c:55)

Philip Mucci, Multicore Optimization

211

mpiP: The MPI Profiler

 Easy to use, easy to interpret performance
reports.

e mpiP performances only trace reduction and
summarization.

« Compatible with all MPI's.
« No recompilation required.

— Just relink or run with environment variable.

NOTUR2009 Philip Mucci, Multicore Optimization 212

mpiP: Some output

B——— MPI Time (seconds)

NOTUR2009

HMPITime
0.0523
0.015
0.0587
0.0123
0.133

HMPI%
62.21
31.189
65.20
29.98
51.69

Aggregate Time (top twenty, descending, milliseconds)

Site
1

AP

Time
112
26.2
0.634
0.3
0.033

Appi
41.57
9.76
.24
.11
.01

HMPI%
80.42
18.89

0.46

0.22

0.02

B——— Aggregate Sent Message Size (tep twenty, descending, bytes)

Site

Count
g
g

Task AppTime

n] 0.084

1 0.0481

2 0.087

3 0,.0295

* 0.2689
f--- Callsite Time statisties (all, B---
Count Max HMean Min call
Allreduce 1 o 2 Barrier
Allreduce 1 1 2z Recv
Allreduce 1 z z Allreduce
Allreduce 1 3 2 Boast
Barrier 1 0 3 Send
. call
B--- Callsite Message Sent statisti Allreduce
Rank Count Max Hean Beast
Allreduce 1 o i Send
Allreduce 1 1 i
Allreduce 1 2 Z
Allreduce 1 3 2 goo 500
Bcast 1 o 2 goo 500
Bcast 1 1 2 goo 600
Bcast 1 2 2 goo 600
Bcast 1 3 2 goo 600
Send 1 o 1 00 00
Send 1 2 1 00 00
Send 1 ® 18 goo 577.8
B--- End of Report - - - - - - - - - — - — - —————— — ————-—_- - —-—_. — —_—_. ——

Te
4.8
4.8

Philip Mucci, Multicore Optimization

tal
+03
+03
d00

Avrg
a00
a00
200

Santi
46.15
46.15
7 .69

213

mpipex: Profile and Load Balance

NOTUR2009

@--- Aggregate Time (top twenty, descending, milliseconds) -
Call Site Time App% MPI% Cov
Barrier 29 9.65e+05 4.96 30.20 0.00
Barrier 18 6.1le+05 3.14 19.10 0.21
Allgather 12 3.68e+05 1.89 11.51 0.47
Barrier 43 3.25e+05 1.67 10.18 0.43
Sendrecv 78 2.2e+05 1.13 6.88 2.19
Sendrecv 21 1.57e+05 0.81 4,92 0.51
5 1.06e+03 111

6 1.06e+03 144

7 1.06e+03 142

8 1.06e+03 139

9 1.06e+03 147

10 1.06e+03 140

11 1.06e+03 141

12 1.06e+03 143

13 1.06e+03 138

14 1.06e+03 144

15 1.06e+03 182

* 1.7e+04 2e+03

Philip Mucci, Multicore Optimization

214

PerfSuite

e Command line tool that can

- Provides summaries of MPI and Performance
Counters

- Provide statistical profiles as well.
— Output 1s XML or ASCII

« Works on uninstrumented code.
e Well supported and documented.
« Lots of derived events for Intel processors.

NOTUR2009 Philip Mucci, Multicore Optimization 215

NOTUR2009

psrun Output

Statiatics

Graduated instructions per cycle.ecieoacaiinossaanascaacnnsnsssas 1.7&5
Graduated flosting point instructions per cycle. ieeconannannnas 0.145
¥ graduated floating point instructiona of all graduated instructions.. a.207
Graduated loadsfstores per oycle. .. .o oraiaiiiiarisaaaacaacnnnanasass 0.219
Graduated loads/stores per gradusted fleating point imatruction........ 1.514
Mispredicted branches per correctly predicted branch. iiananaas 0.0%3
Level 1 data cache accesses per graduated fnstruction..cociieanaans 2.842
Graduated [loscing point fnstructions per level 1 data cache access.... 2.848
Level 1 cache Line rFeuse [EBLE) oo anaanaannoonsossnsannsssssssissss 3,482
Level 2 cache line reuse [ELAE) oo socscoosossssasnnsnssssissis 0.877
Level 3 cache line reude [dATE) @ cicicceassccccaccecosossasasaccacacasnsassa 2.4%8
Level 1 cache DIL FAbe (BELA) oo s anannnesssosssssssasnsssssssisss 1.778
Level 2 cache DIL FAbe (BELA) oo s anaannesssosssssssasnsssssssissas 0.4&7
Level 3 cache DIL FAbe (BELA) oo s anannnessssssossssasnsssssssissss 1.714
Level 1 cache miss ratio [(Anebeuchion) .o ee e inesinsnasanaanasssssssas 0.003
Level 1 cache miss Fatio [HEBLE) oo iieonacanaensonnssssnaannsnsssssissas 0.49&8
Level 2 cache miss Fatio [dEBLA) ..o socsceocossossssasansassssissis 0.120
Level 3 cache miss Fatio [dABLE) @i seassocccacecesossasasaccacacasnsassa 0.957
Bandwidth used to level 1 cache [ME S}o isasascccacacanssass 1#62 381
Bandwidth used to level 2 cache [ME S}c.ccieioisasascccacacasssasa 1326.512
Bandwidth used to level 3 cache [ME S}ccccieioisasascccacacasssasa 385,087
* cycles WiIth NO INSEFUCTLION 1S5SUP. .o e s e ascssccoeessssssssasssssssssssss 14.410
£ cycles stalled on MEMOEY BOCESS. ..o eeeasacaacosstssiasssnsnssssssssasa 43.139
MFILOPS [(CYCIBEE] & owwsaaaaasssssstsetsasssssssssssssdssdsdassssssssbsstss 115,905
MEFIDPS (WALICIOOCK) s o vaaaaas s o et bmasasssssssssssssadeadasassssttsEdsssas 1149.441
MIPS (CYCLEA] ¢ v coossoaaasasssssessessasssassssssststdssdsdssdsssssttsbsssss 1412 .14%0
MIPS (WwABLlcloCk)] @ coovaaasaassceebebaanasssasssssssssadaasasassssttstdsssa 13%9 . 349
CPO £ime (BECOMOAR) o o caaaaes 28666 6 attsssssssssssssaddtdadsasssstbsEdsssa T43.058
Wall clock time (SecondB) ccciiicneasaocccaccesossasasnccacacesssassa T52.568
B CPU b i om i om. o iu e s oo cccececansssaaaccaaoacecassssaaaacanacesassaans 8 .737%

Philip Mucci, Multicore Optimization

216

HPCToolkit

e Statistical call-stack profiling of unmodified
applications.

- Uses hardware counters and timers.
- Produce profiles per-thread.
- Works on unmodified and fully optimized code.

e Visualizer can compare multiple profiles with
derived metrics.

« Concise ASCII output or with a Java GUI

NOTUR2009 Philip Mucci, Multicore Optimization

217

Call Path Profiling

Call path sample Calling Context Tree (CCT)

return address
return address
return address

instruction pointer

/

... hot call frequency

Overhead proportional to sampling frequency ...

NOTUR2009 Philip Mucci, Multicore Optimization

218

HPCToolkit Call Stack

calling context

"_'S__ mbperf_iMesh.cpp &3

P

£

23 * of the entity handles in the pointed-to EntitySeguences.
24 */

25 class SequenceCompare {

26 public: bool operator(3{ const EntitySequence® a, cons)
27 { return a-zend_handle(} < b-zstart_handle{}: }

281 1

we TypeSequenceManager.hpp &5

view

* Define less-than comparison for EntitySequence pointers as o comparison

—eostsfor
' einlined procedures
eloops

| & &Iélﬁx}[ﬁl

iew ':\\'\. Callers Wiew '1-1'__ Flat Wiew

function calls in full

‘context

NOTUR2009

Scope
L mﬁin
¥ [testBivoid®, int, double const®, int const®)
¥|inlined from mbperf iMesh.c
¥| loop at mbperf_iMesh.cpp: 280-313
¥ [imesh_genvtxarrcoords_

¥ [MBCore:get_coords{unsigned long const®, int, double®) r:|:3- 20e+08 37.1%

Tlluugat MBCore.cpp: 681 EEIBI
¥ inlined from stl_tree.h: 472

¥|loop at stl_tree.h: 1388

¥ |inlined from TypeSequenceManager.hpp: 2?:|l- Tee+l8 20.6%

m PAPITOT_CYC (I} | |

«63e+08 100 % | 1.13e+ll 100 %=
. 35e+08 9&6.T% »10e+l1l Q'T.E%m
.8lae+l8 TE.9% .98a+11 B6.5%
.43e+08 319.8% LATe+ld 29.9%
.20e+08 3T7.1% .18e+10 19.3%
L1lee+l10 19.1%

wummm

|2.04e+08 23.7% L318e+09% 8.3%
|2.04e+08 23.6% 9.37e+09% B.3%

L56a+09 T.eR ™
s

TypeSeguenceManager.hpp: 27

1
o
3
2
2
E]-.Eﬂa-l-ﬂlﬂ 37.1% | 2.lee+l0 19.1%
9
9
g
8

'1.78e+08 20.6% B8.56e+08 7.6% _

IEEN

Philip Mucci, Multicore Optimization

219

Scaling Study with Multiple Profiles

NOTUR2009 Philip Mucci, Multicore Optimization 220

NOTUR2009

HPCToolkit 1-core v 8-core

el =

i hpecviewer: [Profile Name]

flat view

"% getrates.f =% rhsf.f90 "i diffflux_gen_uj.f &3 l
193 *ge. 2) then

194 1__ujlpper3d = €3 -1 +13 /73 * 3 4+1 -1
195 dom=1,1__ujlpper3dd, 3
don=1, n_spec - 1
do 1t__2 = 1, nz

198 do 1t__1 = 1, ny

199 do 1t__ 8 = 1, nx

208 difffluxCle__@, 1t__1, 1€__2, n, m) = -ds_mixavg
281 (149, 1t__1, 1t__2, n) * (grod_ws(lt__9, 1t__1, \t__2, n, m) + ¥y
*sC1e__@, 1t__1, 1¢€_._.2, n) * grod_mixmw(1lt__@, 1t__1, 1t__2, m))
203 diFFFLlux(l+__ 8, 1&__1, 1&t__2, n_spec, m) = difff
284 Blux{le__@, 1+ __1, 1+__2, n_spec, m) - diffflux{l+__0, 1&__1, 1&__2
285 L I)

286 diffFfluxCit__@, 1+__1, 1£__2, n, m + 1) = -ds_mi

*wavg(lt__ 0, 1+__1, Wt__2, n) * (grod_ws(lt__@, 1t__1, 1£t__2, n, m
] o 1M e wellE B TE 1 T+ 2 A * arod mivewd 1+ B T+ 1 1 2

scaling stydy

"'1 Calling Context ‘ﬂew| ""1 Callers View | = Flat Vnew|

|2 & & 6| o[

Scope [1-core {ms) | 1-core {ms) (E) B-core(l) (ms) (1)

* loop at diffflux_gen_uj.f: 197-22:2.86e06 2.6% 2.86e06 2.6% B.12e06 4.3%
qup;tinmgraﬂLgth;mge_n;ggl.ﬂ?EﬁE 98.1% |1.25e06 1.1% 1l.B4e08 97.9%
|unp31yaﬁdhm5_m_mﬂ_ﬁargg l.49%e06 1.3% [1.49a06 1.3R &.08Be06 3.2%
loop at rhsf.fo0: 516-536 2.70e06 2.4% |1.31le06 1.2%| 6.4%e06 3.5%
loop at rhsf.fo90: 535-544 3.35e06 3.0% | 1.45e0& 1.3%| T7.06e06 3.B%
loop at rhsf fO0: 546-552 2.56e06 2.3% 1.4Te06 1.3%8| 5.86e06 3.1%
loop at thermchem_m.f90; 127-18.00e05 ©0.7% 8.00e05 0.7% 2.28e06 1.2%
|Bﬂpth&ﬂﬂu!_H;g&nj:5-132 l.46e06 1.3%8 |1.46e06 1.3% 2.BBel06 1.5%
loop at rhsf.fO0: 576 6.65e05 0.6% 6.65e05 0.6% 1.87e06 1.0%
loop at getrates.f: 504-505 2.00a06 7.2% (9.00006 7.2%| E.74006 4.7%
loop at derivative_x.f90: 213-6901 . 78206 1.6% 1.7Be06 1.6% 2.47e06 1.3%

B.
-34elb
- 0Beds
. T2el6
-82e06
-42eb6
- 2Belb
-BBelb
.87el6
-T4aDE
«4Tebb

PR~ R R L W L N

12e06

I dm = b e b R RS L R 8w

B-core(l) (ms) (E}...
-3%

5
4
4
2
2
1
1
1

.2Tel6
« T0alb
« B0alE
4lelb
+JEalE
S6alb
+48elb
~AlelE
1.
T.
6.

20al6
35al5
95a05

Multicore
Loss
(Multicore
time -single
core time)

Philip Mucci, Multicore Optimization

221

Performance Experiment Tools

A set of tools, easy to use as time.

e Provide a uniform interface to a number of
underlying tools.

« Largely work on uninstrumented code.
« Mostly take the same arguments.
* papiex, mpipex, ioex, hpcex, gptlex, tauex

NOTUR2009 Philip Mucci, Multicore Optimization 222

papiex

« A simple to use tool that generates performance
measurements for the entire run of a code,
including summaries for job, task and thread.

- Hardware performance metrics
- 1/0

- Thread synchronization

- MPI

« Simple instrumentation API
« No recompilation

NOTUR2009 Philip Mucci, Multicore Optimization 223

Papiex: Workload

Characterization

Est. L2 Private Hit Stall %
Est. L2 Other Hit Stall %
Est. L2 Miss (private,other) Stall %
Total Est. Memory Stall %
Est. L1 D-TLB Miss Stall %0iiiueunon.
Est. L1 I-TLB Miss Stall &%uiiiueenun.
Est. TLB Trap Stall &iiiiiitieeenn.
Total Est. TLB Stall &
Est. Mispred. Branch Stall %
Dependency (M-stage) Stall %
Total Measured Stall &
Total Underestimated Stall %
Total Overestimated Stall &
Actual/Ideal Cyc (max. dual)
Ideal IPC (max. dual)i ittt innnnenn

Ideal MFLOPS (max.

dual)

Actual/Ideal Cyc (cur. dual)
Ideal IPC (cur. dual)iiiiiitnennnnnn

Ideal MFLOPS (cur.
MPI cycles %
MPI Sync cycles %
I/O0 cycles %
Thr Sync cycles %

NOTUR2009

dual) i

Philip Mucci, Multicore Optimization

=
N O

W
o

=W

[
1Y
OO0 RPNORFRLRNOMOONRNOON

=
Sy

.76
.79
.24
.79
.26
.04
.15
.45
.15
.17
.77
.39
.56
.29
.07
.88
.40
.12
.29
.85
.00

.00

Stall Cycles

Instruction Mix

[L2 Hit

[l L2 Other Hit
W L2 Miss
LB

[l Misprediction

[Dependency

s

[Intege
[l Loads

mFP
EFVA

r

[l Stores

[H Branch

224

GPTL

 Used to easily instrument applications for the
generation of performance data.

» Optimized for usability.

 Provides access to timers as well as PAPI events.

 Thread-safe and per-thread statistics.

 Provides estimates of overhead.

* Call-tree generation.

NOTUR2009 Philip Mucci, Multicore Optimization 225

TAU

« Entire toolkit for parallel and serial performance
instrumentation, measurement, analysis and
visualization.

« Steep(ish) learning curve, but payoff can be
worth it.

« Works via source instrumentation and limited
dynamic instrumentation

« Very good at OpenMP instrumentation

NOTUR2009 Philip Mucci, Multicore Optimization 226

TAU Parallel Performance System

e Parallel Performance Evaluation Tool for
Fortran, C, C++ and Python

 Used for in-depth performance studies of an
application throughout its lifecycle.

* Supports all forms of parallel profiling
« Flat, callpath, and phase based profiling

* PAPI counters, wallclock time, CPU time,
memory

» PerfExplorer cross experiment analysis tool

NOTUR2009 Philip Mucci, Multicore Optimization 227

[TAU: ParaProt: 30 Visualizer: sicorex.swesp 3 ppi

File Options Windows Help

File ©Options

Windows

Help

Metriz: Time
walue: Exc uziva

sa. o=y, [l

Puriwune Valaes
Vil ks
s af C il
T
< Inwiuseane Py € 0 Vaine

: Triangle Mesh
& Bar Plot
Scatter Ploy
[Height Metric
Exclusive * |[Time -
Color Metric

Exclusive w | (Time -

SWEEP
Funion

4000
Thread —

1]
Height value 9 975 seconds

Colorvalue 9975 seconds

mean

AN

[)

reTZ,00

Fot 200

Il o0

r,ct 5,00

[mi |
e O =0l §
— | I 000
— O Eial§
— | O Eiil
— I =0l §
— RN
— B0l =

NOTUR2009

LR TAU: ParaProf: Mean Data - sicortex-sweep 3d.ppk
File Options Windows Help

(=[] []

hMetric: Time
Walue: Exclusive
Units: seconds

10,354 [

] SWEEP

1.524 sl MPI_Recwd

[EIEEIERRRENERE

00459 MPI_Barrierd
0.0432 FLU> _ERF
0039 MPI_BCast
0028 | SND_REAL
0.022 RCY_REAL
0,005 DRIVER
0,005 INMER
0.004 INITLALIZE
0,004 INITHS
0,004 MPI_Finalized
Q.002 TASE_IMIT

1

0.213 @ MPI_Send(
I
|

MPI_Allreduced

S0OURCE
MPI_Initd

SE-4 READ _INPUT
1E-4 BARRIER _SYMC
4E-4 QCTAMT

&E-4 IMITSMC

1E-4 CLOBAL_REAL b4
OE-4 CLOBAL_IMT 5
&E-5% CLOBAL_REAL_SLIM
TE-5 INMER _ALTO
FE-& TASK_EMD

2E-& BCAST_INT

BE-& BCAST _REAL
SE-B IMITGECM

2E-6 DECCOMP

0 | MPI_Comm_rank{
0 | MPI_Comm_size

Philip Mucci, Multicore Optimization

228

Comparin

hetric: PAFI_RFS_RTI
Walue Fyrlnswa
LInits: counts

Z8T0OTE1Z

ENETUSFRlIEREEL Yy ————————————————————— |

L= =1 e e —
"

1.67ERE12{1 16 462%)

1.717E"1

=

1.6G29E11 (96.853%) [

1.44545E11

|

1T.324/E71 (Y3.HE %) [l

d AORSA2D on 4k cores
[PAPI resource stalls
O Jaguar Cray XT (ORNL)

[Blue 1s single node
(J Red is dual core

NOTUR2009

2.0C55E10
FO0SEE10 OF 7T46%)

2.633E10
2T056E10 (102.758%)

4.9032E9
3.1208E9 (104.437%)

2.a001Cca
2.002809 (10C.002%)

2.8833E9
4.8216E9 (167.223%)

1.3991E9
1. 4401 ES (102.929%)

1.256C9
1.2134E%9 [SE.G09%)

11869E9
FATRAFY (1R 377%)

1.1506E9
1.4018E9 (121.831'%)

1.1399E9
1.1915E49 (104.0527%)

HATRAFA
1 AT1RFH (175 25R%)

9.0937ES
4 1596E8 (10C.724'%)

G.6111ES
THZTIES (11£.909%)

E.36ITER
1.2233E9 (192.220%)

5.1053E8
3.5037ES (127.391'%)

4. G463ES
7.6998ES (165,721 %)

2TESZER
2.29216E%2 (102.001%)

2.9081E2
3.0497ES (104.868%)

Z.G00TES
3.Z9THES (1584.5:5%)

I
i
I
i

g Effects of MultiCore Processors

O criiter 350340 AN9FFrs sr lnaps BARRIFR ppk - Meran
Wl criiter AANAAN MLRprsdArlnnps RARIIFR pps - wWiean

Anp G _WYRA_MON-G1_MYRA_WRITE [isainthr melrt armetanREA_PROIAO R KSORSAZT s _rvra T {354, FHIRAF 1 7))

MOSAZD_STH2

VIPI_Recwd

nnp ACRSAST_STI? [sp nihnrairharretiA0RSA_PR O WO R KISOP SA T Mismianrsasibain £ {47 55 2H4873,7Y

WPI_Earrier

WP _Type_ruarnrrniliy

WPl_Cendd

WIPI_Fack(

WIPI_Allreduce)

_oop: ACRSAID_STEC [iep nthorekbarretfaORSA_PROJAORKISORSAZDISIciaoreatdMain {7010, 7-{71032,12Y]

WPI_Ecasts

_oop: ALRSAZD_STIAZ [ISp nfhorerbarretialR SA_PROMMORKIADRSAZDISICIa0rsazdMaln T84 2, 7 H{B943,121]

_oop: ACRSAID_STEC [iep nthorekbarretfaORSA_PROJAORKISORSAZDISIiaoreatdMain F1 {2732, 7H{2023,12Y

_oop ACRSAZD_STEC Hisp nfhomelbarretbAORSA_PROJMORIAORSAZDISIclaorsazdMain {4963 74977 111]

_oop: ALK SALD_S T [WSp nfhorerbarmetaUR 54 _PROMWORKISORSA2L0sciaorsazdMain THibage £ HEsug 12}

WIPI_lscnd(

_oop: ACRSAZD STEE MispnihormerbarrettAORSA PROJMWORKIAORSAZDIsIclaorsazdMain f1{6942 FHE983 127

_oop: QL_WYRA_MODIGL_MYRA_WWRITE [fsainthcmefrbarettACRSA_PROIMORKMOREZAZD sroigl_rmera £y {290, 731 2,12

_oop: @L_kYTA_MOD:QL_MYTA_WRITE [fsainthcmeirkarmettAGRSA_DROJAWORIMORCAZD s reigl_mvraf} {704, 7H021,12)

_oop: QL_WYRA_MODIGL_MYRA_WWRITE [fsainthcmefrkarettAGRSA_PROMWORKMOREAZD sroal_meraf} (827 FHB4E12]]

WPI_Comm_campared

oop: ACRSAID ST [isp nthorekbarrettAORCA_NROJAVORIKACRSAZ DS aorsazdMain T {0410,7 -{1544,12}]

AL _MyRA_MOD QL _WYRA_WRIT=

Philip Mucci, Multicore Optimization

Comparing FLOPS: MultiCore Processors

Metr c: PADI_TT_OorS S GET_TIMC_O 7 _Day
Yalue: Celus we

Units Deived mct-ic showr in

MICKOS 833 dg MMt

ZH0IS0. 204 Jpes.d: [oops. DARSICRL.pak - fMear
Za0x0s0 409353k es s cops. DARMICR. gk - M2sn

3512333 [

3573148 0101.541%) |

d AORSA2D on 4k cores
[Jaguar Cray XT3(ORNL)
[Floating pt ins/second

O Blue is dual core

[Red is single node

NOTUR2009

bR I O — |
R RER-R R Ly —————————————————————

T06Z2.03E
(LLEEEENLIRE S —————————— |

s0fs3g]
15554 el 711750]
[R R —
THZIES(IC0.T06%) —]

Fifid N>
JE4BTEI00126%) —

[I e —
SEUGEC P ey]

ES53.014

T CNT A —
G 5534

IR [y |
ELp 963

SRR ARG (103 F1A%) [—

R [I —
5:6.2720101.032%) I —
sriaze]
524,347 (IC0.T 4% [—

L RN T I—
BS540 {1 0Z.609% [—

e T

ABE A2Z ¢ 04341 % —]
275 735

447226 (104 91 4%) [—

awey:

Ao BUE 1y]
ArR TRE

237 AT N0 TAL)]
385.622

HES P Us Unidvh) [

ses0sr]
ARAATIE (1 F A4 [
25093
IFE 144 (104.73%) [—

58 305
353306 (IC.G05%: [E—

BE) —
B e v A ——— |

—

ADRZAZZ OTl2

Ladp:

Loogk:

Laog:

Loog:

Laog:

I nop-

Loog:

T

Loogk:

Ladp:

Loogk:

Laog:

Loog:

Laog:

I nop-

Laog:

T

Loogk:

Luop.

Loogk:

Ladp:

ShEMAD_ 2L 20 frzalnfhornerbarettAORZA_ 2R IS EADRZAZZISICTS gma TH{2ZS6 10297 15}

AZRCAZD_ZTIH2 Rfspirfach ewroasrzHACRSA_MROIAMNORIIAORCAZDsrcfaorsa2dMain {07 2,7 -{I7 71 2F
ACREAID_ZTIA2 [MEpIric e airas ratla0 REA_P ROINY ORE A RSAZD S0 te 3 20M AN {377 3, THZT 24,128
AZREAZD_ZTZ MfspirfwnrenasirzA0RSA_FROANORKAORSAZDsrcfao s aZdMain {3102 7 H{Z267 1 2¥
ACHEAL = 1R S RINIC P B0 EEAL RSA_ P RO DR EAD RS AL S ToE0 re a2 dM a2y 2 ekt os 1 2)
ACRFEAIO_STEA? RispirSwnrrrasnr=HmORSA_P RO OR KO REAZD srcfam s a2 ain {3003, 7650 31 2%

AZREAZD_ZTID [Mspirfacr carac 2O REA_PROJAWOREAOREAZD srcfanrsa2dMain) (55727 [E5231 2]

Gl _WIVRA_W T 3 _wRASITE [ASpin £ 1 prsie i 4l A0 RAA_P RO IOR im0 RAEATTS 0 yra ({384 TR, 17

AZRCAZD T2 [fspirfach ewasrzWACRSA MROJANORIIAORCAZDsrcfaorsa2dMain i {95535, 7 HES67 1 2F

ATREAZD_STIHI BISpIrfAchr el 3z ol REA_P RELNIR KA RSAZOCS(C/a0 e 2 2AMAINT {3053, T -{1085,1 2F

AZRCAZD_ZTIH2 Rfspirfach ewrasrzHACRSA_MROIANORIIAORCAZDsrcfaorsa2dMain {22 15,7 H{Z <441 2F

AZREAID_STID Qieplr 1 o) 05 a0 REA_P ROINWOR KA RSAID S 1C/0 s 3 2AM AN {5173, THETE 12

AZREAZD_ZTZ ffspirfwnrenasirzA0RSA_FROMNORKAORSAZDsrcfao s aZdMain G {FEO5, 7 H{FETF A 2Y

ACREAIL_= 112 [HSpIr A i o8 35 St HEA_F UMY OR EGSL RSALD S 100 3 YdM ANt s 7 2, cblui g 1 4]

ATREAST_STIAT [ispieS w i ez =R REA_P ROLIMNOR KIS RAATN A1 fani s a oM ain £ {7R33, 7 HFR41 A 7Y

ACHEAZL_= 112 [FSpIr A ie er S 20 HEA_F HOJNYOR FAL HESALLD S 1000 s a2dMaing] (2205, 7| ee” 1,12]

ATREATT_STIHT [ispir 0 r war DA REA_P RO I OR KO REATN S0 fanrsa P 4in G {49R3 T 4977, 11}

AZREAZD ZTIH2 [fopirfach ewrac i 2HAOREN PROJAMORKINOREAZDsrcfaorsa2dMain] (22 2,7 [22- 74 21

ATREAZD_STIZ [iepin S wir s r2lbdREA_P ROJANOR KD RSAZD 1L rs a2 Jin {2045, T {5943, 1 2F

AZRCAZD T2 [fspirfacr ewasrzWACRSA MROJAWORKAORCAZDsrcfaorsaZdMain {4155, 2-{4072,7)

ATREAZD_STIHI BISpIrAchr el 3z el REA_P RELNIIR KA RSAZOS(c/a0re 2 2AMAINT {2384, T {3 383,128

Philip Mucci, Multicore Optimization

230

Other Performance Tools

« Oprofile
- Hardware counter profiling for Linux

« But you need to have dedicated access to the node.

e Scalasca
- Tracing for OpenMP and MPI

NOTUR2009 Philip Mucci, Multicore Optimization 231

Ways to Avoid Multicore
Performance Problems

e Don't write your own solvers.

- Know what libraries are available and plan your data
structures.

- Spend your time on innovation not implementation.
- Libraries are well documented and well publicized.
- Remember the 80/20 rule.

NOTUR2009 Philip Mucci, Multicore Optimization 232

Ways to Avoid Multicore
Performance Problems

e Don't use more data and memory bandwidth
than necessary.
- Do you need double or can you live with float?
- Do you need > 2GB of address space?

- After comm., memory bandwidth is always the
biggest bottleneck.

e Running in 32-bit mode does not mean you can't
use double precision floating point.

NOTUR2009 Philip Mucci, Multicore Optimization 233

Ways to Avoid Multicore
Performance Problems

« Help the compiler help you (optimize for cache).
- Flags
— Directives
— Good code structure

- Compilers are better at optimizing simple code than
you are.

- Reading the manual is worth it.

NOTUR2009 Philip Mucci, Multicore Optimization 234

Ways to Avoid Multicore
Performance Problems

e If you have to write your own code, tune it for
cache on a single processor.

- Make sure the algorithm scales first.

- If you get good cache utilization, it will make multi-
core performance that much easier.

NOTUR2009 Philip Mucci, Multicore Optimization 235

Ways to Avoid Multicore
Performance Problems

e Maximize granularity and minimize
synchronization (and communication).

- Larger, longer and more independent the
computations, the greater the speedup.

NOTUR2009 Philip Mucci, Multicore Optimization

236

Ways to Avoid Multicore
Performance Problems

« Don't violate the usage model of your
programming environment.

- If something seems 'hard' to get right, you may be
doing something wrong.

- Have reasonable expectations.
- Recall the CUDA comment.

NOTUR2009 Philip Mucci, Multicore Optimization 237

References

« http://www.cs.utk.edu/~mucci/MPPopt.htm|
« http://www.cs.utk.edu/~mucci/latest/mucci_talks.html
« Multithreaded Algorithms
- http://www.cilk.com/resources/multithreaded-algorithms-textbook-chapter/

¢ Multicore Optimization

- http://software.intel.com/en-us/articles/software-techniques-for-shared-cache-multi-core-systems/

- http://drops.dagstuhl.de/opus/volltexte/2008/1374/pdf/07361.CGroeszlingerArmin.Paper.1374.pdf

- http://www.cis.udel.edu/~cavazos/cisc879/BryanY.pdf
- http://crd.Ibl.gov/~oliker/papers/ipdps08_final.pdf
- http://isdlibrary.intel-dispatch.com/isd/1588/MC_Excerpt.pdf

NOTUR2009 Philip Mucci, Multicore Optimization 238

http://www.cs.utk.edu/~mucci/MPPopt.html
http://www.cs.utk.edu/~mucci/latest/mucci_talks.html
http://www.cilk.com/resources/multithreaded-algorithms-textbook-chapter/
http://software.intel.com/en-us/articles/software-techniques-for-shared-cache-multi-core-systems/
http://drops.dagstuhl.de/opus/volltexte/2008/1374/pdf/07361.GroeszlingerArmin.Paper.1374.pdf
http://www.cis.udel.edu/~cavazos/cisc879/BryanY.pdf
http://crd.lbl.gov/~oliker/papers/ipdps08_final.pdf
http://isdlibrary.intel-dispatch.com/isd/1588/MC_Excerpt.pdf

References

« Pthreads
- https://computing.linl.gov/tutorials/pthreads/
- http:/randu.org/tutorials/threads/
- http://www.cs.umu.se/kurser/TDBC64/VT03/pthreads/pthread-primer.pdf

- http://www.cs.utsa.edu/~whaley/teach/cs6643/LEC/pthreads_ho.pdf
 OpenMP

- http://www.compunity.org/events/pastevents/ewomp2004/suess_leopold_pap_ew04.pdf

- https://computing.linl.gov/tutorials/openMP/

- http://infostream.rus.uni-stuttgart.de/lec/288/291/real/
- https://fs.hlrs.de/projects/par/par_prog_ws/2004C/22_openmp_performance

NOTUR2009 Philip Mucci, Multicore Optimization 239

https://computing.llnl.gov/tutorials/pthreads/
http://randu.org/tutorials/threads/
http://www.cs.umu.se/kurser/TDBC64/VT03/pthreads/pthread-primer.pdf
http://www.cs.utsa.edu/~whaley/teach/cs6643/LEC/pthreads_ho.pdf
https://computing.llnl.gov/tutorials/openMP/
http://infostream.rus.uni-stuttgart.de/lec/288/291/real/
https://fs.hlrs.de/projects/par/par_prog_ws/2004C/22_openmp_performance_2.pdf

References

e FFTW

- http://www.fftw.org
e PetSC

- http://www-unix.mcs.anl.gov/petsc
« SUPERLU

- http://crd.Ibl.gov/~xiaoye/SuperLU
« ScalAPACK etc...

- http://www.netlib.org
« VSIPL

- http://www.vsipl.org

NOTUR2009 Philip Mucci, Multicore Optimization 240

http://www.fftw.org/
http://www-unix.mcs.anl.gov/petsc
http://crd.lbl.gov/~xiaoye/SuperLU
http://www.netlib.org/
http://www.vsipl.org/

References

« GNU compilers
- http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

 Intel Compiler

- http//www.ncsa.edu/UserInfo/Training/Workshops/Multicore/presentations/Optimization%?20for%2 0Performance.ppt

- http://www.intel.com/cd/software/products/asmo-na/eng/222300.htm
- http://www.ichec.ie/support/tutorials/intel_compiler.pdf
e CILK tutorials
- http://supertech.csail.mit.edu/cilk
- http://www.cilk.com/resource-library/resources/
« UPC
- http://upc.gwu.edu/tutorials.html
e Co-Array Fortran

- http://www.co-array.org

NOTUR2009 Philip Mucci, Multicore Optimization 241

http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://www.ncsa.edu/UserInfo/Training/Workshops/Multicore/presentations/Optimization%20for%20Performance.ppt
http://www.intel.com/cd/software/products/asmo-na/eng/222300.htm
http://www.ichec.ie/support/tutorials/intel_compiler.pdf
http://supertech.csail.mit.edu/cilk
http://www.cilk.com/resource-library/resources/
http://upc.gwu.edu/tutorials.html
http://www.co-array.org/

References

« OpenMPI and SLURM process binding
- http://icl.cs.utk.edu/open-mpi/fag/?¢category=tuning
- https://computing.linl.gov/linux/slurm/mc_support.html
« Hoard memory allocator
- http://www.cs.umass.edu/~emery/hoard/index.html
* PAPI
- http://icl.cs.utk.edu/projects/papi
e ompP
- http://www.ompp-tool.com
« Valgrind
- http://www.valgrind.org
- http://valgrind.org/docs/manual/hg-manual.html
- http://valgrind.org/docs/manual/drd-manual.html

NOTUR2009 Philip Mucci, Multicore Optimization

242

http://icl.cs.utk.edu/open-mpi/faq/?category=tuning
https://computing.llnl.gov/linux/slurm/mc_support.html
http://www.cs.umass.edu/~emery/hoard/index.html
http://icl.cs.utk.edu/projects/papi
http://www.ompp-tool.com/
http://www.valgrind.org/
http://valgrind.org/docs/manual/hg-manual.html
http://valgrind.org/docs/manual/drd-manual.html

References

mpiP

- http://mpip.sourceforge.net
PerfSuite

- http:/perfsuite.ncsa.uiuc.edu
HPCToolkit

- http://hipersoft.cs.rice.edu/hpctoolkit
papiex

- http://www.cs.utk.edu/~mucci/papiex
TAU

- http://www.paratools.com

GPTL

- http://www.burningserver.net/rosinski/gptl

NOTUR2009 Philip Mucci, Multicore Optimization

243

http://mpip.sourceforge.net/
http://perfsuite.ncsa.uiuc.edu/
http://hipersoft.cs.rice.edu/hpctoolkit
http://www.cs.utk.edu/~mucci/papiex
http://www.paratools.com/
http://www.burningserver.net/rosinski/gptl

References

 Prefetching
- http://gcc.gnu.org/projects/prefetch.html
« Aliasing
- http:/developers.sun.com/solaris/articles/cc_restrict.html
- http//www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/gcc/restricted-pointers.html

- http://www.cellperformance.com/mike_acton/2006/05/demystifying_the_restrict_keyw.html

- http://www.cellperformance.com/mike_acton/2006/06/understanding_strict_aliasing.html

« Alignment

- http://software.intel.com/en-us/articles/align-and-organize-data-for-better-performance

- http://www.jauu.net/data/pdf/beware-of-your-cacheline.pdf

NOTUR2009 Philip Mucci, Multicore Optimization 244

http://gcc.gnu.org/projects/prefetch.html
http://developers.sun.com/solaris/articles/cc_restrict.html
http://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/gcc/restricted-pointers.html
http://www.cellperformance.com/mike_acton/2006/05/demystifying_the_restrict_keyw.html
http://www.cellperformance.com/mike_acton/2006/06/understanding_strict_aliasing.html
http://software.intel.com/en-us/articles/align-and-organize-data-for-better-performance
http://www.jauu.net/data/pdf/beware-of-your-cacheline.pdf

