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ScheduleSchedule

● 10:15 Begin
● (1:00)
● 11:15 – 11:30 Coffee
● (1:30)
● 13:00 – 14:00 Lunch
● (2:00)
● 16:00 Finish
● 18:00 Beer
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OutlineOutline

● Commentary
● HW/SW Overview
● Working With the 

Compiler
● Single Core 

Optimization

● Programming Models
● Multicore 

Optimization
● Performance Analysis
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Initial CommentaryInitial Commentary
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Optimization is an Art FormOptimization is an Art Form

● As such, this tutorial is partially subjective.
● Expect some contradictions to your 

experience(s).
– Don't panic.

● Negative comments (on the tutorial) are 
welcomed (afterwards).
– Please include “bug fixes”.
– mucci at eecs.utk.edu
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What's so special about Multicore?What's so special about Multicore?

● Parallel programming is somewhat easier...
– Shared address space means direct access to data.

● Multicore is a great latency hiding mechanism.
– Most computers are doing many different activities at 

once. (What about us?)
● We really can't get much faster without liquid 

cooling.
● Multicore appears to lower power and cooling 

requirements per FLOP.
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What's so hard about Multicore?What's so hard about Multicore?

● For 30+ years, we've been optimizing for cache.
– Compilers are still limited by static analysis
– Most developers technical computing are not 

(supposed to be) computer architects
– Languages have further abstracted performance
– DRAM ignores Moore's Law
– Memory controllers are neither bigger or smarter

● But it's ”easy” to put multiple cores on a die!
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Evaluation of MulticoreEvaluation of Multicore

● Lots of high GF cores with many shared 
resources means more work for you.

● Resource constraints must be examined system 
wide, with attention to per-core performance.
– Size/speed of dedicated cache/TLB 
– Memory bandwidth and latency per-core
– On/Off-chip communications per-core

● PCI, I/O, Interprocessor, Interconnect
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Multicore PerformanceMulticore Performance

● Cores generally don't ”know” about each other
– They communicate only through cache and memory.
– No dedicated instructions to do sync, comm, 

dispatch, must be done by (slow) software.
● External bandwidth limited by pins and power.
● Starvation is a very real issue at every shared 

resource. Some extreme examples:
– Intel's Hyper Threading
– IBM's POWER4 Turbo vs. HPC
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Architecture OverviewArchitecture Overview
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Multicore Architecture OverviewMulticore Architecture Overview

● Hardware
– Caches, Coherency and Prefetching
– Translation Lookaside Buffers (TLB)
– Hardware Multithreadeding (SMT/HT)

● Software
– Threads vs. Processes
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Multicore and Memory BandwidthMulticore and Memory Bandwidth

● Biggest bottleneck is memory bandwidth and 
memory latency.
– Multicore has made this (much) worse in order to 

claim increased peak performance.
● At least 3 major approaches:

– Make cores as fast/slow as main memory (SiCortex, 
Tensilica)

– Add faster/closer memory pipes (Opteron, Nehalem)
– Streaming compute engines (NVIDIA,AMD), 

vectorized memory pipelines (Convey).
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Multicore, SMP and NUMAMulticore, SMP and NUMA

● Single socket multicores are SMP's.
– Cost of memory access is uniform to every core
– Less work for programmer, OS, etc.
– Not possible to scale (well)

● Crossbar works, but ultimately you have to slow nearest 
neighbors down.

● NUMA – Non Uniform Memory Access
– All memory is not the same.
– Problem: Memory can be “far” from the CPU
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CachesCaches

● Small high-speed memories to keep data ”close” 
to the processor. 
– Memory is moved in and out of caches in blocks 

called ”lines”, usually 32 to 256 bytes.
● Multiple levels of cache, with at least one level 

being dedicated to a single core. i.e.
– 32K Level 1 -> 1 core
– 1MB Level 2 -> 2 cores, 1 die
– 8MB Level 3 -> 4 cores, 1 package
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Caches Exploit LocalityCaches Exploit Locality

● Spatial – If I look at address M(n), it is likely that 
M(n ± z) will be used, where z is small.

● Temporal – If I look at address M(n) at time t, it is 
likely that M(n) will be used again at time t + t', 
where t' is small.

● If true for one core, for us (technical-computing) 
true for multicore.
– So how do we still make caches Correct 

(consistent/coherent) and Effective (fast)?
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Cache ArchitectureCache Architecture

● Memory cannot live anywhere in a cache.
● Cache associativity – The number of unique 

places in a cache where any given memory item 
can reside.
– Location is determined by some bits in the physical 

or virtual address..
– Direct mapped means only one location.

● But very, very fast.

– Higher associativity is better, but costly in terms of 
gates and complexity (power and performance).



 

18

 

Philip Mucci, Multicore OptimizationNOTUR2009

Why do we care?Why do we care?

● Tuning for cache yields most of your 
performance gain. 

● On multicore true, but opportunity for creating 
contention.
– It can happen: A cache unfriendly code may run 

faster than the same code highly tuned without 
thought to contention.

● Data layout and algorithm design.

● And you thought multicore was free 
performance...
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Cache ConsistencyCache Consistency

● For correctness, cores must see a consistent view 
of memory through the caches.

● Thus the caches communicate with a protocol 
that indicates the state of each cache line. Most 
common is MESI.
– M – modified, E – exclusive
– S – shared, I – invalid

● Method of communication may be different. 
(Snoop, directory, broadcast etc...)
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Coherency and Cache Coherency and Cache 
Inclusivity/ExclusivityInclusivity/Exclusivity

● Most caches are inclusive.
– Data kept in multiple levels at the same time

● With multiple cores, more than one level can 
keep MESI states.
– In Nehalem, L3 keeps state per socket, L1 and L2 per 

core
● Transitions to E, I, S are often performance hits.

– But they can be identified with the right tools and 
insight.
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Coherency Example (2Sx4C)Coherency Example (2Sx4C)

Courtesy Daniel Molka of T.U. Dresden
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Coherency Example part 2Coherency Example part 2

Courtesy Daniel Molka of T.U. Dresden
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Hardware PrefetchingHardware Prefetching

● Automatic
– Streams of reference automatically predicted by the 

hardware.
– N consecutive misses trigger fetch of lines ahead.
– Usually unit line stride and one or two streams.

● On/Off can sometimes be controlled by the BIOS.

● Prefetch Instructions
– Many variants, separate from the above, but may 

trigger it. Can even be invalid addresses. 
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Software PrefetchingSoftware Prefetching

● Compiler usually sprinkles in these instructions
– To do a good job, it needs to predict misses or find 

slots to hide them.
● Pragmas and Intrinsics

– High level manual placement
● Explicit

– Programmer puts in assembly primitives
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TLBTLB

● Memory is divided up into pages.
– Pages can be variable size. (4K,64K,4M)

● A page of logical (virtual) address space can have 
a physical address.
– Computing this address is expensive! 

● So we keep a cache of them around: the TLB.
– It is usually fully associative and multi-level.
– A TLB miss can be very expensive.
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Memory Pages and the TLBMemory Pages and the TLB

● Each TLB entry covers one page.
– Big pages are good for lowering TLB misses.
– But the OS moves data in pages!

● A miss in all levels of the TLB is also called a 
page fault.
– If the data is in physical memory, then this is a minor 

page fault.
– If the data is on disk, this is a major page fault.



 

27

 

Philip Mucci, Multicore OptimizationNOTUR2009

SMT and HyperthreadingSMT and Hyperthreading

● Simultaneous Multithreading
– Hyperthreading is Intel's name for it
– Share physical resources on a chip among multiple 

hardware threads except context (PC and regs)
– Goal is to attempt to hide latency of instructions.
– When one instruction stalls, try another thread, OS 

does not need to context switch.
– To the OS, it's an SMP

● This really only works when you've got a rich 
and diverse instruction mix among threads.



 

28

 

Philip Mucci, Multicore OptimizationNOTUR2009

Vector InstructionsVector Instructions

● Instructions that operate on more than one 
operand.
– More accurately called micro-vector instructions
– Real vector machines do this on 1000's of items.

● Intel's SSE 2,3,4 are examples
– A register contains a number of Byte, Int, Float, etc...

● Hardware is free to schedule and move data in 
larger chunks.
– Restrictions on alignment, accuracy, etc...
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Threads and ProcessesThreads and Processes

● Operating systems support threads and 
processes.
– A thread is an execution context; machine state 

scheduled by the operating system.
– A process is a thread plus virtual memory, files, etc.

● A process can contain multiple threads.
● Each thread in a process shares everything except state 

(stack, registers and program counter)  

● Both are managed by the operating system.
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OS Scheduling and ThreadsOS Scheduling and Threads

● On Linux, threads are free to bounce around.
– Other threads can steal the CPU as can OS work like 

hard and soft interrupts.
– OS's do this to provide “fairness”.
– Linux does understand a cost penalty when moving a 

thread from one core to another.
– Rescheduling a new thread often involves a cache 

and TLB flushing. 
● For technical computing (often SPMD), this is 

bad for performance. 
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OS and System CallsOS and System Calls

● System calls are function calls that ask the OS to 
do something.
– Going to the OS (crossing from user to kernel 

domain) is slow.
● Argument checking
● Data copies
● Rescheduling points

● Function calls are cheap, just register bits.
● Many system calls contain locks, are serialized 

or are not scalable.
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Architecture SummaryArchitecture Summary

● To tune, you need to have some background. 
– Single core performance comes first!

● With multicore, we will tune:
– To use all of the cache
– To avoid cache conflicts
– To minimize shared resource contention

● Memory bandwidth, OS, I/O, Comm

– Minimize NUMA effects
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Working With the CompilerWorking With the Compiler
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Optimizing with the CompilerOptimizing with the Compiler

● It can't read your mind, only your code.
● Correctness is always emphasized over 

performance.
● For popular” and “simple” constructs, the 

compiler will usually do a better job than you.
● But as code gets more abstract, it can't guess the 

things that matter!
– Loop lengths, alignment, cache misses, etc...
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Understanding CompilersUnderstanding Compilers

● The best things you can do to work with the 
compiler are:
–  Learn a compiler well and stick with it. 
– Clearly express your intentions to the compiler 

through:
● Well structured code
● Compiler directives
● Compile time options

– Extensive array to control different behaviors.
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Correctness and CompilersCorrectness and Compilers

● We often talk about getting “correct” answers.
– IEEE has a standard for correctness (IEEE754)
– Applications relax that standard for performance and 

because correct is somewhat arbitrary.
● Consider the following:

sum = 0.0
do i = 1, n
  sum = sum + a(i)
enddo

sum1 = 0.0
sum2 = 0.0
do i = 1, n-1, 2
  sum1 = sum1 + a(i)
  sum2 = sum2 + a(i+1)
enddo
sum = sum1+sum2
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InliningInlining

● Replacing a subroutine call with the code from 
the original function.

● Good because:
– Function calls inside loops (often) inhibit 

vectorization.
– Function calls are not free, they take cycles and 

cycles to set up and tear down.
● Has potential to bloat code and stack.
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VectorizationVectorization

● Generate code that takes advantage of vector 
instructions.
– Helped by inlining, unrolling, fusion, SWP, IPA, etc.

● The entire motivation behind using accelerators
– GPGPUs and FPGAs

●  x86, PPC, MIPS all have variants of vector 
instructions:
– SSE, AltiVec, etc...
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IPO/IPAIPO/IPA

● Interprocedural Optimization/Analysis
– Compiler can move, optimize, restructure and delete 

code between procedures and files.
● Generates intermediate code at compile time.
● Generates object code during final link.

– As with SWP, exposes more opportunities to 
optimization passes.

● Stronger typing of pointers, arguments and data 
structures can vastly increase effectiveness.
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Software PipeliningSoftware Pipelining

● Consider more than one iteration of a loop.
– Keep more intermediate results in registers and 

cache.
● To use it, the compiler must predict:

– Loop count
– Inter-iteration dependencies
– Aliasing

● Optimization can be a trade off.
– Loop set up and tear down can be costly.
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Pointer AliasingPointer Aliasing

● The most efficient optimization is deletion.
– Especially loads and stores! 

● Compilers must assume that memory (by 
pointers) has changed or overlaps.
– Unless you help it to conclude otherwise.

● This is called the pointer aliasing problem. It is 
really bad in C and C++.
– Can be controlled on command line and through 

keywords.
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Types of AliasingTypes of Aliasing

● Strict
– Pointers don't alias if they are different types.

● Typed
– Pointers of the same type can alias and overlap.

● Restricted
– Pointers of same type are assumed to not overlap.

● Disjointed
– All pointer expressions result in no overlap.
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Profile Directed FeedbackProfile Directed Feedback

● a.k.a Feedback Directed Optimization
● Collect data about what the code really does and 

then adapt.
– Old idea, but (still) not very well developed.

● Important for:
– Branches (I-cache/ITLB misses, BP misprediction)
– Loop bounds (unroll, SWP, jam, etc)

● Future will be to make most decisions based on 
real data.
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Compiler FlagsCompiler Flags

● All compilers support the -O(n) flag. 
– This flag actually turns on lots of other optimizations.

● Better to start at -O(big) and disable 
optimizations rather than other way around.
– Develop your knowledge of what to turn off.
– Compiler documentation is usually clear about 

which n can result in wrong answers.



 

45

 

Philip Mucci, Multicore OptimizationNOTUR2009

GNU Compiler FlagsGNU Compiler Flags
● -O3 -ffast-math -funroll-all-loops 
-msse3 -fomit-frame-pointer 
-march=native -mtune=native
– -Q --help=optimizers

● Sometimes you need -fno-strict-aliasing 
to get correct results.
– -O2 and higher assume strict aliasing.

● Feedback directed optimization:
– First time use -fprofile-generate
– Subsequent times use -fprofile-use
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PathScale Compiler FlagsPathScale Compiler Flags

● -Ofast is equivalent to:
– -O3 -ipa -OPT:Ofast -ffast-math -fno-
math-errno -fomit-frame-pointer

● Takes most of the same flags as GCC.
● To find out what the compiler is doing:

– -LNO:vintr_verbose=1
– -LNO:simd_verbose=1

● Feedback directed optimization:
– First time use -fb_create fbdata
– Subsequent times use -fb_opt fbdata
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Intel Compiler FlagsIntel Compiler Flags

● -fast equals -O3 -ipo -xT -static 
-no-prec-div
– -ip is subset of -ipo for single files
– -shared-intel to allow tools to work

● To find out what the compiler is doing:
– -opt-report [0123], -opt-report-file f

● Feedback directed optimization
– First time use -prof-gen
– Subsequent times use -prof-use
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Intel Compiler DirectivesIntel Compiler Directives

● C (#pragma) or Fortran (!DEC$)
● Prefetching

– [no]prefetch var1[,var2]
– GCC: __builtin_prefetch()

● Software Pipelining (of Loop)
– [no]swp
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Intel Compiler DirectivesIntel Compiler Directives

● Loop Count
– loop count(n)

● No Loop Interdepedencies (w/SWP)
– ivdep

● Loop Unroll
– [no]unroll(n)

● Loop Split
– distribute point
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Limiting AliasingLimiting Aliasing

● restrict keyword
– Part of the C99 standard (-std=c99 with GCC)
– A pointer refers to unique memory.

● Writes through this pointer will not affect anyone else.
– Allows very good optimization!

● -fstrict-aliasing allows aliasing only for 
pointers of the same type. 
– For GCC and many compilers, auto when >= -O2
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Aligning DataAligning Data

● Specifying alignment eliminates manual padding.
● Intel says:
● Align 8-bit data at any address.
● Align 16-bit data to be contained within an aligned four-byte word.
● Align 32-bit data so that its base address is a multiple of four.

● Align 64-bit data so that its base address is a multiple of eight.
● Align 80-bit data so that its base address is a multiple of sixteen.
● Align 128-bit data so that its base address is a multiple of sixteen.

/* Intel, align to 16 bytes */
__declspec(align(16)) unsigned long lock;
/* GCC */
unsigned long lock __attribute__ ((aligned(16)));
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Other Important C/C++ KeywordsOther Important C/C++ Keywords

● static
– In global scope, used only in this file.

● const
– Data or location never changes.

● volatile
– Data may change from an alias outside of scope.

● inline
– Inline all the time.
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Serial Code OptimizationSerial Code Optimization
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“The single most important impediment to good 
parallel performance is still single-node 
performance” 
William Gropp, Argonne National Lab.

s/parallel/multicore; s/node/core;
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Guidelines for PerformanceGuidelines for Performance

● Cache gets you all of your performance.
● Compilers like to optimize loops without.

– Function calls
– Side effects
– Pointers that can overlap
– Dependencies

● Function calls are not free
● System calls are slower
● I/O is even worse
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Loop and Array OptimizationsLoop and Array Optimizations

● Allocation
● Unit Stride Reference
● Initialization
● Padding
● Packing
● Stride Minimization
● Blocking
● Unrolling

● Fusion
● Defactorization
● Peeling
● Collapse
● Floating IF's
● Indirect Addressing
● Gather/Scatter
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Code ExamplesCode Examples
● All of the examples that follow are contrived.

– Compilers can optimize them very well.
● In production codes, these patterns are harder to 

spot.
– And thus poorly optimized.

● Write the simplest code first, make sure it's 
correct.
– Debugging a highly optimized loop is terrible work.
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Array AllocationArray Allocation

● As we know, arrays are allocated differently in C 
and Fortran.
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Unit Stride AccessUnit Stride Access

● Unit stride is always best.
– Small stride (< line size) is also ok.

● When data comes in, think about using as much 
of it as possible as soon as possible.

● When touching large amounts of memory, TLB 
misses faults can be a concern.
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Array ReferencingArray Referencing

● In C, outer most index should move the fastest.
[x,Y]

● In Fortran, inner-most should change the fastest.
(X,y)
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Array InitializationArray Initialization

● No one really uses formal static initialization 
anymore. Waste space, restricts program, etc.
– But static bounds were great for optimizers.

● C and Fortran now dialects allow:
– Dynamic array allocation on the stack.
– Run time specification of array bounds.

● Opinions vary on this.
– Simpler and more expressive the code, the better.
– Array addressing can waste a lot of cycles.
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Array PaddingArray Padding

● Memory often needs to be padded to avoid 
cache line conflicts.
– Fortran common block is a contiguous region of 

memory.
– Lots of codes just use powers of 2. Yikes!

● Same can easily be true of dynamically allocated 
memory.

● Some elements on systems love aligned data.
– I/O, Infiniband
– But caches on multicore do not!.
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Intra-Array PaddingIntra-Array Padding

● Same problem can happen when accessing a 
single array.
– Consider striding across each dimension as in a 

transpose.
● This can be avoided by allocating extra space.

– C: Avoid leading dimension of power of 2
– Fortran: Avoid trailing dimension of power of 2.

● As with previous item, depends on associativity 
of the cache.
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Structure PackingStructure Packing

● Unaligned access to data is usually slower.
● So align items on word, double-word or bigger.
● Pack from smallest to largest, maybe add 

padding?
● But this is a multicore problem! (more later)

struct {
  short s;
  int i;
  char c;
  void *p;
}

struct {
  void *p;
  int i;
  short s;
  char c;
 }
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Stride MinimizationStride Minimization
Loop InterchangeLoop Interchange

● Always think about spatial and temporal locality.
● Often, this is just an oversight of the original 

implementor.
● With simple loops, compiler will interchange 

them for you.
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Cache BlockingCache Blocking

● Standard transformation
– Most compilers are decent at it, if the loop is simple 

and has no subroutine calls or side-effects
● Goal is to reduce memory pressure by making 

use of the caches.
– Helps when potential for re-use is high.
– Naturally blends with sum reduction and unrolling.

● Good for multicore too but, some caches are 
shared! And which loop should we parallelize?
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Cache BlockingCache Blocking
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Loop UnrollingLoop Unrolling

● Standard transformation to improve processor 
pipeline utilitization and reduce loop overhead.
– More work per iteration

● Compilers are very good except when
– Function calls inside
– Inter-iteration dependencies
– Global variables
– Pointer aliasing
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Loop UnrollingLoop Unrolling
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Loop Unrolling & Sum ReductionLoop Unrolling & Sum Reduction

● When an loop has a data dependency that 
introduces serialization.

● Solution is to unroll and introduce intermediate 
registers.
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(Outer) Loop Unroll and Jam(Outer) Loop Unroll and Jam

● Reduce register pressure
● Decrease loads and stores per iteration

      DO I = 1, N 
        DO J = 1, N 
          DO K = 1, N 
            A(I,J) = A(I,J) + B(I,K) * C(K,J)
          ENDDO
        ENDDO
      ENDDO 

      DO I = 1, N, 2 
        DO J = 1, N, 4 
          DO K = 1, N 
            A(I,J) = A(I,J) + B(I,K) * C(K,J) 
            A(I+1,J) = A(I+1,J) + B(I+1,K) * C(K,J) 
          ENDDO 
          DO K = 1, N 
            A(I,J+1) = A(I,J+1) + B(I,K) * C(K,J+1) 
            A(I+1,J+1) = A(I+1,J+1) + B(I+1,K) * C(K,J+1) 
          ENDDO 
          DO K = 1, N 
            A(I,J+2) = A(I,J+2) + B(I,K) * C(K,J+2) 
            A(I+1,J+2) = A(I+1,J+2) + B(I+1,K) * C(K,J+2) 
          ENDDO 
          DO K = 1, N 
            A(I,J+3) = A(I,J+3) + B(I,K) * C(K,J+3) 
            A(I+1,J+3) = A(I+1,J+3) + B(I+1,K) * C(K,J+3) 
          ENDDO 
        ENDDO
      ENDDO
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(Outer) Loop Unroll and Jam(Outer) Loop Unroll and Jam

● Be careful loop body does not become too large.
– Should have enough registers for int. results.

      DO I = 1, N, 2 
        DO J = 1, N, 4 
          DO K = 1, N 
            A(I,J) = A(I,J) + B(I,K) * C(K,J) 
            A(I+1,J) = A(I+1,J) + B(I+1,K) * C(K,J) 
          ENDDO 
          DO K = 1, N 
            A(I,J+1) = A(I,J+1) + B(I,K) * C(K,J+1) 
            A(I+1,J+1) = A(I+1,J+1) + B(I+1,K) * C(K,J+1) 
          ENDDO 
          DO K = 1, N 
            A(I,J+2) = A(I,J+2) + B(I,K) * C(K,J+2) 
            A(I+1,J+2) = A(I+1,J+2) + B(I+1,K) * C(K,J+2) 
          ENDDO 
          DO K = 1, N 
            A(I,J+3) = A(I,J+3) + B(I,K) * C(K,J+3) 
            A(I+1,J+3) = A(I+1,J+3) + B(I+1,K) * C(K,J+3) 
          ENDDO 
        ENDDO
      ENDDO

      DO I = 1, N, 2 
        DO J = 1, N, 4 
          DO K = 1, N 
            A(I,J) = A(I,J) + B(I,K) * C(K,J) 
            A(I+1,J) = A(I+1,J) + B(I+1,K) * C(K,J) 
            A(I,J+1) = A(I,J+1) + B(I,K) * C(K,J+1) 
            A(I+1,J+1) = A(I+1,J+1) + B(I+1,K) * C(K,J+1) 
            A(I,J+2) = A(I,J+2) + B(I,K) * C(K,J+2) 
            A(I+1,J+2) = A(I+1,J+2) + B(I+1,K) * C(K,J+2) 
            A(I,J+3) = A(I,J+3) + B(I,K) * C(K,J+3) 
            A(I+1,J+3) = A(I+1,J+3) + B(I+1,K) * C(K,J+3) 
          ENDDO
        ENDDO
      ENDDO
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Outer Loop UnrollingOuter Loop Unrolling

● Goal is to reduce number of loads and stores on 
inner loops with invariants
– More results can be kept in registers or in cache

● Compilers not quite as good at this.



 

74

 

Philip Mucci, Multicore OptimizationNOTUR2009

Loop Jam/FusionLoop Jam/Fusion

● Merge two loops that access (some) similar data 
to:
– Reduce loop overhead, Improve instruction mix, 

Lower cache misses
● Fusion can create associativity conflicts
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Loop DefactorizationLoop Defactorization

● Reduce the number of array elements referenced, 
to reduce cache traffic.

● But floating point operations are not always 
associative.

(A + B) + C   != A + (B + C)
● Verify that your results are still “correct”
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Loop DefactorizationLoop Defactorization
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Loop PeelingLoop Peeling

● For loops which access previous elements in 
arrays.

● Compiler cannot determine that an item does not 
need to be reloaded on every iteration.
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Loop CollapseLoop Collapse

● Reduce address computation and loop nesting.
● Reduces loop overhead and increases chance of 

vectorization.
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Loop CollapseLoop Collapse

● This can be especially effective in C and C++, 
where often macros are used to compute multi-
dimensional array offsets.
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If statements in LoopsIf statements in Loops

● We already know many optimizations that this 
inhibits.

● Unroll loop, move conditional elements into 
scalars early, test scalars at end of loop.
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Floating IF'sFloating IF's

● IF statements that do not change from iteration to 
iteration can be hoisted.

● Compilers are usually good at this except when:
– Loops contain calls to procedures
– Loops have variable bounds
– Loops reference global variables that may be aliased 

to data in the IF statement.
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Floating IF'sFloating IF's
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Some ResultsSome Results

● Taken years ago on 3 different architectures with 
the best compilation technology at that time.

● Percent is of -O3 version but untuned.

Arch A Arch B Arch C
Stride Minimization 35% 9% 100%
Fusion 69% 80% 81%
Interchange 75% 100% 100%
Floating IF's 46% 100% 101%
Loop Defactor 66% 76% 94%
Loop Peeling 97% 64% 81%
Loop Unrolling 97% 89% 67%
Loop Unroll + SumR 77% 100% 39%
Outer Loop Unrolling 83% 26% 46%
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Indirect AddressingIndirect Addressing
X(I) = X(I) * Y(A(I))

● Very hard for a compiler to optimize.
● Very difficult for “normal” memory subsystems.

– Most memory subsystems are just bad at pseudo-
random accesses.

– Hardware prefetch can mitigate, but can also hurt
● When you have this construct, either:

– Consider using a sparse solver package.
– Block your data into small cache-line sized chunks 

and do some redundant computation.
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Gather-Scatter OptimizationGather-Scatter Optimization

● For loops with conditional work.
● Split loop to gather indirect array where work 

needs to be done.
● Can increase pipelining, effectiveness of 

prefetching and enable other loop optimizations.
– Depends on amount of work per iteration and 

locality of reference.
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Gather-Scatter OptimizationGather-Scatter Optimization
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OOC and C++ ConsiderationsOOC and C++ Considerations

● Extensive use creates much greater memory 
pressure, lots and lots of pointers.

● Dynamic typing and polymorphism is not free.
● Make use of inline, const and restrict keywords
● Use STL, Boost and other support libraries

– Expresses more of author's intent to compiler to 
increase performance.

– But be careful with multicore of the above.
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Fortran ConsiderationsFortran Considerations

● WHERE statements
● ALLOCATE alignment
● Array shapes, sizes, slices etc.
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Fortran 90 ArraysFortran 90 Arrays

● The (:) syntax is very useful.
● But this can hide significant amount of data 

movement, often repeatedly.
– Pollutes the caches
– Creates temporaries that may have pathological 

alignment, especially with 'assumed shapes'
● Consider creating an explicit temporary if you 

need to pass slices around.
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Fortran 90 WHERE statementsFortran 90 WHERE statements

● A construct for masking array operations
● Generated code is often required to be a loop 

containing an if statement.
– Highly inefficient

● Consider multiplying by a 0 or 1 mask array with 
the same shape into a temporary.
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Optimized Arithmetic LibrariesOptimized Arithmetic Libraries

● Usually, it's best NOT to write your own code.
– Many good programmers are focussed on multicore 

development 
● Advantages:

– Performance, Portability, Prototyping
– Let someone else solve the hard problems.

● Disadvantages:
– Extensive use can lead to vertical code structure.
– May make performance debugging difficult.
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● Sample DGEMM
– (old Pentium IV)

● Naïve
– 200 MF

● Advanced ->
– 1 GF

● Optimal
– 2.5GF

● Think you can do it?
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Multicore ProgrammingMulticore Programming
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Multithreaded ProgrammingMultithreaded Programming

● Here we will cover three popular models:
– MPI
– Pthreads (C and C++)
– OpenMP

● We will talk a bit about
– PGAS languages
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Expressing Parallelism Expressing Parallelism 

● Data parallelism
– Programmer specifies chunk of work to be done in 

parallel.
● Same operation on every thread, using different data
● OpenMP, UPC, Co-Array Fortran, etc...

● Functional (or task) parallelism
– Programmer partitions work by thread or function.

● MPI, Pthreads, Cilk, etc...
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Message PassingMessage Passing

● Program explicitly exchanges data.
● Semantics are send/receive (identified by tag) or 

get/put (direct to address).
● Ordering and consistency are somewhat implicit.

– Synchronization usually not needed 
● Designed for distinct address spaces.

– Nothing really shared other than task ID's
● MPI, PVM, SHMEM, Sockets
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Shared MemoryShared Memory

● Data is exchanged implicitly as part of an 
expression.
– Load/store or language feature.

● No guarantee of ordering or consistency
– Synchronization is needed.

● Programs share everything
– Or in higher level models, data that is declared 

shared.
● One can be used to implement the other...
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MPI and MulticoreMPI and Multicore

● MPI was originally designed for distributed 
memory machines.
– Receiver is not expected to be in the same address 

space of the sender.
– Data was expected to be copied, packed, sent, 

received, unpacked, copied, etc...
– Much work has been done to “eliminate the copies”.

● You can get a 4 byte message across a wire in 1us these 
days (if you do it 1000's of times and average)

– But that's still way more expensive than 2ns.
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MPI and Multicore 2MPI and Multicore 2

● MPI-2 introduced some get/put primitives to 
introduce more direct access to remote memory.
– Not nearly as lightweight or flexible as they should 

have been, thus limited acceptance.
– Require synchronization.

● Most MPI's were not previously safe for threads.
– You had to run multiple processes on a multicore 

machine.
– Things are different now.
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MPI and Multicore 3MPI and Multicore 3

● Many MPI's are now both thread safe and tuned 
for on-node, shared memory operation.

● This means you can easily use MPI for multicore 
programming.
– Advantages to this are:

● Explicit coding of data exchange and synchronization. 
Code may be easier to read and tune.

– Disadvantages are:
● You can lose a substantial amount of performance. 

Granularity of parallelism must be coarse. Programming 
model is limited.
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PthreadsPthreads

● Assembly language of thread programming.
– A Pthread is an OS thread
– Not for you Fortran programmers.

● Basic primitives are Create, Join and Mutex
● Used in combination with “messages” to create 

different models.
– master/worker model
– gang model (master is a worker)
– pipeline (dataflow)
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PthreadsPthreads

● With pthreads, everything is shared except 
variables declared on the stack.
– Extreme care must be used to coordinate access to 

global data structures.
– Reads and writes need to be consistent.
– Different cores should be working with different 

cache lines.
● 3 types of synchronization

– Mutex, condition variables and rwlocks.
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Pthread Dot Product ExamplePthread Dot Product Example

Thanks to Clint Whaley
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Pthread Work Queue ExamplePthread Work Queue Example

Thanks to Clint Whaley
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Logical ParallelismLogical Parallelism

● Separate processors from programmers view of 
threads.
– Make chunks or work and threads separate.

● Make queues of work for each thread.
– Send work to threads in chunks.
– If a thread finishes, get more work.

● Ideally, the programmer should not have to think 
about processors, just think in parallel!
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OpenMPOpenMP

● Designed for quick and easy parallel 
programming of shared memory machines.

● Works by inserting compiler directives in code, 
usually around loops.

● Threads are started implicitly and “fed” work.
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OpenMP DirectivesOpenMP Directives

● Parallelization
– parallel, for, do, workshare, section, sections, task
– single, master

● Data placement and handling
– shared, private, threadprivate, copyprivate, 

firstprivate, lastprivate, reduction
● Synchronization

– barrier, ordered, critical, atomic, flush, nowait
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OpenMP Data ParallelismOpenMP Data Parallelism

      PROGRAM WORKSHARE
 
      INTEGER N, I, J
      PARAMETER (N=100)
      REAL AA(N,N), BB(N,N), CC(N,N), DD(N,N), FIRST, LAST
!     Some initializations
      DO I = 1, N
        DO J = 1, N
          AA(J,I) = I * 1.0
          BB(J,I) = J + 1.0
        ENDDO
      ENDDO
!$OMP PARALLEL SHARED(AA,BB,CC,DD,FIRST,LAST)
!$OMP WORKSHARE
      CC = AA * BB
      DD = AA + BB
      FIRST = CC(1,1) + DD(1,1)
      LAST = CC(N,N) + DD(N,N)
!$OMP END WORKSHARE
!$OMP END PARALLEL
      END
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OpenMP Data ParallelismOpenMP Data Parallelism

#include <omp.h>
#define CHUNKSIZE 100
#define N     1000

main ()  
{
int i, chunk;
float a[N], b[N], c[N];

/* Some initializations */
for (i=0; i < N; i++)
  a[i] = b[i] = i * 1.0;
chunk = CHUNKSIZE;

#pragma omp parallel shared(a,b,c,chunk) private(i)
  {
  #pragma omp for schedule(dynamic,chunk)
  for (i=0; i < N; i++)
    c[i] = a[i] + b[i];

  }  /* end of parallel section */
}
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OpenMP Task ParallelismOpenMP Task Parallelism
      PROGRAM VEC_ADD_SECTIONS
      INTEGER N, I
      PARAMETER (N=1000)
      REAL A(N), B(N), C(N), D(N)

!     Some initializations
      DO I = 1, N
        A(I) = I * 1.5
        B(I) = I + 22.35
      ENDDO

!$OMP PARALLEL SHARED(A,B,C,D), PRIVATE(I)
!$OMP SECTIONS
!$OMP SECTION
      DO I = 1, N
         C(I) = A(I) + B(I)
      ENDDO
!$OMP SECTION
      DO I = 1, N
         D(I) = A(I) * B(I)
      ENDDO
!$OMP END SECTIONS 
!$OMP END PARALLEL
      END
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CILKCILK

● “Logical” task parallelism in a ANSI C
– Handful of new keywords, spawn and join.
– Work-stealing scheduler: programmer just thinks in 

parallel, scheduler does the work
● Mostly Open Source

– http://supertech.csail.mit.edu/cilk
● Commercial compilers also available (Cilk++)

– C++, parallel loops
– http://www.cilk.com

http://supertech.csail.mit.edu/cilk
http://www.cilk.com/
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Cilk ExampleCilk Example
  (  )  {i nt fi b i nt n  

   ( <2 )   ( ) ;i f n r et ur n n  

   {el se  

     , ;i nt x y  

     = ( - 1 ) ;x fi b n  

     = ( - 2 ) ;y fi b n  

     ( + ) ;r et ur n x y  

  }  

}  

© Charles E. Leiserson
http://supertech.csail.mit.edu/cilk/lecture-1.pdf

 ci l k   (  )  {i nt fi b i nt n  

   ( <2 )   ( ) ;i f n r et ur n n  

   {el se  

     , ;i nt x y  

     = x spawn ( - 1 ) ;fi b n  

     = y spawn ( - 2 ) ;fi b n  

    sync;  

     ( + ) ;r et ur n x y  

   }  

}  
 

http://supertech.csail.mit.edu/cilk/lecture-1.pdf
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Unified Parallel CUnified Parallel C

● Shared memory parallel extension to C
– shared, relaxed and strict keywords
– Intrinsinc functions for sync, get/put, collectives, 

worksharing, I/O
● Easy to program, but for performance...

– Remote references on on single data items when they 
are used (not before)

– Compiler must hoist and aggregate comm.
● OS and Commerical: http://upc.lbl.gov/

http://upc.lbl.gov/
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UPC ExampleUPC Example

shared int our_hits[THREADS];  /* single writer */ 
main(int argc, char **argv) { 
  int i, hits, trials = 1000000; 
  double pi;
 
  seed48 ((MYTHREAD+1) * THREADS); 
  for (i=0; i<trials; i++) 

 hits += hit(); 
  our_hits[MYTHREAD] = hits; 
  upc_barrier; 

  for (i=0,hits=0; i<THREADS; i++) 
 hits += our_hits[i]; 

  pi = 4.0*hits/trials; 

  printf(”Thread %d estimates pi = %g”, MYTHREAD, pi); 
}
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Co-Array FortranCo-Array Fortran

● Small set of extensions to Fortran 95 standard for 
SPMD parallelism.
– Similar to UPC but much simpler.

● [n|:] notation after arrays to denote processor.
● Performance issues are more serious.

– Not as nearly expressive as UPC.
● Part of Fortran 2008. G95 has some support. Cray 

has commercial product.
● http://www.co-array.org/

http://www.co-array.org/


 

116

 

Philip Mucci, Multicore OptimizationNOTUR2009

Co-Array Fortran ExampleCo-Array Fortran Example

REAL, DIMENSION(N)[*] :: X,Y ! declare X,Y as parallel
X(:) = Y(:)[Q]   ! collect from Q
X       = Y[PE]  ! get from Y[PE]
Y[PE]   = X      ! put into Y[PE]
Y[:]    = X      ! broadcast X
Y[LIST] = X      ! broadcast X over subset of LIST PE's
Z(:)    = Y[:]   ! collect all Y
S = MINVAL(Y[:]) ! min (reduce) all Y
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Other PGAS languagesOther PGAS languages

● Titanium (Java-like)
● Fortress (ML/Haskell-like)
● Chapel (C/Java-like)
● X10 (Java-like)
● Ok, but let's remember what happened to HPF, 

ZPL, Split-C, etc...
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QuestionQuestion

● ”When should I be trying to use CUDA over 
(my) multicore CPU? My experience with CUDA 
is that I am very good at writing very slow 
CUDA code.”
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AnswerAnswer

● When you've:
– Had entirely too many great days in a row and 

need a change.
– Don't want to go to church but still wish to be 

punished for your all your sins.
– Voted for or (ever) supported George Bush.

● Save it for the platform on which it was made for.
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Multicore OptimizationMulticore Optimization
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What is Good Parallel Performance?What is Good Parallel Performance?

● Single core performance is consistently high.
– But how high is up?

● The code exhibits decent scaling.
– Strong scaling: Total problem size is fixed.
– Weak scaling: Problem size per processor is fixed.

● Interprocessor, Sync, Comm, I/O are not the 
bottlenecks.

● It all starts with a good parallel algorithm.
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Reported Linear Scalability(?)Reported Linear Scalability(?)

● When you see linear scaling graphs, be 
(somewhat) suspicious.

● Linear scalability is easy(ier) when per-core 
performance is low!

● The faster a single core computes, the more 
vulnerable it is to other bottlenecks.
– Memory, Sync, Comm, I/O

● So producing a linear graph, does not make your 
program efficient.
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Multicore OptimizationMulticore Optimization

● Use multicore-tuned libraries.
● Reduce memory bandwidth requirements of 

algorithm
– Make it cache friendly
– Help the compilers tune the loops

● Reduce synchronization
– Bigger chunks of work to each thread

● Reduce cache contention
– Alignment, blocking, locks, etc..
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Expressing Parallelism Expressing Parallelism 

● Important things to remember:
– Granularity must always be as large as possible.
– Synchronization and communication are expensive.

● Initiating parallel work is not “free”.
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LibrariesLibraries

● Do you really need to write the solver yourself?
● No!

– Single core is hard enough.
– You have to be willing to change your storage format.

● Vendor math libraries are probably best at this.
● ScalaPack, PetSC, SuperLU, FFTW, EISPACK, 

VSIPL, SPRNG, HYPRE etc etc.
● But if it's not your bottleneck, then it doesn't 

matter.
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Optimal Usage of O.S. LibrariesOptimal Usage of O.S. Libraries

● Ideally, you should compile the libraries with the 
same compiler and flags you use on your binary.
– Vendor compilers are best, but may be fussy.

● Specialize as much as possible for your platform.
– Unless you know it needs to run in many places.

● Many optimization flags (especially IPO and the 
like), need to be set for every stage.

● How can you check?
– You need a good sys-admin or do it yourself.
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What is a Multicore Library?What is a Multicore Library?

● They come in two forms, yet both can be called 
“multithreaded”.

● Monolithic
– Your (serial) program calls a (library) routine which 

uses all the cores to solve the problem.
● The library spawns/joins threads as necessary.

– Good: It can't get much easier to use.
– Bad: Memory contention and parallel overhead.
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What is a Multicore Library?What is a Multicore Library?

● Really parallel
– Your (parallel) program creates it's own threads and 

each calls the library on the relevant portion of data.
● You control the degree of parallelism.

– Good: The library can dictate alignment, placement, 
etc through allocators. Overhead can be amortized.

– Bad: Increase in complexity and plenty of room for 
error.
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Multicore LibrariesMulticore Libraries

● Your code can be a hybrid.
– MPI program running on every node, linked against a 

Intel MKL that spawns it's own threads.
● How should one use them?

– HPL (Linpack): MPI between nodes and multi-
threaded BLAS on node is usually slower than MPI.

● But HPL runs at > 75% of peak, DGEMM sometimes 90%!

– Your real code won't get anywhere near that.
● So go with what's simple.
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VSIPLVSIPL

● Vector Signal Image Processing Library
● Filters
● Stencils
● Convolutions
● Wavelets
● Serial and Parallel versions
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LAPACK/ScaLAPACKLAPACK/ScaLAPACK

● Comprehensive solver package for dense systems 
of linear equations
– Eigenvalue problems
– Factorizations
– Reordering/Conditioning
– Parallel and serial versions
– Some out of core solvers and packaged storage 

routines
● ATLAS/BLAS/etc...
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PETScPETSc

● Generalized sparse solver package for solution of 
PDE's

● Contains different preconditions, explicit and 
implicit methods

● Storage format is highly optimized for 
performance

● Serial, Parallel and threaded 
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FFTWFFTW

● Multidimensional FFTs
– Serial, threaded and parallel
– Variety of radix sizes and data types
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SuperLUSuperLU

● LU factorization of sparse matrices
– Highly optimized
– Compressed block storage formats
– Serial, parallel and threaded
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The Cost of ThreadingThe Cost of Threading

● Starting, stopping and scheduling them requires 
the OS to do expensive work. 
– TLB/Cache flushing

● Most multicore paradigms create and destroy 
real OS threads.
– So do not use them as function calls! 
– Keep threads around and send them work.

● Case example: FDTD from Oil patch



 

136

 

Philip Mucci, Multicore OptimizationNOTUR2009

Load BalanceLoad Balance

● Balancing the work between cores can be an 
issue.
– OpenMP and CILK can provide dynamic scheduling 

of iterations
– Pthreads you are on your own

● Ok, but we still must consider cache line 
contention when choosing a data layout. 
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4 Sample Data Layouts4 Sample Data Layouts

● 1D Block
● 1D Cyclic Column
● 1D Block-Cyclic
● 2D Block-Cyclic
● Which one creates  

contention?
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Multithreading “Gotchas”Multithreading “Gotchas”

● False Sharing
– Data moves back and forth between different core's 

caches.
● Associativity conflicts
● Improper alignment

● Invalidations
– Two threads writing the same location causing the 

value to be flushed.
● Synchronization

– Locking, barriers, etc.
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False SharingFalse Sharing

http://isdlibrary.intel-dispatch.com/isd/1588/MC_Excerpt.pdf

http://isdlibrary.intel-dispatch.com/isd/1588/MC_Excerpt.pdf
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Types of False SharingTypes of False Sharing

● Read-Write contention
– One core writes cache line, another one reads it

● Write-Write contention
– Many cores writing to same cache line

● Next example has both types.
● Read-Read is perfectly OK!
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Loop StructureLoop Structure

 =1 ,        !     do k nz The magnet i c fi el d updat e 
   =1 ,      !       .do j ny El ect r i c fi el d updat e i s ver y si mi l ar  
     =1 ,do i nx 
      ( , , )  = ( , , )  +                           Hx i j k Hx i j k & 
                (   ( ( , , +1 ) - ( ,   , ) ) *  +     Ey i j k Ey i j k Cbdz & 
                   ( ( , ,   ) - ( , +1 , ) ) *   )Ez i j k Ez i j k Cbdy  
      ( , , )  = ( , , )  +                           Hy i j k Hy i j k & 
                (   ( ( +1 , , ) - ( , ,   ) ) *  +     Ez i j k Ez i j k Cbdx & 
                   ( (   , , ) - ( , , +1 ) ) *   )Ex i j k Ex i j k Cbdz  
      ( , , )  = ( , , )  +                           Hz i j k Hz i j k & 
                (   ( ( , +1 , ) - (   , , ) ) *  +     Ex i j k Ex i j k Cbdy & 
                   ( ( ,   , ) - ( +1 , , ) ) *   )Ey i j k Ey i j k Cbdx  
     end do 
   end do 

 end do
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Memory Contention & OpenMPMemory Contention & OpenMP
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Improved PaddingImproved Padding

( 1 :   + ( 1 ) , 1 :   + ( 2 ) , 1 :   + ( 3 ) )Hx nx padHx ny padHx nz padHx  
( 1 :   + ( 1 ) , 1 :   + ( 2 ) , 1 :   + ( 3 ) )Hy nx padHy ny padHy nz padHy  
( 1 :   + ( 1 ) , 1 :   + ( 2 ) , 1 :   + ( 3 ) )Hz nx padHz ny padHz nz padHz  
( 1 : +1 + ( 1 ) , 1 : +1 + ( 2 ) , 1 : +1 + ( 3 ) )Ex nx padEx ny padEx nz padEx  
( 1 : +1 + ( 1 ) , 1 : +1 + ( 2 ) , 1 : +1 + ( 3 ) )Ey nx padEy ny padEy nz padEy  
( 1 : +1 + ( 1 ) , 1 : +1 + ( 2 ) , 1 : +1 + ( 3 ) )Ez nx padEz ny padEz nz padEz
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Managing Memory ContentionManaging Memory Contention

● Make sure shared (even read only) data is 
cacheline aligned.

● Use thread private variables to compute results, 
then merge to shared arrays.

● With OpenMP: use default(none) in your 
parallel clauses
– Shared is default type, could cause contention!
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Cache Blocking for MulticoreCache Blocking for Multicore

● Generally, block for the largest non-shared 
cache.
– L2 on Nehalem.

● Depending on the speed difference and amount 
of work per iteration, L1 may be better.

● Never block for the shared cache size.
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MultiCore and LockingMultiCore and Locking

● Access to shared data structures & critical 
sections must be protected (and ordered).
– Sometimes even if access is atomic.

● Numerous ways to accomplish this.
– Unix has (horribly slow) semaphores.
– Pthreads has rwlocks, mutexes and condition 

variables.
– OpenMP has explicit locks and directives.
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LockingLocking

● Make locked regions as “small” as possible.
● Time

– Locks should not be taken around any primitive that 
does not execute deterministically.

● Space
– Instructions - do minimal work while performing the 

lock.
– Data - lock items, not entire structures.

● Remember that locks always ping-pong in the 
cache.
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Locking ExampleLocking Example

● Consider a multithreaded server where all 
threads read from the same socket into a shared 
FIFO for processing.
– Lock the FIFO, read into it, increment and unlock.

● Trade memory for performance here.
– We could lock each buffer in FIFO, but that would 

cause gaps. 
– Instead, make temporary message buffers which we 

copy into the FIFO when full. We only lock FIFO 
when the data is ready!. 
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Structure Packing AgainStructure Packing Again

● Our single core optimization can be terrible for 
multicore.
– Because we have increased our memory bandwidth!

● So here, pack from largest to smallest.
– Some compilers have #pragma pack

struct {
  short s;
  int i;
  char c;
  void *p;
}

struct {
  void *p;
  int i;
  short s;
  char c;
 }
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Structure Packing, Structure Packing, 
Padding and LockingPadding and Locking

● What if we are locking each structure?
● What happens after lock is acquired?
● What if structures are allocated together?
● Usage dictates method, what we will be 

accessing and when. struct {
  unsigned long lock;
  void *next;
  void *p;
  int i;
  short s;
  char c;
  unsigned long pad[5];
}
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Global Data and ThreadsGlobal Data and Threads

● We know there is nothing wrong with shared 
read-only data.

● Unless it happens to be in the same cache line as 
something that gets written.
– That line gets invalidated and must be reloaded.

● Solution is to pad, align or use a thread specific 
variable.

unsigned long read_write_a;
unsigned long read_only__b;
unsigned long read_write_c;



 

152

 

Philip Mucci, Multicore OptimizationNOTUR2009

Thread Specific DataThread Specific Data

● a.k.a Thread Local Storage: give each thread a 
private copy.
– Great way to reduce contention.
– Only most systems, this is very fast.
– Variants exist in C and C++: the __thread keyword.

● When a thread dies (join, exit), it's gone!
int i_first_val = 101;
__thread int i = i_first_val;
extern __thread struct state s;
static __thread char *p;
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NUMA, Threading and NUMA, Threading and 
First Touch PlacementFirst Touch Placement

● The OS uses a first touch policy to place 
physical pages.
– The first time it is written, it is placed.

● This means you want to parallelize your 
initialization!
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NUMA, Threading and NUMA, Threading and 
First Touch PlacementFirst Touch Placement

Thanks to Matthias Müller and HLRS
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Multicore and Memory AllocationMulticore and Memory Allocation

● Many memory allocators do their best to align 
buffers to page boundaries.
– This can be very bad for multicore due to false 

sharing, especially for caches with low associativity.
– Be wary of your F90 allocate or your malloc/new.
– 3rd party OS replacements are available

● Many malloc/new/free implementations are not 
often scalable for many-core.
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The Hoard Memory AllocatorThe Hoard Memory Allocator

● A fast, scalable, drop-in replacement memory 
allocator that addresses:
– Contention
– False sharing
– Per-CPU overhead
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Mapping Threads to ProcessorsMapping Threads to Processors

● How should you run your code?
– It depends on what the code does.

● There is generally a sweet spot for M threads on 
N cores of a single socket. (M<N)
– Usually depends on:

● How tightly synchronized and balanced computation is
● Memory bandwidth requirements
● I/O and Comm traffic

● Oversubscription (more threads than cores) is 
usually never a good thing unless...
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OS Scheduling and ThreadsOS Scheduling and Threads

● Threads can bounce from core to core.
● You do have some control over this.

– Run-time on the command line
– Or directly inside the code

● But you cannot prevent Linux from scheduling 
something else onto your CPU.
– Unless you boot the kernel with special options 

(isolcpus) or the massage system a bit.
● On a NUMA system, this can be really bad. 
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OS Scheduling and ThreadsOS Scheduling and Threads

● For serial and threaded codes...
Print affinity mask of process PID 24732
> taskset -p 24732
pid 24732's current affinity mask: f

Print CPU list of process PID 24732
> taskset -c -p 4695
pid 24732's current affinity mask: 0-3

Set running process to only use CPU's 1 and 2
> taskset -c -p 1,2 4695
pid 4695's current affinity list: 0-3
pid 4695's new affinity list: 1,2

Launch bash shell with all CPU's to choose from
> taskset 0xffffffff /bin/bash

Launch bash shell with CPU's to choose from
> taskset -c 0-3 /bin/bash
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OS Scheduling and ThreadsOS Scheduling and Threads

● Even MPI supports this now...
Tell OpenMPI to bind each process
> mpirun –mca mpi_paffinity_alone 1 -np ...

Tell SLURM to bind each task to a core/socket
> srun –-ntasks-per-core=N –-ntasks-per-socket=M ...

More advanced SLURM binding 8 ranks, 4 nodes, 2 per socket, 1 per core (-B S[:C[:T]])
> srun -n 8 -N 4 -B 2:1 ...

Even more advanced SLURM binding
> srun –-cpu_bind=cores –cpu_bind=verbose ...
> srun –-cpu_bind=map_cpu:0,2,3 –cpu_bind=verbose ...
> srun –-cpu_bind=help –cpu_bind=verbose ...
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Types of Load BalancingTypes of Load Balancing

● Static
– Data/tasks are split amongst processors for duration 

of execution.
– Problem: How do we choose an efficient mapping?

● Dynamic
– Work is performed when resources become available

● How much work and when?

– Problem: Requires periodic synchronization and data 
exchange
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Measuring OpenMP OverheadMeasuring OpenMP Overhead

● OMP_NUM_THREADS sets the number of 
threads to use.
– If not set, it defaults to the number of cores in a 

system. (As reported by /proc/cpuinfo on Linux, 
Hyperthreaders beware...)

● Set this to 1,2,etc. and time regions of your code.
● Time without OpenMP as well.
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Managing Parallel Overhead in Managing Parallel Overhead in 
OpenMPOpenMP

● Don't parallelize all your loops.
– Just the ones that matter.

● Use conditional parallelism.
● Specify chunk size to each loop.

– As big as possible.
● Make sure the compiler can unroll the loop.
● Merge parallel regions.
● Avoid barriers with NOWAIT.
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OpenMP Overhead and Parallel OpenMP Overhead and Parallel 
RegionsRegions

#pragma omp parallel for

for () { ... }

#pragma omp parallel for

for () { ... }

Thanks to Matthias Müller and HLRS

#pragma omp parallel

{

#pragma omp for

for () { ... }

#pragma omp for

for () { ... }

}
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Rough Overheads of OpenMPRough Overheads of OpenMP

● These are very approximate.

Thanks to Matthias Müller and HLRS
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OpenMP Conditional ParallelismOpenMP Conditional Parallelism

● Execute in parallel if expression evaluates to true.
● Very powerful technique for mitigating parallel 

overhead.
– parallel if(expression)
– parallel for if(expression)

● Expression should evaluate to 1/yes or 0/no. 
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OpenMP Conditional ParallelismOpenMP Conditional Parallelism

for( i=0; i<n; i++ ) 
#pragma omp parallel for if ( n-i > 100 ) 

for( j=i+1; j<n; j++ ) 
for( k=i+1; k<n; k++ ) 

a[j][k] = a[j][k] -a[i][k]*a[i][j] / a[j][j]
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Performance of Conditional Performance of Conditional 
ParallelismParallelism

Thanks to Matthias Müller and HLRS
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OpenMP Thread SpecificOpenMP Thread Specific

● firstprivate(list)
– All copies get value in master at beginning.

● lastprivate(list)
– All copies get value in last iteration/section.

● threadprivate(list)
– Data is global data, but private in parallel regions.

● common blocks etc. Use COPYIN or undefined.
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OpenMP and BarriersOpenMP and Barriers

● Most constructs have an implicit barrier and flush 
at the end.
– do, for, sections, workshare, single
– We must work to limit when this happens.

● The NOWAIT clause eliminates the barrier, then 
insert a barrierbarrier and/or flush youself.

● Also, you can use master instead of single.
– But then thread 0 will do the work, so it better be 

ready.
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OpenMP and Critical SectionsOpenMP and Critical Sections

● If you can't use a reduction to update a 
shared variable and you need to use 
critical:
– Only thread at a time executing the code.

● But it's better to use atomic
– This will take advantage of special instructions 

instead of using locking.
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Barrier Removal ExerciseBarrier Removal Exercise

● What's could be wrong with the below advice?
Replace

#pragma omp for 
for(i=0; i<size; i++) 
  a[i] = 1.0/a[i]; 
#pragma omp for 
for(i=0; i<size; i++) 
  b[i] = b[i]*2.0 

with     

#pragma omp for
for(i=0; i<size; i++) { 
  a[i] = 1.0/a[i]; 
  b[i] = b[i]*2.0; 
} 

● Good: But we've reduced overhead and 
increased work per iteration.

● Bad: We're increasing memory bandwidth 
and cache pollution. (No data reused)

● This is better for multicore:

#pragma omp for nowait
for(i=0; i<size; i++) 
  a[i] = 1.0/a[i]; 
#pragma omp for 
for(i=0; i<size; i++) 
  b[i] = b[i]*2.0

Thanks to Matthias Müller and HLRS
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OpenMP ReductionOpenMP Reduction

● OpenMP has special knowledge of reduction 
operations.
– A shared variable that is updated by all threads 

must be updated atomically.
● OpenMP has a shortcut: reduction(op:var)
● You tell OpenMP how to combine the data.
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Reduction By HandReduction By Hand

#pragma omp parallel for private( privIndx, privDbl )
for ( i = 0; i < arraySize; i++ )
{
  for ( privIndx = 0; privIndx < 16; privIndx++ ) 
    {

  privDbl = ( (double)privIndx ) / 16;
  y[i] = sin(exp(cos(-exp(sin(x[i]))))) +      

            cos(privDbl);

          /* Here, each thread reads globalCount
    add 1 to the value, and write the

 new value back to globalCount.   */
#pragma omp critical
     { globalCount = globalCount + 1; }  

 }
 }
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ReductionReduction

#pragma omp parallel for private( privIndx, privDbl ) \
reduction( + : globalCount )
for ( i = 0; i < arraySize; i++ )
{
  for ( privIndx = 0; privIndx < 16; privIndx++ ) 
    {

  privDbl = ( (double)privIndx ) / 16;
  y[i] = sin(exp(cos(-exp(sin(x[i]))))) +      

            cos(privDbl);

          /* Here, each thread reads globalCount
    add 1 to the value, and write the

 new value back to globalCount.   */
  globalCount = globalCount + 1;  
 }

 }
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When Approaching a When Approaching a 
(nasty) Loop Nest with OpenMP(nasty) Loop Nest with OpenMP

● If F90, rewrite with loops instead of (:).
– Make everything explicit.

● Rewrite a few versions, unrolling each level 
individually. Look for opportunities to:
– Re-use data (cache)
– Reduce memory bandwidth.
– Move temps into variables (register).

● Stage shared data in per thread privates or to use 
reductions.

– Make work per iteration as large as possible.
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OpenMP SchedulingOpenMP Scheduling

● Controls the allocation of work to threads.
– A form of load balancing.

● By default, OpenMP will allocate a small fixed 
number of iterations to each thread.

● This can be changed at compile time or run-time.
– SCHEDULE(type) clause
– runtime means refer to OMP_SCHEDULE env. var.

OMP_SCHEDULE=dynamic ./a.out
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OpenMP SchedulingOpenMP Scheduling

● $OMP PARALLEL DO SCHEDULE(type)
● #pragma parallel for schedule(type)

– STATIC[,size] – default
– DYNAMIC[,size] – allocate iterations at runtime
– GUIDED[,size] – start with big chunks, end with 

small chunks
– RUNTIME

● For DYNAMIC and GUIDED, default size is 1!
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MPI TipsMPI Tips

● Overlap comm. and compute
– Ideally a background thread can send the data while 

this thread can continue.
– MPI_ISEND, MPI_IRECV, MPI_ISENDRECV, 
MPI_IRSEND, MPI_WAITxxx, MPI_TESTxxxx

● Use native data types.
● Send big messages not small ones.
● Make sure receiver arrives early.
● Minimize collectives.
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MPI Tips 2MPI Tips 2

● Avoid wildcard receives
● Attempt to align application buffers to (at least) 8 

bytes
● Avoid data translation and derived data types.
● Always think about overlapping comm and 

compute
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Performance Analysis ToolsPerformance Analysis Tools
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Performance AnalysisPerformance Analysis

● What's really meaningful?
– Wall Clock time

● MFLOPS, MIPS, etc are useless.
– What are comparing it to? Peak? Ask your vendor to 

send you a code that performs at peak. 
● For purposes of optimization, we need data over 

a range of data sets, problem sizes and number 
of nodes.
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ComparisonsComparisons

● For the purposes of comparing performance data, 
time is the best place to start.
– Unless you are completely aware of architecture, 

compiler, run-time systems, etc...
● Hennessey and Patterson: Fallacies of 

Performance
– Synthetic benchmarks predict performance of real 

programs
– Peak performance tracks observed performance
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Performance Measurement MethodsPerformance Measurement Methods

● Instrumentation
– Tracing
– Aggregate

● Sampling
– IP Profiling, stack-walking

● Simulation
– Instruction cracking and emulation
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The Problem with TracingThe Problem with Tracing

● Tracing generates a record with a timestamp for 
every event, say function invocation. This 
presents numerous problems.
– Measurement pollution
– Data management
– Visualization

● Cure is worse than the disease.
● Tracing often reserved for the worst and most 

intermittent problems.
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Aggregated ProfilingAggregated Profiling

● By using simple start, stop and accumulate points 
in the code, a relatively complete picture of the 
overall execution can be obtained.

● This loses temporal performance information.
– i.e. problem X started at time Y

● However, significant problems still 'bubble' to 
the top of the overall profile.
– If it doesn't show there, it's not important.
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Statistical ProfilingStatistical Profiling

● Upon defined periodic events, record where in 
the program the CPU is.

● Gather data into a histogram, the shape of which 
approaches the actual profile over time.

● Periodic events can be clock ticks or other events 
based on hardware performance counters, like 
cache misses.
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Understanding Timers Understanding Timers 

● Real time, Wall Clock time: A measure of time 
that doesn't stop, as when using a stop watch.

● User time: Time when the CPU is executing your 
process and is executing your code (not OS 
code)

● System time: Time when the CPU is executing 
your process and is executing OS code on your 
behalf.

● CPU utilization is usually (U + S)/R
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Timing UtilitiesTiming Utilities

● Linux /usr/bin/time
– Wall time
– User time
– System time

● Above two are added up for all threads

– Minor/major page faults.
● This is different than 'time' from tcsh.
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Wallclock TimeWallclock Time

● Usually accurate to a few microseconds.
● C

– gettimeofday()
– clock_gettime()

● Fortran
– second()
– etime() 

● Both
– MPI_Wtime() 
– OMP_GET_WTIME()



 

191

 

Philip Mucci, Multicore OptimizationNOTUR2009

CPU TimeCPU Time

● Can be system, user or both. 
– Usually summed over all threads.
– Not nearly as accurate as wallclock time.

● C
– clock()
– getrusage()
– clock_gettime()
– times()

● Fortran
– dtime()



 

192

 

Philip Mucci, Multicore OptimizationNOTUR2009

Hardware Performance AnalysisHardware Performance Analysis

● No longer can we easily understand the 
performance of a code segment.
– Out of order execution
– Branch prediction
– Prefetching
– Register renaming

● A measure of wallclock is not enough to point to 
the culprit. We need to know what's happening 
“under the hood”.
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Hardware Performance CountersHardware Performance Counters

● On/off chip registers that count hardware events
– Often 100's of different events, specialized to the 

processor, usually just a few registers to count on.
● OS support accumulates counts into 64 bit 

quantities that run only when process is running.
– User, kernel and interrupt modes can be measured 

separately
– Can count aggregate or use them as sampling triggers
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Sample Performance Counter EventsSample Performance Counter Events

● Cycles
● Instructions
● Floating point ops
● Branches mispredicted
● Cycles stalled on 

memory
● Cache lines 

invalidated

● Loads, Stores
● Ratios of these 

counters are indicative 
of performance 
problems.
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Statistical Profiling 2Statistical Profiling 2
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Hardware Metrics for MulticoreHardware Metrics for Multicore

● Absolutely! But the metrics are different for each 
processor.
– Load/store to Cache miss ratio

● On a loop that should not miss, misses mean contention.

● Cache state transitions
– You can actually count transitions to E and I on some 

platforms.
● Interprocessor traffic

– Can isolate offending processor/thread.
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PAPIPAPI

● Performance Application Programming Interface
● A standardized, portable and efficient API to 

access the hardware performance counters.
● Goal is to facilitate the development of cross-

platform optimization tools. 
● Patching kernel is required.

– Stable and supported patches. (perfctr & perfmon)
– Many HPC systems have already been patched.



 

198

 

Philip Mucci, Multicore OptimizationNOTUR2009

PAPI EventsPAPI Events

● Performance counters are measured in terms of 
events
– Symbol names for something to count
– Events have different names/meanings for different 

vendors/processors/revisions etc
– Some native events are mapped to general names in 

PAPI
● And all the problems associated with such abstractions

● PAPI supports derived events
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O.S. Linux Performance ToolsO.S. Linux Performance Tools

● From the desktop world, most are familiar with:
– gprof, valgrind, oprofile

● Linux performance tools are actually well 
established:
– Most are not 'production' quality, lacking proper

● Testing, Documentation, Integration

– But some are better than others, all can be useful in 
the proper situations
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The Right Tool for the JobThe Right Tool for the Job

Thanks to Felix Wolf, Juelich
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Issues to Consider Issues to Consider 

● Usage
– GUI
– ASCII
– Simplicity vs...

● Collection
– Instrumentation
– Direct vs Indirect
– Tracing

● Performance Data
– MPI, Pthreads, 

OpenMP
– Libraries
– Processor
– I/O

● Experiment 
management

● Visualization
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ToolsTools

● ompP
● mpiP
● HPCToolkit
● PerfSuite
● PapiEx
● GPTL
● pfmon

● TAU
● Scalasca
● valgrind
● gprof
● Non-OS

– Vampir
– SlowSpotter
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ompP: The OpenMP ProfilerompP: The OpenMP Profiler

● Provides easy to read reports at end of execution.
– Based on source code instrumentation

● Report on each OpenMP primitive
– Flat Profiles
– Callgraph Profiles
– Hardware counter values

● Overhead Analysis
● Scalability Analysis
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ompP: UsageompP: Usage

● Recompile code with wrapper.
– Works on all compilers: source to source.
– Optional: hand-instrument user regions.

● Set environment variables if necessary.
● Run and read report!
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ompP: Flat Region ProfileompP: Flat Region Profile

● Components:

– Region number
– Source code location and region type
– Timing data and execution counts, depending on the particular 

construct
– One line per thread, last line sums over all threads
– Hardware counter data (if PAPI is available and HW counters are 

selected)
– Data is exact (measured, not based on sampling)

#pragma omp parallel 
{
 #pragma omp critical
 {
   sleep(1)
 }
}

R00002 main.c (34-37) (default) CRITICAL
 TID    execT    execC    bodyT   enterT    exitT  PAPI_TOT_INS
   0     3.00        1     1.00     2.00     0.00          1595
   1     1.00        1     1.00     0.00     0.00          6347
   2     2.00        1     1.00     1.00     0.00          1595
   3     4.00        1     1.00     3.00     0.00          1595
 SUM    10.01        4     4.00     6.00     0.00         11132
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ompP: Call GraphsompP: Call Graphs

[*00] critical.ia64.ompp
[+01] R00004 main.c (42-46) PARALLEL
[+02] R00001 main.c (19-21) ('foo1') USER REGION
 TID    execT/I    execT/E      execC
   0       1.00       0.00          1
   1       3.00       0.00          1
   2       2.00       0.00          1
   3       4.00       0.00          1
 SUM      10.01       0.00          4

[*00] critical.ia64.ompp
[+01] R00004 main.c (42-46) PARALLEL
[+02] R00001 main.c (19-21) ('foo1') USER REGION
[=03] R00003 main.c (33-36) (unnamed) CRITICAL
 TID      execT      execC    bodyT/I    bodyT/E     enterT      exitT
   0       1.00          1       1.00       1.00       0.00       0.00
   1       3.00          1       1.00       1.00       2.00       0.00
   2       2.00          1       1.00       1.00       1.00       0.00
   3       4.00          1       1.00       1.00       3.00       0.00
 SUM      10.01          4       4.00       4.00       6.00       0.00

    Incl. CPU time
  32.22 (100.0%)           [APP 4 threads]
  32.06 (99.50%)  PARALLEL  +-R00004 main.c (42-46)
  10.02 (31.10%)   USERREG     |-R00001 main.c (19-21) ('foo1')
  10.02 (31.10%)  CRITICAL     |  +-R00003 main.c (33-36) (unnamed)
  16.03 (49.74%)   USERREG     +-R00002 main.c (26-28) ('foo2')
  16.03 (49.74%)  CRITICAL        +-R00003 main.c (33-36) (unnamed)
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ompP: Overhead AnalysisompP: Overhead Analysis
Total runtime (wallclock)   : 172.64 sec [32 threads]
Number of parallel regions  : 12
Parallel coverage           : 134.83 sec (78.10%)

Parallel regions sorted by wallclock time:
          Type                            Location      Wallclock (%)
R00011  PARALL                   mgrid.F (360-384)      55.75 (32.29)
R00019  PARALL                   mgrid.F (403-427)      23.02 (13.34)
R00009  PARALL                   mgrid.F (204-217)      11.94 ( 6.92)
...
                                               SUM     134.83 (78.10)

Overheads wrt. each individual parallel region:
          Total        Ovhds (%)  =   Synch  (%)  +  Imbal   (%)  +   Limpar (%)   +    Mgmt (%)
R00011  1783.95   337.26 (18.91)    0.00 ( 0.00)  305.75 (17.14)    0.00 ( 0.00)   31.51 ( 1.77)
R00019   736.80   129.95 (17.64)    0.00 ( 0.00)  104.28 (14.15)    0.00 ( 0.00)   25.66 ( 3.48)
R00009   382.15   183.14 (47.92)    0.00 ( 0.00)   96.47 (25.24)    0.00 ( 0.00)   86.67 (22.68)
R00015   276.11    68.85 (24.94)    0.00 ( 0.00)   51.15 (18.52)    0.00 ( 0.00)   17.70 ( 6.41)
...

Overheads wrt. whole program:
          Total        Ovhds (%)  =   Synch  (%)  +  Imbal   (%)  +   Limpar (%)   +    Mgmt (%)
R00011  1783.95   337.26 ( 6.10)    0.00 ( 0.00)  305.75 ( 5.53)    0.00 ( 0.00)   31.51 ( 0.57)
R00009   382.15   183.14 ( 3.32)    0.00 ( 0.00)   96.47 ( 1.75)    0.00 ( 0.00)   86.67 ( 1.57)
R00005   264.16   164.90 ( 2.98)    0.00 ( 0.00)   63.92 ( 1.16)    0.00 ( 0.00)  100.98 ( 1.83)
R00007   230.63   151.91 ( 2.75)    0.00 ( 0.00)   68.58 ( 1.24)    0.00 ( 0.00)   83.33 ( 1.51)
...
   SUM  4314.62  1277.89 (23.13)    0.00 ( 0.00)  872.92 (15.80)    0.00 ( 0.00)  404.97 ( 7.33)
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ompP: Performance PropertiesompP: Performance Properties

----------------------------------------------------------------------
----     ompP Performance Properties Report     ----------------------
----------------------------------------------------------------------

Property P00001 'ImbalanceInParallelLoop' holds for
     'LOOP muldoe.F (68-102)', with a severity (in percent) of 0.1991

Deductions by ompP about what the problem is.

WaitAtBarrier

ImbalanceInParallel[Region/Loop/Workshare/Sections]

ImbalanceDueToNotEnoughSections

InbalanceDueToUnevenSectionDistribution

CriticalSectionContention

LockContention

FrequentAtomic

InsufficienWorkInParallelLoop

UnparallelizedIn[Master/Single]Region
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ValgrindValgrind

● A tool infrastructure for debugging and 
performance evaluation.

● Works by instruction emulation and tracing.
– Code can run up to 100x slower.
– But can catch errors that other tools can't.

● Many tools
– memcheck, cachegrind, callgrind, massif, helgrind, 

drd
– cachegrind is based on simulated machine model 

(not real hardware)
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Valgrind: HelgrindValgrind: Helgrind

● Detects
– Pthreads API errors
– Deadlocks and Data races
– Broken for GNU OpenMP

● valgrind –tool=helgrind <app>
Thread #1 unlocked a not-locked lock at 0x7FEFFFA90
   at 0x4C2408D: pthread_mutex_unlock (hg_intercepts.c:492)
   by 0x40073A: nearly_main (tc09_bad_unlock.c:27)
   by 0x40079B: main (tc09_bad_unlock.c:50)
  Lock at 0x7FEFFFA90 was first observed
   at 0x4C25D01: pthread_mutex_init (hg_intercepts.c:326)
   by 0x40071F: nearly_main (tc09_bad_unlock.c:23)
   by 0x40079B: main (tc09_bad_unlock.c:50)
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Valgrind: DRDValgrind: DRD

● Detects
– Pthreads API errors
– Deadlocks, Data races and Lock contention
– Broken for GNU OpenMP

● valgrind –tool=drd –var-info=yes <app>

==10668== Acquired at:
==10668==    at 0x4C267C8: pthread_mutex_lock 
(drd_pthread_intercepts.c:395)
==10668==    by 0x400D92: main (hold_lock.c:51)
==10668== Lock on mutex 0x7fefffd50 was held during 503 ms (threshold: 
10 ms).
==10668==    at 0x4C26ADA: pthread_mutex_unlock 
(drd_pthread_intercepts.c:441)
==10668==    by 0x400DB5: main (hold_lock.c:55)
...
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mpiP: The MPI ProfilermpiP: The MPI Profiler

● Easy to use, easy to interpret performance 
reports.

● mpiP performances only trace reduction and 
summarization.

● Compatible with all MPI's. 
● No recompilation required.

– Just relink or run with environment variable.
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mpiP: Some outputmpiP: Some output
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mpipex: Profile and Load Balancempipex: Profile and Load Balance

---------------------------------------
@--- MPI Time (seconds) ---------------
---------------------------------------
Task    AppTime    MPITime     MPI%
   0   1.06e+03       79.8     7.53
   1   1.06e+03       89.9     8.47
   2   1.06e+03       85.2     8.03
   3   1.06e+03       85.8     8.09
   4   1.06e+03       85.1     8.03
   5   1.06e+03        111    10.42
   6   1.06e+03        144    13.54
   7   1.06e+03        142    13.37
   8   1.06e+03        139    13.12
   9   1.06e+03        147    13.85
  10   1.06e+03        140    13.16
  11   1.06e+03        141    13.33
  12   1.06e+03        143    13.47
  13   1.06e+03        138    13.03
  14   1.06e+03        144    13.55
  15   1.06e+03        182    17.19
   *    1.7e+04      2e+03    11.76

------------------------------------------------------------
@--- Aggregate Time (top twenty, descending, milliseconds) -
------------------------------------------------------------
Call                 Site       Time    App%    MPI%     COV
Barrier                29   9.65e+05    4.96   30.20    0.00
Barrier                18    6.1e+05    3.14   19.10    0.21
Allgather              12   3.68e+05    1.89   11.51    0.47
Barrier                43   3.25e+05    1.67   10.18    0.43
Sendrecv               78    2.2e+05    1.13    6.88    2.19
Sendrecv               21   1.57e+05    0.81    4.92    0.51
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PerfSuitePerfSuite

● Command line tool that can
– Provides summaries of MPI and Performance 

Counters
– Provide statistical profiles as well.
– Output is XML or ASCII

● Works on uninstrumented code.
● Well supported and documented.
● Lots of derived events for Intel processors.
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psrun Outputpsrun Output
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HPCToolkitHPCToolkit

● Statistical call-stack profiling of unmodified 
applications.
– Uses hardware counters and timers.
– Produce profiles per-thread.
– Works on unmodified and fully optimized code.

● Visualizer can compare multiple profiles with 
derived metrics.

● Concise ASCII output or with a Java GUI
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Call Path ProfilingCall Path Profiling

Call path sample

instruction  pointer

return address

return address

return address

 Calling Context Tree (CCT)

Overhead proportional to sampling frequency ... 
... not call frequency
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HPCToolkit Call StackHPCToolkit Call Stack

costs for
•inlined procedures
•loops
•function calls in full 

context

calling context
view
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Scaling Study with Multiple ProfilesScaling Study with Multiple Profiles

- =

8 1
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HPCToolkit 1-core v 8-coreHPCToolkit 1-core v 8-core

221

Multicore 
Loss

(Multicore 
time  - single 

core time)

highlighted loop is 
2.84x slower on 8 
cores in a weak 
scaling study

flat view
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Performance Experiment ToolsPerformance Experiment Tools

● A set of tools, easy to use as time.
● Provide a uniform interface to a number of 

underlying tools.
● Largely work on uninstrumented code.
● Mostly take the same arguments.
● papiex, mpipex, ioex, hpcex, gptlex, tauex
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papiexpapiex

● A simple to use tool that generates performance 
measurements for the entire run of a code, 
including summaries for job, task and thread.
– Hardware performance metrics
– I/O
– Thread synchronization
– MPI

● Simple instrumentation API
● No recompilation
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Papiex: Workload Papiex: Workload 
CharacterizationCharacterization

Est. L2 Private Hit Stall % ..................            10.76
Est. L2 Other Hit Stall % ....................             2.79
Est. L2 Miss (private,other) Stall % .........            17.24
Total Est. Memory Stall % ....................            30.79
Est. L1 D-TLB Miss Stall % ...................             2.26
Est. L1 I-TLB Miss Stall % ...................             0.04
Est. TLB Trap Stall % ........................             0.15
Total Est. TLB Stall % .......................             2.45
Est. Mispred. Branch Stall % .................             1.15
Dependency (M-stage) Stall % .................             6.17
Total Measured Stall % .......................             9.77
Total Underestimated Stall % .................            34.39
Total Overestimated Stall % ..................            40.56
Actual/Ideal Cyc (max. dual) .................             2.29
Ideal IPC (max. dual) ........................             1.07
Ideal MFLOPS (max. dual) .....................           148.88
Actual/Ideal Cyc (cur. dual) .................             2.40
Ideal IPC (cur. dual) ........................             1.12
Ideal MFLOPS (cur. dual) .....................           156.29
MPI cycles % .................................             8.85
MPI Sync cycles % ............................             0.00
I/O cycles % .................................             0.00
Thr Sync cycles % ............................             0.00

Stall Cycles

L2 Hit
L2 Other Hit
L2 Miss
TLB
Mispredictions
Dependency

Instruction Mix

Integer
Loads
Stores
FP
FMA
Branch
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GPTLGPTL

 Used to easily instrument applications for the 
generation of performance data.

 Optimized for usability.
 Provides access to timers as well as PAPI events.
 Thread-safe and per-thread statistics.
 Provides estimates of overhead.
 Call-tree generation.

225
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TAUTAU

● Entire toolkit for parallel and serial performance 
instrumentation, measurement, analysis and 
visualization.

● Steep(ish) learning curve, but payoff can be 
worth it.

● Works via source instrumentation and limited 
dynamic instrumentation

● Very good at OpenMP instrumentation
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TAU Parallel Performance SystemTAU Parallel Performance System

 Parallel Performance Evaluation Tool for 
Fortran, C, C++ and Python

 Used for in-depth performance studies of an 
application throughout its lifecycle.

 Supports all forms of parallel profiling
 Flat, callpath, and phase based profiling
 PAPI counters, wallclock time, CPU time, 

memory
 PerfExplorer cross experiment analysis tool
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TAUTAU
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Comparing Effects of MultiCore ProcessorsComparing Effects of MultiCore Processors

 AORSA2D on 4k cores
 PAPI resource stalls
 Jaguar Cray XT (ORNL)
 Blue is single node
 Red  is dual core
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Comparing FLOPS: MultiCore ProcessorsComparing FLOPS: MultiCore Processors

 AORSA2D on 4k cores
 Jaguar Cray XT3(ORNL)
 Floating pt ins/second
 Blue is dual core
 Red  is single node
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Other Performance ToolsOther Performance Tools

● Oprofile
– Hardware counter profiling for Linux

● But you need to have dedicated access to the node.

● Scalasca
– Tracing for OpenMP and MPI
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Ways to Avoid Multicore Ways to Avoid Multicore 
Performance Problems Performance Problems 

● Don't write your own solvers.
– Know what libraries are available and plan your data 

structures.
– Spend your time on innovation not implementation.
– Libraries are well documented and well publicized.
– Remember the 80/20 rule.
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Ways to Avoid Multicore Ways to Avoid Multicore 
Performance Problems Performance Problems 

● Don't use more data and memory bandwidth 
than necessary.
– Do you need double or can you live with float?
– Do you need > 2GB of address space?
– After comm., memory bandwidth is always the 

biggest bottleneck.
● Running in 32-bit mode does not mean you can't 

use double precision floating point.
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Ways to Avoid Multicore Ways to Avoid Multicore 
Performance Problems Performance Problems 

● Help the compiler help you (optimize for cache).
– Flags
– Directives
– Good code structure
– Compilers are better at optimizing simple code than 

you are.
– Reading the manual is worth it.
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Ways to Avoid Multicore Ways to Avoid Multicore 
Performance Problems Performance Problems 

● If you have to write your own code, tune it for 
cache on a single processor.
– Make sure the algorithm scales first.
– If you get good cache utilization, it will make multi-

core performance that much easier.
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Ways to Avoid Multicore Ways to Avoid Multicore 
Performance Problems Performance Problems 

● Maximize granularity and minimize 
synchronization (and communication).
– Larger, longer and more independent the 

computations, the greater the speedup.
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Ways to Avoid Multicore Ways to Avoid Multicore 
Performance Problems Performance Problems 

● Don't violate the usage model of your 
programming environment.
– If something seems 'hard' to get right, you may be 

doing something wrong.
– Have reasonable expectations.
– Recall the CUDA comment.
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