

1

Philip Mucci, Multicore OptimizationNOTUR2009

Linux Multicore Performance Analysis and Linux Multicore Performance Analysis and
Optimization in a NutshellOptimization in a Nutshell

Philip MucciPhilip Mucci
mucci at eecs.utk.edumucci at eecs.utk.edu

NOTUR 2009NOTUR 2009
Trondheim, NorwayTrondheim, Norway

2

Philip Mucci, Multicore OptimizationNOTUR2009

ScheduleSchedule

● 10:15 Begin
● (1:00)
● 11:15 – 11:30 Coffee
● (1:30)
● 13:00 – 14:00 Lunch
● (2:00)
● 16:00 Finish
● 18:00 Beer

3

Philip Mucci, Multicore OptimizationNOTUR2009

OutlineOutline

● Commentary
● HW/SW Overview
● Working With the

Compiler
● Single Core

Optimization

● Programming Models
● Multicore

Optimization
● Performance Analysis

4

Philip Mucci, Multicore OptimizationNOTUR2009

Initial CommentaryInitial Commentary

5

Philip Mucci, Multicore OptimizationNOTUR2009

Optimization is an Art FormOptimization is an Art Form

● As such, this tutorial is partially subjective.
● Expect some contradictions to your

experience(s).
– Don't panic.

● Negative comments (on the tutorial) are
welcomed (afterwards).
– Please include “bug fixes”.
– mucci at eecs.utk.edu

6

Philip Mucci, Multicore OptimizationNOTUR2009

What's so special about Multicore?What's so special about Multicore?

● Parallel programming is somewhat easier...
– Shared address space means direct access to data.

● Multicore is a great latency hiding mechanism.
– Most computers are doing many different activities at

once. (What about us?)
● We really can't get much faster without liquid

cooling.
● Multicore appears to lower power and cooling

requirements per FLOP.

7

Philip Mucci, Multicore OptimizationNOTUR2009

8

Philip Mucci, Multicore OptimizationNOTUR2009

What's so hard about Multicore?What's so hard about Multicore?

● For 30+ years, we've been optimizing for cache.
– Compilers are still limited by static analysis
– Most developers technical computing are not

(supposed to be) computer architects
– Languages have further abstracted performance
– DRAM ignores Moore's Law
– Memory controllers are neither bigger or smarter

● But it's ”easy” to put multiple cores on a die!

9

Philip Mucci, Multicore OptimizationNOTUR2009

Evaluation of MulticoreEvaluation of Multicore

● Lots of high GF cores with many shared
resources means more work for you.

● Resource constraints must be examined system
wide, with attention to per-core performance.
– Size/speed of dedicated cache/TLB
– Memory bandwidth and latency per-core
– On/Off-chip communications per-core

● PCI, I/O, Interprocessor, Interconnect

10

Philip Mucci, Multicore OptimizationNOTUR2009

Multicore PerformanceMulticore Performance

● Cores generally don't ”know” about each other
– They communicate only through cache and memory.
– No dedicated instructions to do sync, comm,

dispatch, must be done by (slow) software.
● External bandwidth limited by pins and power.
● Starvation is a very real issue at every shared

resource. Some extreme examples:
– Intel's Hyper Threading
– IBM's POWER4 Turbo vs. HPC

11

Philip Mucci, Multicore OptimizationNOTUR2009

Architecture OverviewArchitecture Overview

12

Philip Mucci, Multicore OptimizationNOTUR2009

Multicore Architecture OverviewMulticore Architecture Overview

● Hardware
– Caches, Coherency and Prefetching
– Translation Lookaside Buffers (TLB)
– Hardware Multithreadeding (SMT/HT)

● Software
– Threads vs. Processes

13

Philip Mucci, Multicore OptimizationNOTUR2009

Multicore and Memory BandwidthMulticore and Memory Bandwidth

● Biggest bottleneck is memory bandwidth and
memory latency.
– Multicore has made this (much) worse in order to

claim increased peak performance.
● At least 3 major approaches:

– Make cores as fast/slow as main memory (SiCortex,
Tensilica)

– Add faster/closer memory pipes (Opteron, Nehalem)
– Streaming compute engines (NVIDIA,AMD),

vectorized memory pipelines (Convey).

14

Philip Mucci, Multicore OptimizationNOTUR2009

Multicore, SMP and NUMAMulticore, SMP and NUMA

● Single socket multicores are SMP's.
– Cost of memory access is uniform to every core
– Less work for programmer, OS, etc.
– Not possible to scale (well)

● Crossbar works, but ultimately you have to slow nearest
neighbors down.

● NUMA – Non Uniform Memory Access
– All memory is not the same.
– Problem: Memory can be “far” from the CPU

15

Philip Mucci, Multicore OptimizationNOTUR2009

CachesCaches

● Small high-speed memories to keep data ”close”
to the processor.
– Memory is moved in and out of caches in blocks

called ”lines”, usually 32 to 256 bytes.
● Multiple levels of cache, with at least one level

being dedicated to a single core. i.e.
– 32K Level 1 -> 1 core
– 1MB Level 2 -> 2 cores, 1 die
– 8MB Level 3 -> 4 cores, 1 package

16

Philip Mucci, Multicore OptimizationNOTUR2009

Caches Exploit LocalityCaches Exploit Locality

● Spatial – If I look at address M(n), it is likely that
M(n ± z) will be used, where z is small.

● Temporal – If I look at address M(n) at time t, it is
likely that M(n) will be used again at time t + t',
where t' is small.

● If true for one core, for us (technical-computing)
true for multicore.
– So how do we still make caches Correct

(consistent/coherent) and Effective (fast)?

17

Philip Mucci, Multicore OptimizationNOTUR2009

Cache ArchitectureCache Architecture

● Memory cannot live anywhere in a cache.
● Cache associativity – The number of unique

places in a cache where any given memory item
can reside.
– Location is determined by some bits in the physical

or virtual address..
– Direct mapped means only one location.

● But very, very fast.

– Higher associativity is better, but costly in terms of
gates and complexity (power and performance).

18

Philip Mucci, Multicore OptimizationNOTUR2009

Why do we care?Why do we care?

● Tuning for cache yields most of your
performance gain.

● On multicore true, but opportunity for creating
contention.
– It can happen: A cache unfriendly code may run

faster than the same code highly tuned without
thought to contention.

● Data layout and algorithm design.

● And you thought multicore was free
performance...

19

Philip Mucci, Multicore OptimizationNOTUR2009

Cache ConsistencyCache Consistency

● For correctness, cores must see a consistent view
of memory through the caches.

● Thus the caches communicate with a protocol
that indicates the state of each cache line. Most
common is MESI.
– M – modified, E – exclusive
– S – shared, I – invalid

● Method of communication may be different.
(Snoop, directory, broadcast etc...)

20

Philip Mucci, Multicore OptimizationNOTUR2009

Coherency and Cache Coherency and Cache
Inclusivity/ExclusivityInclusivity/Exclusivity

● Most caches are inclusive.
– Data kept in multiple levels at the same time

● With multiple cores, more than one level can
keep MESI states.
– In Nehalem, L3 keeps state per socket, L1 and L2 per

core
● Transitions to E, I, S are often performance hits.

– But they can be identified with the right tools and
insight.

21

Philip Mucci, Multicore OptimizationNOTUR2009

Coherency Example (2Sx4C)Coherency Example (2Sx4C)

Courtesy Daniel Molka of T.U. Dresden

22

Philip Mucci, Multicore OptimizationNOTUR2009

Coherency Example part 2Coherency Example part 2

Courtesy Daniel Molka of T.U. Dresden

23

Philip Mucci, Multicore OptimizationNOTUR2009

Hardware PrefetchingHardware Prefetching

● Automatic
– Streams of reference automatically predicted by the

hardware.
– N consecutive misses trigger fetch of lines ahead.
– Usually unit line stride and one or two streams.

● On/Off can sometimes be controlled by the BIOS.

● Prefetch Instructions
– Many variants, separate from the above, but may

trigger it. Can even be invalid addresses.

24

Philip Mucci, Multicore OptimizationNOTUR2009

Software PrefetchingSoftware Prefetching

● Compiler usually sprinkles in these instructions
– To do a good job, it needs to predict misses or find

slots to hide them.
● Pragmas and Intrinsics

– High level manual placement
● Explicit

– Programmer puts in assembly primitives

25

Philip Mucci, Multicore OptimizationNOTUR2009

TLBTLB

● Memory is divided up into pages.
– Pages can be variable size. (4K,64K,4M)

● A page of logical (virtual) address space can have
a physical address.
– Computing this address is expensive!

● So we keep a cache of them around: the TLB.
– It is usually fully associative and multi-level.
– A TLB miss can be very expensive.

26

Philip Mucci, Multicore OptimizationNOTUR2009

Memory Pages and the TLBMemory Pages and the TLB

● Each TLB entry covers one page.
– Big pages are good for lowering TLB misses.
– But the OS moves data in pages!

● A miss in all levels of the TLB is also called a
page fault.
– If the data is in physical memory, then this is a minor

page fault.
– If the data is on disk, this is a major page fault.

27

Philip Mucci, Multicore OptimizationNOTUR2009

SMT and HyperthreadingSMT and Hyperthreading

● Simultaneous Multithreading
– Hyperthreading is Intel's name for it
– Share physical resources on a chip among multiple

hardware threads except context (PC and regs)
– Goal is to attempt to hide latency of instructions.
– When one instruction stalls, try another thread, OS

does not need to context switch.
– To the OS, it's an SMP

● This really only works when you've got a rich
and diverse instruction mix among threads.

28

Philip Mucci, Multicore OptimizationNOTUR2009

Vector InstructionsVector Instructions

● Instructions that operate on more than one
operand.
– More accurately called micro-vector instructions
– Real vector machines do this on 1000's of items.

● Intel's SSE 2,3,4 are examples
– A register contains a number of Byte, Int, Float, etc...

● Hardware is free to schedule and move data in
larger chunks.
– Restrictions on alignment, accuracy, etc...

29

Philip Mucci, Multicore OptimizationNOTUR2009

Threads and ProcessesThreads and Processes

● Operating systems support threads and
processes.
– A thread is an execution context; machine state

scheduled by the operating system.
– A process is a thread plus virtual memory, files, etc.

● A process can contain multiple threads.
● Each thread in a process shares everything except state

(stack, registers and program counter)

● Both are managed by the operating system.

30

Philip Mucci, Multicore OptimizationNOTUR2009

OS Scheduling and ThreadsOS Scheduling and Threads

● On Linux, threads are free to bounce around.
– Other threads can steal the CPU as can OS work like

hard and soft interrupts.
– OS's do this to provide “fairness”.
– Linux does understand a cost penalty when moving a

thread from one core to another.
– Rescheduling a new thread often involves a cache

and TLB flushing.
● For technical computing (often SPMD), this is

bad for performance.

31

Philip Mucci, Multicore OptimizationNOTUR2009

OS and System CallsOS and System Calls

● System calls are function calls that ask the OS to
do something.
– Going to the OS (crossing from user to kernel

domain) is slow.
● Argument checking
● Data copies
● Rescheduling points

● Function calls are cheap, just register bits.
● Many system calls contain locks, are serialized

or are not scalable.

32

Philip Mucci, Multicore OptimizationNOTUR2009

Architecture SummaryArchitecture Summary

● To tune, you need to have some background.
– Single core performance comes first!

● With multicore, we will tune:
– To use all of the cache
– To avoid cache conflicts
– To minimize shared resource contention

● Memory bandwidth, OS, I/O, Comm

– Minimize NUMA effects

33

Philip Mucci, Multicore OptimizationNOTUR2009

Working With the CompilerWorking With the Compiler

34

Philip Mucci, Multicore OptimizationNOTUR2009

Optimizing with the CompilerOptimizing with the Compiler

● It can't read your mind, only your code.
● Correctness is always emphasized over

performance.
● For popular” and “simple” constructs, the

compiler will usually do a better job than you.
● But as code gets more abstract, it can't guess the

things that matter!
– Loop lengths, alignment, cache misses, etc...

35

Philip Mucci, Multicore OptimizationNOTUR2009

Understanding CompilersUnderstanding Compilers

● The best things you can do to work with the
compiler are:
– Learn a compiler well and stick with it.
– Clearly express your intentions to the compiler

through:
● Well structured code
● Compiler directives
● Compile time options

– Extensive array to control different behaviors.

36

Philip Mucci, Multicore OptimizationNOTUR2009

Correctness and CompilersCorrectness and Compilers

● We often talk about getting “correct” answers.
– IEEE has a standard for correctness (IEEE754)
– Applications relax that standard for performance and

because correct is somewhat arbitrary.
● Consider the following:

sum = 0.0
do i = 1, n
 sum = sum + a(i)
enddo

sum1 = 0.0
sum2 = 0.0
do i = 1, n-1, 2
 sum1 = sum1 + a(i)
 sum2 = sum2 + a(i+1)
enddo
sum = sum1+sum2

37

Philip Mucci, Multicore OptimizationNOTUR2009

InliningInlining

● Replacing a subroutine call with the code from
the original function.

● Good because:
– Function calls inside loops (often) inhibit

vectorization.
– Function calls are not free, they take cycles and

cycles to set up and tear down.
● Has potential to bloat code and stack.

38

Philip Mucci, Multicore OptimizationNOTUR2009

VectorizationVectorization

● Generate code that takes advantage of vector
instructions.
– Helped by inlining, unrolling, fusion, SWP, IPA, etc.

● The entire motivation behind using accelerators
– GPGPUs and FPGAs

● x86, PPC, MIPS all have variants of vector
instructions:
– SSE, AltiVec, etc...

39

Philip Mucci, Multicore OptimizationNOTUR2009

IPO/IPAIPO/IPA

● Interprocedural Optimization/Analysis
– Compiler can move, optimize, restructure and delete

code between procedures and files.
● Generates intermediate code at compile time.
● Generates object code during final link.

– As with SWP, exposes more opportunities to
optimization passes.

● Stronger typing of pointers, arguments and data
structures can vastly increase effectiveness.

40

Philip Mucci, Multicore OptimizationNOTUR2009

Software PipeliningSoftware Pipelining

● Consider more than one iteration of a loop.
– Keep more intermediate results in registers and

cache.
● To use it, the compiler must predict:

– Loop count
– Inter-iteration dependencies
– Aliasing

● Optimization can be a trade off.
– Loop set up and tear down can be costly.

41

Philip Mucci, Multicore OptimizationNOTUR2009

Pointer AliasingPointer Aliasing

● The most efficient optimization is deletion.
– Especially loads and stores!

● Compilers must assume that memory (by
pointers) has changed or overlaps.
– Unless you help it to conclude otherwise.

● This is called the pointer aliasing problem. It is
really bad in C and C++.
– Can be controlled on command line and through

keywords.

42

Philip Mucci, Multicore OptimizationNOTUR2009

Types of AliasingTypes of Aliasing

● Strict
– Pointers don't alias if they are different types.

● Typed
– Pointers of the same type can alias and overlap.

● Restricted
– Pointers of same type are assumed to not overlap.

● Disjointed
– All pointer expressions result in no overlap.

43

Philip Mucci, Multicore OptimizationNOTUR2009

Profile Directed FeedbackProfile Directed Feedback

● a.k.a Feedback Directed Optimization
● Collect data about what the code really does and

then adapt.
– Old idea, but (still) not very well developed.

● Important for:
– Branches (I-cache/ITLB misses, BP misprediction)
– Loop bounds (unroll, SWP, jam, etc)

● Future will be to make most decisions based on
real data.

44

Philip Mucci, Multicore OptimizationNOTUR2009

Compiler FlagsCompiler Flags

● All compilers support the -O(n) flag.
– This flag actually turns on lots of other optimizations.

● Better to start at -O(big) and disable
optimizations rather than other way around.
– Develop your knowledge of what to turn off.
– Compiler documentation is usually clear about

which n can result in wrong answers.

45

Philip Mucci, Multicore OptimizationNOTUR2009

GNU Compiler FlagsGNU Compiler Flags
● -O3 -ffast-math -funroll-all-loops
-msse3 -fomit-frame-pointer
-march=native -mtune=native
– -Q --help=optimizers

● Sometimes you need -fno-strict-aliasing
to get correct results.
– -O2 and higher assume strict aliasing.

● Feedback directed optimization:
– First time use -fprofile-generate
– Subsequent times use -fprofile-use

46

Philip Mucci, Multicore OptimizationNOTUR2009

PathScale Compiler FlagsPathScale Compiler Flags

● -Ofast is equivalent to:
– -O3 -ipa -OPT:Ofast -ffast-math -fno-
math-errno -fomit-frame-pointer

● Takes most of the same flags as GCC.
● To find out what the compiler is doing:

– -LNO:vintr_verbose=1
– -LNO:simd_verbose=1

● Feedback directed optimization:
– First time use -fb_create fbdata
– Subsequent times use -fb_opt fbdata

47

Philip Mucci, Multicore OptimizationNOTUR2009

Intel Compiler FlagsIntel Compiler Flags

● -fast equals -O3 -ipo -xT -static
-no-prec-div
– -ip is subset of -ipo for single files
– -shared-intel to allow tools to work

● To find out what the compiler is doing:
– -opt-report [0123], -opt-report-file f

● Feedback directed optimization
– First time use -prof-gen
– Subsequent times use -prof-use

48

Philip Mucci, Multicore OptimizationNOTUR2009

Intel Compiler DirectivesIntel Compiler Directives

● C (#pragma) or Fortran (!DEC$)
● Prefetching

– [no]prefetch var1[,var2]
– GCC: __builtin_prefetch()

● Software Pipelining (of Loop)
– [no]swp

49

Philip Mucci, Multicore OptimizationNOTUR2009

Intel Compiler DirectivesIntel Compiler Directives

● Loop Count
– loop count(n)

● No Loop Interdepedencies (w/SWP)
– ivdep

● Loop Unroll
– [no]unroll(n)

● Loop Split
– distribute point

50

Philip Mucci, Multicore OptimizationNOTUR2009

Limiting AliasingLimiting Aliasing

● restrict keyword
– Part of the C99 standard (-std=c99 with GCC)
– A pointer refers to unique memory.

● Writes through this pointer will not affect anyone else.
– Allows very good optimization!

● -fstrict-aliasing allows aliasing only for
pointers of the same type.
– For GCC and many compilers, auto when >= -O2

51

Philip Mucci, Multicore OptimizationNOTUR2009

Aligning DataAligning Data

● Specifying alignment eliminates manual padding.
● Intel says:
● Align 8-bit data at any address.
● Align 16-bit data to be contained within an aligned four-byte word.
● Align 32-bit data so that its base address is a multiple of four.

● Align 64-bit data so that its base address is a multiple of eight.
● Align 80-bit data so that its base address is a multiple of sixteen.
● Align 128-bit data so that its base address is a multiple of sixteen.

/* Intel, align to 16 bytes */
__declspec(align(16)) unsigned long lock;
/* GCC */
unsigned long lock __attribute__ ((aligned(16)));

52

Philip Mucci, Multicore OptimizationNOTUR2009

Other Important C/C++ KeywordsOther Important C/C++ Keywords

● static
– In global scope, used only in this file.

● const
– Data or location never changes.

● volatile
– Data may change from an alias outside of scope.

● inline
– Inline all the time.

53

Philip Mucci, Multicore OptimizationNOTUR2009

Serial Code OptimizationSerial Code Optimization

54

Philip Mucci, Multicore OptimizationNOTUR2009

“The single most important impediment to good
parallel performance is still single-node
performance”
William Gropp, Argonne National Lab.

s/parallel/multicore; s/node/core;

55

Philip Mucci, Multicore OptimizationNOTUR2009

Guidelines for PerformanceGuidelines for Performance

● Cache gets you all of your performance.
● Compilers like to optimize loops without.

– Function calls
– Side effects
– Pointers that can overlap
– Dependencies

● Function calls are not free
● System calls are slower
● I/O is even worse

56

Philip Mucci, Multicore OptimizationNOTUR2009

Loop and Array OptimizationsLoop and Array Optimizations

● Allocation
● Unit Stride Reference
● Initialization
● Padding
● Packing
● Stride Minimization
● Blocking
● Unrolling

● Fusion
● Defactorization
● Peeling
● Collapse
● Floating IF's
● Indirect Addressing
● Gather/Scatter

57

Philip Mucci, Multicore OptimizationNOTUR2009

Code ExamplesCode Examples
● All of the examples that follow are contrived.

– Compilers can optimize them very well.
● In production codes, these patterns are harder to

spot.
– And thus poorly optimized.

● Write the simplest code first, make sure it's
correct.
– Debugging a highly optimized loop is terrible work.

58

Philip Mucci, Multicore OptimizationNOTUR2009

Array AllocationArray Allocation

● As we know, arrays are allocated differently in C
and Fortran.

59

Philip Mucci, Multicore OptimizationNOTUR2009

Unit Stride AccessUnit Stride Access

● Unit stride is always best.
– Small stride (< line size) is also ok.

● When data comes in, think about using as much
of it as possible as soon as possible.

● When touching large amounts of memory, TLB
misses faults can be a concern.

60

Philip Mucci, Multicore OptimizationNOTUR2009

Array ReferencingArray Referencing

● In C, outer most index should move the fastest.
[x,Y]

● In Fortran, inner-most should change the fastest.
(X,y)

61

Philip Mucci, Multicore OptimizationNOTUR2009

Array InitializationArray Initialization

● No one really uses formal static initialization
anymore. Waste space, restricts program, etc.
– But static bounds were great for optimizers.

● C and Fortran now dialects allow:
– Dynamic array allocation on the stack.
– Run time specification of array bounds.

● Opinions vary on this.
– Simpler and more expressive the code, the better.
– Array addressing can waste a lot of cycles.

62

Philip Mucci, Multicore OptimizationNOTUR2009

Array PaddingArray Padding

● Memory often needs to be padded to avoid
cache line conflicts.
– Fortran common block is a contiguous region of

memory.
– Lots of codes just use powers of 2. Yikes!

● Same can easily be true of dynamically allocated
memory.

● Some elements on systems love aligned data.
– I/O, Infiniband
– But caches on multicore do not!.

63

Philip Mucci, Multicore OptimizationNOTUR2009

Intra-Array PaddingIntra-Array Padding

● Same problem can happen when accessing a
single array.
– Consider striding across each dimension as in a

transpose.
● This can be avoided by allocating extra space.

– C: Avoid leading dimension of power of 2
– Fortran: Avoid trailing dimension of power of 2.

● As with previous item, depends on associativity
of the cache.

64

Philip Mucci, Multicore OptimizationNOTUR2009

Structure PackingStructure Packing

● Unaligned access to data is usually slower.
● So align items on word, double-word or bigger.
● Pack from smallest to largest, maybe add

padding?
● But this is a multicore problem! (more later)

struct {
 short s;
 int i;
 char c;
 void *p;
}

struct {
 void *p;
 int i;
 short s;
 char c;
 }

65

Philip Mucci, Multicore OptimizationNOTUR2009

Stride MinimizationStride Minimization
Loop InterchangeLoop Interchange

● Always think about spatial and temporal locality.
● Often, this is just an oversight of the original

implementor.
● With simple loops, compiler will interchange

them for you.

66

Philip Mucci, Multicore OptimizationNOTUR2009

Cache BlockingCache Blocking

● Standard transformation
– Most compilers are decent at it, if the loop is simple

and has no subroutine calls or side-effects
● Goal is to reduce memory pressure by making

use of the caches.
– Helps when potential for re-use is high.
– Naturally blends with sum reduction and unrolling.

● Good for multicore too but, some caches are
shared! And which loop should we parallelize?

67

Philip Mucci, Multicore OptimizationNOTUR2009

Cache BlockingCache Blocking

68

Philip Mucci, Multicore OptimizationNOTUR2009

Loop UnrollingLoop Unrolling

● Standard transformation to improve processor
pipeline utilitization and reduce loop overhead.
– More work per iteration

● Compilers are very good except when
– Function calls inside
– Inter-iteration dependencies
– Global variables
– Pointer aliasing

69

Philip Mucci, Multicore OptimizationNOTUR2009

Loop UnrollingLoop Unrolling

70

Philip Mucci, Multicore OptimizationNOTUR2009

Loop Unrolling & Sum ReductionLoop Unrolling & Sum Reduction

● When an loop has a data dependency that
introduces serialization.

● Solution is to unroll and introduce intermediate
registers.

71

Philip Mucci, Multicore OptimizationNOTUR2009

(Outer) Loop Unroll and Jam(Outer) Loop Unroll and Jam

● Reduce register pressure
● Decrease loads and stores per iteration

 DO I = 1, N
 DO J = 1, N
 DO K = 1, N
 A(I,J) = A(I,J) + B(I,K) * C(K,J)
 ENDDO
 ENDDO
 ENDDO

 DO I = 1, N, 2
 DO J = 1, N, 4
 DO K = 1, N
 A(I,J) = A(I,J) + B(I,K) * C(K,J)
 A(I+1,J) = A(I+1,J) + B(I+1,K) * C(K,J)
 ENDDO
 DO K = 1, N
 A(I,J+1) = A(I,J+1) + B(I,K) * C(K,J+1)
 A(I+1,J+1) = A(I+1,J+1) + B(I+1,K) * C(K,J+1)
 ENDDO
 DO K = 1, N
 A(I,J+2) = A(I,J+2) + B(I,K) * C(K,J+2)
 A(I+1,J+2) = A(I+1,J+2) + B(I+1,K) * C(K,J+2)
 ENDDO
 DO K = 1, N
 A(I,J+3) = A(I,J+3) + B(I,K) * C(K,J+3)
 A(I+1,J+3) = A(I+1,J+3) + B(I+1,K) * C(K,J+3)
 ENDDO
 ENDDO
 ENDDO

72

Philip Mucci, Multicore OptimizationNOTUR2009

(Outer) Loop Unroll and Jam(Outer) Loop Unroll and Jam

● Be careful loop body does not become too large.
– Should have enough registers for int. results.

 DO I = 1, N, 2
 DO J = 1, N, 4
 DO K = 1, N
 A(I,J) = A(I,J) + B(I,K) * C(K,J)
 A(I+1,J) = A(I+1,J) + B(I+1,K) * C(K,J)
 ENDDO
 DO K = 1, N
 A(I,J+1) = A(I,J+1) + B(I,K) * C(K,J+1)
 A(I+1,J+1) = A(I+1,J+1) + B(I+1,K) * C(K,J+1)
 ENDDO
 DO K = 1, N
 A(I,J+2) = A(I,J+2) + B(I,K) * C(K,J+2)
 A(I+1,J+2) = A(I+1,J+2) + B(I+1,K) * C(K,J+2)
 ENDDO
 DO K = 1, N
 A(I,J+3) = A(I,J+3) + B(I,K) * C(K,J+3)
 A(I+1,J+3) = A(I+1,J+3) + B(I+1,K) * C(K,J+3)
 ENDDO
 ENDDO
 ENDDO

 DO I = 1, N, 2
 DO J = 1, N, 4
 DO K = 1, N
 A(I,J) = A(I,J) + B(I,K) * C(K,J)
 A(I+1,J) = A(I+1,J) + B(I+1,K) * C(K,J)
 A(I,J+1) = A(I,J+1) + B(I,K) * C(K,J+1)
 A(I+1,J+1) = A(I+1,J+1) + B(I+1,K) * C(K,J+1)
 A(I,J+2) = A(I,J+2) + B(I,K) * C(K,J+2)
 A(I+1,J+2) = A(I+1,J+2) + B(I+1,K) * C(K,J+2)
 A(I,J+3) = A(I,J+3) + B(I,K) * C(K,J+3)
 A(I+1,J+3) = A(I+1,J+3) + B(I+1,K) * C(K,J+3)
 ENDDO
 ENDDO
 ENDDO

73

Philip Mucci, Multicore OptimizationNOTUR2009

Outer Loop UnrollingOuter Loop Unrolling

● Goal is to reduce number of loads and stores on
inner loops with invariants
– More results can be kept in registers or in cache

● Compilers not quite as good at this.

74

Philip Mucci, Multicore OptimizationNOTUR2009

Loop Jam/FusionLoop Jam/Fusion

● Merge two loops that access (some) similar data
to:
– Reduce loop overhead, Improve instruction mix,

Lower cache misses
● Fusion can create associativity conflicts

75

Philip Mucci, Multicore OptimizationNOTUR2009

Loop DefactorizationLoop Defactorization

● Reduce the number of array elements referenced,
to reduce cache traffic.

● But floating point operations are not always
associative.

(A + B) + C != A + (B + C)
● Verify that your results are still “correct”

76

Philip Mucci, Multicore OptimizationNOTUR2009

Loop DefactorizationLoop Defactorization

77

Philip Mucci, Multicore OptimizationNOTUR2009

Loop PeelingLoop Peeling

● For loops which access previous elements in
arrays.

● Compiler cannot determine that an item does not
need to be reloaded on every iteration.

78

Philip Mucci, Multicore OptimizationNOTUR2009

Loop CollapseLoop Collapse

● Reduce address computation and loop nesting.
● Reduces loop overhead and increases chance of

vectorization.

79

Philip Mucci, Multicore OptimizationNOTUR2009

Loop CollapseLoop Collapse

● This can be especially effective in C and C++,
where often macros are used to compute multi-
dimensional array offsets.

80

Philip Mucci, Multicore OptimizationNOTUR2009

If statements in LoopsIf statements in Loops

● We already know many optimizations that this
inhibits.

● Unroll loop, move conditional elements into
scalars early, test scalars at end of loop.

81

Philip Mucci, Multicore OptimizationNOTUR2009

Floating IF'sFloating IF's

● IF statements that do not change from iteration to
iteration can be hoisted.

● Compilers are usually good at this except when:
– Loops contain calls to procedures
– Loops have variable bounds
– Loops reference global variables that may be aliased

to data in the IF statement.

82

Philip Mucci, Multicore OptimizationNOTUR2009

Floating IF'sFloating IF's

83

Philip Mucci, Multicore OptimizationNOTUR2009

Some ResultsSome Results

● Taken years ago on 3 different architectures with
the best compilation technology at that time.

● Percent is of -O3 version but untuned.

Arch A Arch B Arch C
Stride Minimization 35% 9% 100%
Fusion 69% 80% 81%
Interchange 75% 100% 100%
Floating IF's 46% 100% 101%
Loop Defactor 66% 76% 94%
Loop Peeling 97% 64% 81%
Loop Unrolling 97% 89% 67%
Loop Unroll + SumR 77% 100% 39%
Outer Loop Unrolling 83% 26% 46%

84

Philip Mucci, Multicore OptimizationNOTUR2009

Indirect AddressingIndirect Addressing
X(I) = X(I) * Y(A(I))

● Very hard for a compiler to optimize.
● Very difficult for “normal” memory subsystems.

– Most memory subsystems are just bad at pseudo-
random accesses.

– Hardware prefetch can mitigate, but can also hurt
● When you have this construct, either:

– Consider using a sparse solver package.
– Block your data into small cache-line sized chunks

and do some redundant computation.

85

Philip Mucci, Multicore OptimizationNOTUR2009

Gather-Scatter OptimizationGather-Scatter Optimization

● For loops with conditional work.
● Split loop to gather indirect array where work

needs to be done.
● Can increase pipelining, effectiveness of

prefetching and enable other loop optimizations.
– Depends on amount of work per iteration and

locality of reference.

86

Philip Mucci, Multicore OptimizationNOTUR2009

Gather-Scatter OptimizationGather-Scatter Optimization

87

Philip Mucci, Multicore OptimizationNOTUR2009

OOC and C++ ConsiderationsOOC and C++ Considerations

● Extensive use creates much greater memory
pressure, lots and lots of pointers.

● Dynamic typing and polymorphism is not free.
● Make use of inline, const and restrict keywords
● Use STL, Boost and other support libraries

– Expresses more of author's intent to compiler to
increase performance.

– But be careful with multicore of the above.

88

Philip Mucci, Multicore OptimizationNOTUR2009

Fortran ConsiderationsFortran Considerations

● WHERE statements
● ALLOCATE alignment
● Array shapes, sizes, slices etc.

89

Philip Mucci, Multicore OptimizationNOTUR2009

Fortran 90 ArraysFortran 90 Arrays

● The (:) syntax is very useful.
● But this can hide significant amount of data

movement, often repeatedly.
– Pollutes the caches
– Creates temporaries that may have pathological

alignment, especially with 'assumed shapes'
● Consider creating an explicit temporary if you

need to pass slices around.

90

Philip Mucci, Multicore OptimizationNOTUR2009

Fortran 90 WHERE statementsFortran 90 WHERE statements

● A construct for masking array operations
● Generated code is often required to be a loop

containing an if statement.
– Highly inefficient

● Consider multiplying by a 0 or 1 mask array with
the same shape into a temporary.

91

Philip Mucci, Multicore OptimizationNOTUR2009

Optimized Arithmetic LibrariesOptimized Arithmetic Libraries

● Usually, it's best NOT to write your own code.
– Many good programmers are focussed on multicore

development
● Advantages:

– Performance, Portability, Prototyping
– Let someone else solve the hard problems.

● Disadvantages:
– Extensive use can lead to vertical code structure.
– May make performance debugging difficult.

92

Philip Mucci, Multicore OptimizationNOTUR2009

● Sample DGEMM
– (old Pentium IV)

● Naïve
– 200 MF

● Advanced ->
– 1 GF

● Optimal
– 2.5GF

● Think you can do it?

93

Philip Mucci, Multicore OptimizationNOTUR2009

Multicore ProgrammingMulticore Programming

94

Philip Mucci, Multicore OptimizationNOTUR2009

Multithreaded ProgrammingMultithreaded Programming

● Here we will cover three popular models:
– MPI
– Pthreads (C and C++)
– OpenMP

● We will talk a bit about
– PGAS languages

95

Philip Mucci, Multicore OptimizationNOTUR2009

Expressing Parallelism Expressing Parallelism

● Data parallelism
– Programmer specifies chunk of work to be done in

parallel.
● Same operation on every thread, using different data
● OpenMP, UPC, Co-Array Fortran, etc...

● Functional (or task) parallelism
– Programmer partitions work by thread or function.

● MPI, Pthreads, Cilk, etc...

96

Philip Mucci, Multicore OptimizationNOTUR2009

Message PassingMessage Passing

● Program explicitly exchanges data.
● Semantics are send/receive (identified by tag) or

get/put (direct to address).
● Ordering and consistency are somewhat implicit.

– Synchronization usually not needed
● Designed for distinct address spaces.

– Nothing really shared other than task ID's
● MPI, PVM, SHMEM, Sockets

97

Philip Mucci, Multicore OptimizationNOTUR2009

Shared MemoryShared Memory

● Data is exchanged implicitly as part of an
expression.
– Load/store or language feature.

● No guarantee of ordering or consistency
– Synchronization is needed.

● Programs share everything
– Or in higher level models, data that is declared

shared.
● One can be used to implement the other...

98

Philip Mucci, Multicore OptimizationNOTUR2009

MPI and MulticoreMPI and Multicore

● MPI was originally designed for distributed
memory machines.
– Receiver is not expected to be in the same address

space of the sender.
– Data was expected to be copied, packed, sent,

received, unpacked, copied, etc...
– Much work has been done to “eliminate the copies”.

● You can get a 4 byte message across a wire in 1us these
days (if you do it 1000's of times and average)

– But that's still way more expensive than 2ns.

99

Philip Mucci, Multicore OptimizationNOTUR2009

MPI and Multicore 2MPI and Multicore 2

● MPI-2 introduced some get/put primitives to
introduce more direct access to remote memory.
– Not nearly as lightweight or flexible as they should

have been, thus limited acceptance.
– Require synchronization.

● Most MPI's were not previously safe for threads.
– You had to run multiple processes on a multicore

machine.
– Things are different now.

100

Philip Mucci, Multicore OptimizationNOTUR2009

MPI and Multicore 3MPI and Multicore 3

● Many MPI's are now both thread safe and tuned
for on-node, shared memory operation.

● This means you can easily use MPI for multicore
programming.
– Advantages to this are:

● Explicit coding of data exchange and synchronization.
Code may be easier to read and tune.

– Disadvantages are:
● You can lose a substantial amount of performance.

Granularity of parallelism must be coarse. Programming
model is limited.

101

Philip Mucci, Multicore OptimizationNOTUR2009

PthreadsPthreads

● Assembly language of thread programming.
– A Pthread is an OS thread
– Not for you Fortran programmers.

● Basic primitives are Create, Join and Mutex
● Used in combination with “messages” to create

different models.
– master/worker model
– gang model (master is a worker)
– pipeline (dataflow)

102

Philip Mucci, Multicore OptimizationNOTUR2009

PthreadsPthreads

● With pthreads, everything is shared except
variables declared on the stack.
– Extreme care must be used to coordinate access to

global data structures.
– Reads and writes need to be consistent.
– Different cores should be working with different

cache lines.
● 3 types of synchronization

– Mutex, condition variables and rwlocks.

103

Philip Mucci, Multicore OptimizationNOTUR2009

Pthread Dot Product ExamplePthread Dot Product Example

Thanks to Clint Whaley

104

Philip Mucci, Multicore OptimizationNOTUR2009

Pthread Work Queue ExamplePthread Work Queue Example

Thanks to Clint Whaley

105

Philip Mucci, Multicore OptimizationNOTUR2009

Logical ParallelismLogical Parallelism

● Separate processors from programmers view of
threads.
– Make chunks or work and threads separate.

● Make queues of work for each thread.
– Send work to threads in chunks.
– If a thread finishes, get more work.

● Ideally, the programmer should not have to think
about processors, just think in parallel!

106

Philip Mucci, Multicore OptimizationNOTUR2009

OpenMPOpenMP

● Designed for quick and easy parallel
programming of shared memory machines.

● Works by inserting compiler directives in code,
usually around loops.

● Threads are started implicitly and “fed” work.

107

Philip Mucci, Multicore OptimizationNOTUR2009

OpenMP DirectivesOpenMP Directives

● Parallelization
– parallel, for, do, workshare, section, sections, task
– single, master

● Data placement and handling
– shared, private, threadprivate, copyprivate,

firstprivate, lastprivate, reduction
● Synchronization

– barrier, ordered, critical, atomic, flush, nowait

108

Philip Mucci, Multicore OptimizationNOTUR2009

OpenMP Data ParallelismOpenMP Data Parallelism

 PROGRAM WORKSHARE

 INTEGER N, I, J
 PARAMETER (N=100)
 REAL AA(N,N), BB(N,N), CC(N,N), DD(N,N), FIRST, LAST
! Some initializations
 DO I = 1, N
 DO J = 1, N
 AA(J,I) = I * 1.0
 BB(J,I) = J + 1.0
 ENDDO
 ENDDO
!$OMP PARALLEL SHARED(AA,BB,CC,DD,FIRST,LAST)
!$OMP WORKSHARE
 CC = AA * BB
 DD = AA + BB
 FIRST = CC(1,1) + DD(1,1)
 LAST = CC(N,N) + DD(N,N)
!$OMP END WORKSHARE
!$OMP END PARALLEL
 END

109

Philip Mucci, Multicore OptimizationNOTUR2009

OpenMP Data ParallelismOpenMP Data Parallelism

#include <omp.h>
#define CHUNKSIZE 100
#define N 1000

main ()
{
int i, chunk;
float a[N], b[N], c[N];

/* Some initializations */
for (i=0; i < N; i++)
 a[i] = b[i] = i * 1.0;
chunk = CHUNKSIZE;

#pragma omp parallel shared(a,b,c,chunk) private(i)
 {
 #pragma omp for schedule(dynamic,chunk)
 for (i=0; i < N; i++)
 c[i] = a[i] + b[i];

 } /* end of parallel section */
}

110

Philip Mucci, Multicore OptimizationNOTUR2009

OpenMP Task ParallelismOpenMP Task Parallelism
 PROGRAM VEC_ADD_SECTIONS
 INTEGER N, I
 PARAMETER (N=1000)
 REAL A(N), B(N), C(N), D(N)

! Some initializations
 DO I = 1, N
 A(I) = I * 1.5
 B(I) = I + 22.35
 ENDDO

!$OMP PARALLEL SHARED(A,B,C,D), PRIVATE(I)
!$OMP SECTIONS
!$OMP SECTION
 DO I = 1, N
 C(I) = A(I) + B(I)
 ENDDO
!$OMP SECTION
 DO I = 1, N
 D(I) = A(I) * B(I)
 ENDDO
!$OMP END SECTIONS
!$OMP END PARALLEL
 END

111

Philip Mucci, Multicore OptimizationNOTUR2009

CILKCILK

● “Logical” task parallelism in a ANSI C
– Handful of new keywords, spawn and join.
– Work-stealing scheduler: programmer just thinks in

parallel, scheduler does the work
● Mostly Open Source

– http://supertech.csail.mit.edu/cilk
● Commercial compilers also available (Cilk++)

– C++, parallel loops
– http://www.cilk.com

http://supertech.csail.mit.edu/cilk
http://www.cilk.com/

112

Philip Mucci, Multicore OptimizationNOTUR2009

Cilk ExampleCilk Example
 () {i nt fi b i nt n

 (<2) () ;i f n r et ur n n

 {el se

 , ;i nt x y

 = (- 1) ;x fi b n

 = (- 2) ;y fi b n

 (+) ;r et ur n x y

 }

}

© Charles E. Leiserson
http://supertech.csail.mit.edu/cilk/lecture-1.pdf

 ci l k () {i nt fi b i nt n

 (<2) () ;i f n r et ur n n

 {el se

 , ;i nt x y

 = x spawn (- 1) ;fi b n

 = y spawn (- 2) ;fi b n

 sync;

 (+) ;r et ur n x y

 }

}

http://supertech.csail.mit.edu/cilk/lecture-1.pdf

113

Philip Mucci, Multicore OptimizationNOTUR2009

Unified Parallel CUnified Parallel C

● Shared memory parallel extension to C
– shared, relaxed and strict keywords
– Intrinsinc functions for sync, get/put, collectives,

worksharing, I/O
● Easy to program, but for performance...

– Remote references on on single data items when they
are used (not before)

– Compiler must hoist and aggregate comm.
● OS and Commerical: http://upc.lbl.gov/

http://upc.lbl.gov/

114

Philip Mucci, Multicore OptimizationNOTUR2009

UPC ExampleUPC Example

shared int our_hits[THREADS]; /* single writer */
main(int argc, char **argv) {
 int i, hits, trials = 1000000;
 double pi;

 seed48 ((MYTHREAD+1) * THREADS);
 for (i=0; i<trials; i++)

 hits += hit();
 our_hits[MYTHREAD] = hits;
 upc_barrier;

 for (i=0,hits=0; i<THREADS; i++)
 hits += our_hits[i];

 pi = 4.0*hits/trials;

 printf(”Thread %d estimates pi = %g”, MYTHREAD, pi);
}

115

Philip Mucci, Multicore OptimizationNOTUR2009

Co-Array FortranCo-Array Fortran

● Small set of extensions to Fortran 95 standard for
SPMD parallelism.
– Similar to UPC but much simpler.

● [n|:] notation after arrays to denote processor.
● Performance issues are more serious.

– Not as nearly expressive as UPC.
● Part of Fortran 2008. G95 has some support. Cray

has commercial product.
● http://www.co-array.org/

http://www.co-array.org/

116

Philip Mucci, Multicore OptimizationNOTUR2009

Co-Array Fortran ExampleCo-Array Fortran Example

REAL, DIMENSION(N)[*] :: X,Y ! declare X,Y as parallel
X(:) = Y(:)[Q] ! collect from Q
X = Y[PE] ! get from Y[PE]
Y[PE] = X ! put into Y[PE]
Y[:] = X ! broadcast X
Y[LIST] = X ! broadcast X over subset of LIST PE's
Z(:) = Y[:] ! collect all Y
S = MINVAL(Y[:]) ! min (reduce) all Y

117

Philip Mucci, Multicore OptimizationNOTUR2009

Other PGAS languagesOther PGAS languages

● Titanium (Java-like)
● Fortress (ML/Haskell-like)
● Chapel (C/Java-like)
● X10 (Java-like)
● Ok, but let's remember what happened to HPF,

ZPL, Split-C, etc...

118

Philip Mucci, Multicore OptimizationNOTUR2009

QuestionQuestion

● ”When should I be trying to use CUDA over
(my) multicore CPU? My experience with CUDA
is that I am very good at writing very slow
CUDA code.”

119

Philip Mucci, Multicore OptimizationNOTUR2009

AnswerAnswer

● When you've:
– Had entirely too many great days in a row and

need a change.
– Don't want to go to church but still wish to be

punished for your all your sins.
– Voted for or (ever) supported George Bush.

● Save it for the platform on which it was made for.

120

Philip Mucci, Multicore OptimizationNOTUR2009

Multicore OptimizationMulticore Optimization

121

Philip Mucci, Multicore OptimizationNOTUR2009

What is Good Parallel Performance?What is Good Parallel Performance?

● Single core performance is consistently high.
– But how high is up?

● The code exhibits decent scaling.
– Strong scaling: Total problem size is fixed.
– Weak scaling: Problem size per processor is fixed.

● Interprocessor, Sync, Comm, I/O are not the
bottlenecks.

● It all starts with a good parallel algorithm.

122

Philip Mucci, Multicore OptimizationNOTUR2009

Reported Linear Scalability(?)Reported Linear Scalability(?)

● When you see linear scaling graphs, be
(somewhat) suspicious.

● Linear scalability is easy(ier) when per-core
performance is low!

● The faster a single core computes, the more
vulnerable it is to other bottlenecks.
– Memory, Sync, Comm, I/O

● So producing a linear graph, does not make your
program efficient.

123

Philip Mucci, Multicore OptimizationNOTUR2009

Multicore OptimizationMulticore Optimization

● Use multicore-tuned libraries.
● Reduce memory bandwidth requirements of

algorithm
– Make it cache friendly
– Help the compilers tune the loops

● Reduce synchronization
– Bigger chunks of work to each thread

● Reduce cache contention
– Alignment, blocking, locks, etc..

124

Philip Mucci, Multicore OptimizationNOTUR2009

Expressing Parallelism Expressing Parallelism

● Important things to remember:
– Granularity must always be as large as possible.
– Synchronization and communication are expensive.

● Initiating parallel work is not “free”.

125

Philip Mucci, Multicore OptimizationNOTUR2009

LibrariesLibraries

● Do you really need to write the solver yourself?
● No!

– Single core is hard enough.
– You have to be willing to change your storage format.

● Vendor math libraries are probably best at this.
● ScalaPack, PetSC, SuperLU, FFTW, EISPACK,

VSIPL, SPRNG, HYPRE etc etc.
● But if it's not your bottleneck, then it doesn't

matter.

126

Philip Mucci, Multicore OptimizationNOTUR2009

Optimal Usage of O.S. LibrariesOptimal Usage of O.S. Libraries

● Ideally, you should compile the libraries with the
same compiler and flags you use on your binary.
– Vendor compilers are best, but may be fussy.

● Specialize as much as possible for your platform.
– Unless you know it needs to run in many places.

● Many optimization flags (especially IPO and the
like), need to be set for every stage.

● How can you check?
– You need a good sys-admin or do it yourself.

127

Philip Mucci, Multicore OptimizationNOTUR2009

What is a Multicore Library?What is a Multicore Library?

● They come in two forms, yet both can be called
“multithreaded”.

● Monolithic
– Your (serial) program calls a (library) routine which

uses all the cores to solve the problem.
● The library spawns/joins threads as necessary.

– Good: It can't get much easier to use.
– Bad: Memory contention and parallel overhead.

128

Philip Mucci, Multicore OptimizationNOTUR2009

What is a Multicore Library?What is a Multicore Library?

● Really parallel
– Your (parallel) program creates it's own threads and

each calls the library on the relevant portion of data.
● You control the degree of parallelism.

– Good: The library can dictate alignment, placement,
etc through allocators. Overhead can be amortized.

– Bad: Increase in complexity and plenty of room for
error.

129

Philip Mucci, Multicore OptimizationNOTUR2009

Multicore LibrariesMulticore Libraries

● Your code can be a hybrid.
– MPI program running on every node, linked against a

Intel MKL that spawns it's own threads.
● How should one use them?

– HPL (Linpack): MPI between nodes and multi-
threaded BLAS on node is usually slower than MPI.

● But HPL runs at > 75% of peak, DGEMM sometimes 90%!

– Your real code won't get anywhere near that.
● So go with what's simple.

130

Philip Mucci, Multicore OptimizationNOTUR2009

VSIPLVSIPL

● Vector Signal Image Processing Library
● Filters
● Stencils
● Convolutions
● Wavelets
● Serial and Parallel versions

131

Philip Mucci, Multicore OptimizationNOTUR2009

LAPACK/ScaLAPACKLAPACK/ScaLAPACK

● Comprehensive solver package for dense systems
of linear equations
– Eigenvalue problems
– Factorizations
– Reordering/Conditioning
– Parallel and serial versions
– Some out of core solvers and packaged storage

routines
● ATLAS/BLAS/etc...

132

Philip Mucci, Multicore OptimizationNOTUR2009

PETScPETSc

● Generalized sparse solver package for solution of
PDE's

● Contains different preconditions, explicit and
implicit methods

● Storage format is highly optimized for
performance

● Serial, Parallel and threaded

133

Philip Mucci, Multicore OptimizationNOTUR2009

FFTWFFTW

● Multidimensional FFTs
– Serial, threaded and parallel
– Variety of radix sizes and data types

134

Philip Mucci, Multicore OptimizationNOTUR2009

SuperLUSuperLU

● LU factorization of sparse matrices
– Highly optimized
– Compressed block storage formats
– Serial, parallel and threaded

135

Philip Mucci, Multicore OptimizationNOTUR2009

The Cost of ThreadingThe Cost of Threading

● Starting, stopping and scheduling them requires
the OS to do expensive work.
– TLB/Cache flushing

● Most multicore paradigms create and destroy
real OS threads.
– So do not use them as function calls!
– Keep threads around and send them work.

● Case example: FDTD from Oil patch

136

Philip Mucci, Multicore OptimizationNOTUR2009

Load BalanceLoad Balance

● Balancing the work between cores can be an
issue.
– OpenMP and CILK can provide dynamic scheduling

of iterations
– Pthreads you are on your own

● Ok, but we still must consider cache line
contention when choosing a data layout.

137

Philip Mucci, Multicore OptimizationNOTUR2009

4 Sample Data Layouts4 Sample Data Layouts

● 1D Block
● 1D Cyclic Column
● 1D Block-Cyclic
● 2D Block-Cyclic
● Which one creates

contention?

138

Philip Mucci, Multicore OptimizationNOTUR2009

Multithreading “Gotchas”Multithreading “Gotchas”

● False Sharing
– Data moves back and forth between different core's

caches.
● Associativity conflicts
● Improper alignment

● Invalidations
– Two threads writing the same location causing the

value to be flushed.
● Synchronization

– Locking, barriers, etc.

139

Philip Mucci, Multicore OptimizationNOTUR2009

False SharingFalse Sharing

http://isdlibrary.intel-dispatch.com/isd/1588/MC_Excerpt.pdf

http://isdlibrary.intel-dispatch.com/isd/1588/MC_Excerpt.pdf

140

Philip Mucci, Multicore OptimizationNOTUR2009

Types of False SharingTypes of False Sharing

● Read-Write contention
– One core writes cache line, another one reads it

● Write-Write contention
– Many cores writing to same cache line

● Next example has both types.
● Read-Read is perfectly OK!

141

Philip Mucci, Multicore OptimizationNOTUR2009

Loop StructureLoop Structure

 =1 , ! do k nz The magnet i c fi el d updat e
 =1 , ! .do j ny El ect r i c fi el d updat e i s ver y si mi l ar
 =1 ,do i nx
 (, ,) = (, ,) + Hx i j k Hx i j k &
 (((, , +1) - (, ,)) * + Ey i j k Ey i j k Cbdz &
 ((, ,) - (, +1 ,)) *)Ez i j k Ez i j k Cbdy
 (, ,) = (, ,) + Hy i j k Hy i j k &
 (((+1 , ,) - (, ,)) * + Ez i j k Ez i j k Cbdx &
 ((, ,) - (, , +1)) *)Ex i j k Ex i j k Cbdz
 (, ,) = (, ,) + Hz i j k Hz i j k &
 (((, +1 ,) - (, ,)) * + Ex i j k Ex i j k Cbdy &
 ((, ,) - (+1 , ,)) *)Ey i j k Ey i j k Cbdx
 end do
 end do

 end do

142

Philip Mucci, Multicore OptimizationNOTUR2009

Memory Contention & OpenMPMemory Contention & OpenMP

143

Philip Mucci, Multicore OptimizationNOTUR2009

Improved PaddingImproved Padding

(1 : + (1) , 1 : + (2) , 1 : + (3))Hx nx padHx ny padHx nz padHx
(1 : + (1) , 1 : + (2) , 1 : + (3))Hy nx padHy ny padHy nz padHy
(1 : + (1) , 1 : + (2) , 1 : + (3))Hz nx padHz ny padHz nz padHz
(1 : +1 + (1) , 1 : +1 + (2) , 1 : +1 + (3))Ex nx padEx ny padEx nz padEx
(1 : +1 + (1) , 1 : +1 + (2) , 1 : +1 + (3))Ey nx padEy ny padEy nz padEy
(1 : +1 + (1) , 1 : +1 + (2) , 1 : +1 + (3))Ez nx padEz ny padEz nz padEz

144

Philip Mucci, Multicore OptimizationNOTUR2009

Managing Memory ContentionManaging Memory Contention

● Make sure shared (even read only) data is
cacheline aligned.

● Use thread private variables to compute results,
then merge to shared arrays.

● With OpenMP: use default(none) in your
parallel clauses
– Shared is default type, could cause contention!

145

Philip Mucci, Multicore OptimizationNOTUR2009

Cache Blocking for MulticoreCache Blocking for Multicore

● Generally, block for the largest non-shared
cache.
– L2 on Nehalem.

● Depending on the speed difference and amount
of work per iteration, L1 may be better.

● Never block for the shared cache size.

146

Philip Mucci, Multicore OptimizationNOTUR2009

MultiCore and LockingMultiCore and Locking

● Access to shared data structures & critical
sections must be protected (and ordered).
– Sometimes even if access is atomic.

● Numerous ways to accomplish this.
– Unix has (horribly slow) semaphores.
– Pthreads has rwlocks, mutexes and condition

variables.
– OpenMP has explicit locks and directives.

147

Philip Mucci, Multicore OptimizationNOTUR2009

LockingLocking

● Make locked regions as “small” as possible.
● Time

– Locks should not be taken around any primitive that
does not execute deterministically.

● Space
– Instructions - do minimal work while performing the

lock.
– Data - lock items, not entire structures.

● Remember that locks always ping-pong in the
cache.

148

Philip Mucci, Multicore OptimizationNOTUR2009

Locking ExampleLocking Example

● Consider a multithreaded server where all
threads read from the same socket into a shared
FIFO for processing.
– Lock the FIFO, read into it, increment and unlock.

● Trade memory for performance here.
– We could lock each buffer in FIFO, but that would

cause gaps.
– Instead, make temporary message buffers which we

copy into the FIFO when full. We only lock FIFO
when the data is ready!.

149

Philip Mucci, Multicore OptimizationNOTUR2009

Structure Packing AgainStructure Packing Again

● Our single core optimization can be terrible for
multicore.
– Because we have increased our memory bandwidth!

● So here, pack from largest to smallest.
– Some compilers have #pragma pack

struct {
 short s;
 int i;
 char c;
 void *p;
}

struct {
 void *p;
 int i;
 short s;
 char c;
 }

150

Philip Mucci, Multicore OptimizationNOTUR2009

Structure Packing, Structure Packing,
Padding and LockingPadding and Locking

● What if we are locking each structure?
● What happens after lock is acquired?
● What if structures are allocated together?
● Usage dictates method, what we will be

accessing and when. struct {
 unsigned long lock;
 void *next;
 void *p;
 int i;
 short s;
 char c;
 unsigned long pad[5];
}

151

Philip Mucci, Multicore OptimizationNOTUR2009

Global Data and ThreadsGlobal Data and Threads

● We know there is nothing wrong with shared
read-only data.

● Unless it happens to be in the same cache line as
something that gets written.
– That line gets invalidated and must be reloaded.

● Solution is to pad, align or use a thread specific
variable.

unsigned long read_write_a;
unsigned long read_only__b;
unsigned long read_write_c;

152

Philip Mucci, Multicore OptimizationNOTUR2009

Thread Specific DataThread Specific Data

● a.k.a Thread Local Storage: give each thread a
private copy.
– Great way to reduce contention.
– Only most systems, this is very fast.
– Variants exist in C and C++: the __thread keyword.

● When a thread dies (join, exit), it's gone!
int i_first_val = 101;
__thread int i = i_first_val;
extern __thread struct state s;
static __thread char *p;

153

Philip Mucci, Multicore OptimizationNOTUR2009

NUMA, Threading and NUMA, Threading and
First Touch PlacementFirst Touch Placement

● The OS uses a first touch policy to place
physical pages.
– The first time it is written, it is placed.

● This means you want to parallelize your
initialization!

154

Philip Mucci, Multicore OptimizationNOTUR2009

NUMA, Threading and NUMA, Threading and
First Touch PlacementFirst Touch Placement

Thanks to Matthias Müller and HLRS

155

Philip Mucci, Multicore OptimizationNOTUR2009

Multicore and Memory AllocationMulticore and Memory Allocation

● Many memory allocators do their best to align
buffers to page boundaries.
– This can be very bad for multicore due to false

sharing, especially for caches with low associativity.
– Be wary of your F90 allocate or your malloc/new.
– 3rd party OS replacements are available

● Many malloc/new/free implementations are not
often scalable for many-core.

156

Philip Mucci, Multicore OptimizationNOTUR2009

The Hoard Memory AllocatorThe Hoard Memory Allocator

● A fast, scalable, drop-in replacement memory
allocator that addresses:
– Contention
– False sharing
– Per-CPU overhead

157

Philip Mucci, Multicore OptimizationNOTUR2009

Mapping Threads to ProcessorsMapping Threads to Processors

● How should you run your code?
– It depends on what the code does.

● There is generally a sweet spot for M threads on
N cores of a single socket. (M<N)
– Usually depends on:

● How tightly synchronized and balanced computation is
● Memory bandwidth requirements
● I/O and Comm traffic

● Oversubscription (more threads than cores) is
usually never a good thing unless...

158

Philip Mucci, Multicore OptimizationNOTUR2009

OS Scheduling and ThreadsOS Scheduling and Threads

● Threads can bounce from core to core.
● You do have some control over this.

– Run-time on the command line
– Or directly inside the code

● But you cannot prevent Linux from scheduling
something else onto your CPU.
– Unless you boot the kernel with special options

(isolcpus) or the massage system a bit.
● On a NUMA system, this can be really bad.

159

Philip Mucci, Multicore OptimizationNOTUR2009

OS Scheduling and ThreadsOS Scheduling and Threads

● For serial and threaded codes...
Print affinity mask of process PID 24732
> taskset -p 24732
pid 24732's current affinity mask: f

Print CPU list of process PID 24732
> taskset -c -p 4695
pid 24732's current affinity mask: 0-3

Set running process to only use CPU's 1 and 2
> taskset -c -p 1,2 4695
pid 4695's current affinity list: 0-3
pid 4695's new affinity list: 1,2

Launch bash shell with all CPU's to choose from
> taskset 0xffffffff /bin/bash

Launch bash shell with CPU's to choose from
> taskset -c 0-3 /bin/bash

160

Philip Mucci, Multicore OptimizationNOTUR2009

OS Scheduling and ThreadsOS Scheduling and Threads

● Even MPI supports this now...
Tell OpenMPI to bind each process
> mpirun –mca mpi_paffinity_alone 1 -np ...

Tell SLURM to bind each task to a core/socket
> srun –-ntasks-per-core=N –-ntasks-per-socket=M ...

More advanced SLURM binding 8 ranks, 4 nodes, 2 per socket, 1 per core (-B S[:C[:T]])
> srun -n 8 -N 4 -B 2:1 ...

Even more advanced SLURM binding
> srun –-cpu_bind=cores –cpu_bind=verbose ...
> srun –-cpu_bind=map_cpu:0,2,3 –cpu_bind=verbose ...
> srun –-cpu_bind=help –cpu_bind=verbose ...

161

Philip Mucci, Multicore OptimizationNOTUR2009

Types of Load BalancingTypes of Load Balancing

● Static
– Data/tasks are split amongst processors for duration

of execution.
– Problem: How do we choose an efficient mapping?

● Dynamic
– Work is performed when resources become available

● How much work and when?

– Problem: Requires periodic synchronization and data
exchange

162

Philip Mucci, Multicore OptimizationNOTUR2009

Measuring OpenMP OverheadMeasuring OpenMP Overhead

● OMP_NUM_THREADS sets the number of
threads to use.
– If not set, it defaults to the number of cores in a

system. (As reported by /proc/cpuinfo on Linux,
Hyperthreaders beware...)

● Set this to 1,2,etc. and time regions of your code.
● Time without OpenMP as well.

163

Philip Mucci, Multicore OptimizationNOTUR2009

Managing Parallel Overhead in Managing Parallel Overhead in
OpenMPOpenMP

● Don't parallelize all your loops.
– Just the ones that matter.

● Use conditional parallelism.
● Specify chunk size to each loop.

– As big as possible.
● Make sure the compiler can unroll the loop.
● Merge parallel regions.
● Avoid barriers with NOWAIT.

164

Philip Mucci, Multicore OptimizationNOTUR2009

OpenMP Overhead and Parallel OpenMP Overhead and Parallel
RegionsRegions

#pragma omp parallel for

for () { ... }

#pragma omp parallel for

for () { ... }

Thanks to Matthias Müller and HLRS

#pragma omp parallel

{

#pragma omp for

for () { ... }

#pragma omp for

for () { ... }

}

165

Philip Mucci, Multicore OptimizationNOTUR2009

Rough Overheads of OpenMPRough Overheads of OpenMP

● These are very approximate.

Thanks to Matthias Müller and HLRS

166

Philip Mucci, Multicore OptimizationNOTUR2009

OpenMP Conditional ParallelismOpenMP Conditional Parallelism

● Execute in parallel if expression evaluates to true.
● Very powerful technique for mitigating parallel

overhead.
– parallel if(expression)
– parallel for if(expression)

● Expression should evaluate to 1/yes or 0/no.

167

Philip Mucci, Multicore OptimizationNOTUR2009

OpenMP Conditional ParallelismOpenMP Conditional Parallelism

for(i=0; i<n; i++)
#pragma omp parallel for if (n-i > 100)

for(j=i+1; j<n; j++)
for(k=i+1; k<n; k++)

a[j][k] = a[j][k] -a[i][k]*a[i][j] / a[j][j]

168

Philip Mucci, Multicore OptimizationNOTUR2009

Performance of Conditional Performance of Conditional
ParallelismParallelism

Thanks to Matthias Müller and HLRS

169

Philip Mucci, Multicore OptimizationNOTUR2009

OpenMP Thread SpecificOpenMP Thread Specific

● firstprivate(list)
– All copies get value in master at beginning.

● lastprivate(list)
– All copies get value in last iteration/section.

● threadprivate(list)
– Data is global data, but private in parallel regions.

● common blocks etc. Use COPYIN or undefined.

170

Philip Mucci, Multicore OptimizationNOTUR2009

OpenMP and BarriersOpenMP and Barriers

● Most constructs have an implicit barrier and flush
at the end.
– do, for, sections, workshare, single
– We must work to limit when this happens.

● The NOWAIT clause eliminates the barrier, then
insert a barrierbarrier and/or flush youself.

● Also, you can use master instead of single.
– But then thread 0 will do the work, so it better be

ready.

171

Philip Mucci, Multicore OptimizationNOTUR2009

OpenMP and Critical SectionsOpenMP and Critical Sections

● If you can't use a reduction to update a
shared variable and you need to use
critical:
– Only thread at a time executing the code.

● But it's better to use atomic
– This will take advantage of special instructions

instead of using locking.

172

Philip Mucci, Multicore OptimizationNOTUR2009

Barrier Removal ExerciseBarrier Removal Exercise

● What's could be wrong with the below advice?
Replace

#pragma omp for
for(i=0; i<size; i++)
 a[i] = 1.0/a[i];
#pragma omp for
for(i=0; i<size; i++)
 b[i] = b[i]*2.0

with

#pragma omp for
for(i=0; i<size; i++) {
 a[i] = 1.0/a[i];
 b[i] = b[i]*2.0;
}

● Good: But we've reduced overhead and
increased work per iteration.

● Bad: We're increasing memory bandwidth
and cache pollution. (No data reused)

● This is better for multicore:

#pragma omp for nowait
for(i=0; i<size; i++)
 a[i] = 1.0/a[i];
#pragma omp for
for(i=0; i<size; i++)
 b[i] = b[i]*2.0

Thanks to Matthias Müller and HLRS

173

Philip Mucci, Multicore OptimizationNOTUR2009

OpenMP ReductionOpenMP Reduction

● OpenMP has special knowledge of reduction
operations.
– A shared variable that is updated by all threads

must be updated atomically.
● OpenMP has a shortcut: reduction(op:var)
● You tell OpenMP how to combine the data.

174

Philip Mucci, Multicore OptimizationNOTUR2009

Reduction By HandReduction By Hand

#pragma omp parallel for private(privIndx, privDbl)
for (i = 0; i < arraySize; i++)
{
 for (privIndx = 0; privIndx < 16; privIndx++)
 {

 privDbl = ((double)privIndx) / 16;
 y[i] = sin(exp(cos(-exp(sin(x[i]))))) +

 cos(privDbl);

 /* Here, each thread reads globalCount
 add 1 to the value, and write the

 new value back to globalCount. */
#pragma omp critical
 { globalCount = globalCount + 1; }

 }
 }

175

Philip Mucci, Multicore OptimizationNOTUR2009

ReductionReduction

#pragma omp parallel for private(privIndx, privDbl) \
reduction(+ : globalCount)
for (i = 0; i < arraySize; i++)
{
 for (privIndx = 0; privIndx < 16; privIndx++)
 {

 privDbl = ((double)privIndx) / 16;
 y[i] = sin(exp(cos(-exp(sin(x[i]))))) +

 cos(privDbl);

 /* Here, each thread reads globalCount
 add 1 to the value, and write the

 new value back to globalCount. */
 globalCount = globalCount + 1;
 }

 }

176

Philip Mucci, Multicore OptimizationNOTUR2009

When Approaching a When Approaching a
(nasty) Loop Nest with OpenMP(nasty) Loop Nest with OpenMP

● If F90, rewrite with loops instead of (:).
– Make everything explicit.

● Rewrite a few versions, unrolling each level
individually. Look for opportunities to:
– Re-use data (cache)
– Reduce memory bandwidth.
– Move temps into variables (register).

● Stage shared data in per thread privates or to use
reductions.

– Make work per iteration as large as possible.

177

Philip Mucci, Multicore OptimizationNOTUR2009

OpenMP SchedulingOpenMP Scheduling

● Controls the allocation of work to threads.
– A form of load balancing.

● By default, OpenMP will allocate a small fixed
number of iterations to each thread.

● This can be changed at compile time or run-time.
– SCHEDULE(type) clause
– runtime means refer to OMP_SCHEDULE env. var.

OMP_SCHEDULE=dynamic ./a.out

178

Philip Mucci, Multicore OptimizationNOTUR2009

OpenMP SchedulingOpenMP Scheduling

● $OMP PARALLEL DO SCHEDULE(type)
● #pragma parallel for schedule(type)

– STATIC[,size] – default
– DYNAMIC[,size] – allocate iterations at runtime
– GUIDED[,size] – start with big chunks, end with

small chunks
– RUNTIME

● For DYNAMIC and GUIDED, default size is 1!

179

Philip Mucci, Multicore OptimizationNOTUR2009

MPI TipsMPI Tips

● Overlap comm. and compute
– Ideally a background thread can send the data while

this thread can continue.
– MPI_ISEND, MPI_IRECV, MPI_ISENDRECV,
MPI_IRSEND, MPI_WAITxxx, MPI_TESTxxxx

● Use native data types.
● Send big messages not small ones.
● Make sure receiver arrives early.
● Minimize collectives.

180

Philip Mucci, Multicore OptimizationNOTUR2009

MPI Tips 2MPI Tips 2

● Avoid wildcard receives
● Attempt to align application buffers to (at least) 8

bytes
● Avoid data translation and derived data types.
● Always think about overlapping comm and

compute

181

Philip Mucci, Multicore OptimizationNOTUR2009

Performance Analysis ToolsPerformance Analysis Tools

182

Philip Mucci, Multicore OptimizationNOTUR2009

Performance AnalysisPerformance Analysis

● What's really meaningful?
– Wall Clock time

● MFLOPS, MIPS, etc are useless.
– What are comparing it to? Peak? Ask your vendor to

send you a code that performs at peak.
● For purposes of optimization, we need data over

a range of data sets, problem sizes and number
of nodes.

183

Philip Mucci, Multicore OptimizationNOTUR2009

ComparisonsComparisons

● For the purposes of comparing performance data,
time is the best place to start.
– Unless you are completely aware of architecture,

compiler, run-time systems, etc...
● Hennessey and Patterson: Fallacies of

Performance
– Synthetic benchmarks predict performance of real

programs
– Peak performance tracks observed performance

184

Philip Mucci, Multicore OptimizationNOTUR2009

Performance Measurement MethodsPerformance Measurement Methods

● Instrumentation
– Tracing
– Aggregate

● Sampling
– IP Profiling, stack-walking

● Simulation
– Instruction cracking and emulation

185

Philip Mucci, Multicore OptimizationNOTUR2009

The Problem with TracingThe Problem with Tracing

● Tracing generates a record with a timestamp for
every event, say function invocation. This
presents numerous problems.
– Measurement pollution
– Data management
– Visualization

● Cure is worse than the disease.
● Tracing often reserved for the worst and most

intermittent problems.

186

Philip Mucci, Multicore OptimizationNOTUR2009

Aggregated ProfilingAggregated Profiling

● By using simple start, stop and accumulate points
in the code, a relatively complete picture of the
overall execution can be obtained.

● This loses temporal performance information.
– i.e. problem X started at time Y

● However, significant problems still 'bubble' to
the top of the overall profile.
– If it doesn't show there, it's not important.

187

Philip Mucci, Multicore OptimizationNOTUR2009

Statistical ProfilingStatistical Profiling

● Upon defined periodic events, record where in
the program the CPU is.

● Gather data into a histogram, the shape of which
approaches the actual profile over time.

● Periodic events can be clock ticks or other events
based on hardware performance counters, like
cache misses.

188

Philip Mucci, Multicore OptimizationNOTUR2009

Understanding Timers Understanding Timers

● Real time, Wall Clock time: A measure of time
that doesn't stop, as when using a stop watch.

● User time: Time when the CPU is executing your
process and is executing your code (not OS
code)

● System time: Time when the CPU is executing
your process and is executing OS code on your
behalf.

● CPU utilization is usually (U + S)/R

189

Philip Mucci, Multicore OptimizationNOTUR2009

Timing UtilitiesTiming Utilities

● Linux /usr/bin/time
– Wall time
– User time
– System time

● Above two are added up for all threads

– Minor/major page faults.
● This is different than 'time' from tcsh.

190

Philip Mucci, Multicore OptimizationNOTUR2009

Wallclock TimeWallclock Time

● Usually accurate to a few microseconds.
● C

– gettimeofday()
– clock_gettime()

● Fortran
– second()
– etime()

● Both
– MPI_Wtime()
– OMP_GET_WTIME()

191

Philip Mucci, Multicore OptimizationNOTUR2009

CPU TimeCPU Time

● Can be system, user or both.
– Usually summed over all threads.
– Not nearly as accurate as wallclock time.

● C
– clock()
– getrusage()
– clock_gettime()
– times()

● Fortran
– dtime()

192

Philip Mucci, Multicore OptimizationNOTUR2009

Hardware Performance AnalysisHardware Performance Analysis

● No longer can we easily understand the
performance of a code segment.
– Out of order execution
– Branch prediction
– Prefetching
– Register renaming

● A measure of wallclock is not enough to point to
the culprit. We need to know what's happening
“under the hood”.

193

Philip Mucci, Multicore OptimizationNOTUR2009

Hardware Performance CountersHardware Performance Counters

● On/off chip registers that count hardware events
– Often 100's of different events, specialized to the

processor, usually just a few registers to count on.
● OS support accumulates counts into 64 bit

quantities that run only when process is running.
– User, kernel and interrupt modes can be measured

separately
– Can count aggregate or use them as sampling triggers

194

Philip Mucci, Multicore OptimizationNOTUR2009

Sample Performance Counter EventsSample Performance Counter Events

● Cycles
● Instructions
● Floating point ops
● Branches mispredicted
● Cycles stalled on

memory
● Cache lines

invalidated

● Loads, Stores
● Ratios of these

counters are indicative
of performance
problems.

195

Philip Mucci, Multicore OptimizationNOTUR2009

Statistical Profiling 2Statistical Profiling 2

196

Philip Mucci, Multicore OptimizationNOTUR2009

Hardware Metrics for MulticoreHardware Metrics for Multicore

● Absolutely! But the metrics are different for each
processor.
– Load/store to Cache miss ratio

● On a loop that should not miss, misses mean contention.

● Cache state transitions
– You can actually count transitions to E and I on some

platforms.
● Interprocessor traffic

– Can isolate offending processor/thread.

197

Philip Mucci, Multicore OptimizationNOTUR2009

PAPIPAPI

● Performance Application Programming Interface
● A standardized, portable and efficient API to

access the hardware performance counters.
● Goal is to facilitate the development of cross-

platform optimization tools.
● Patching kernel is required.

– Stable and supported patches. (perfctr & perfmon)
– Many HPC systems have already been patched.

198

Philip Mucci, Multicore OptimizationNOTUR2009

PAPI EventsPAPI Events

● Performance counters are measured in terms of
events
– Symbol names for something to count
– Events have different names/meanings for different

vendors/processors/revisions etc
– Some native events are mapped to general names in

PAPI
● And all the problems associated with such abstractions

● PAPI supports derived events

199

Philip Mucci, Multicore OptimizationNOTUR2009

O.S. Linux Performance ToolsO.S. Linux Performance Tools

● From the desktop world, most are familiar with:
– gprof, valgrind, oprofile

● Linux performance tools are actually well
established:
– Most are not 'production' quality, lacking proper

● Testing, Documentation, Integration

– But some are better than others, all can be useful in
the proper situations

200

Philip Mucci, Multicore OptimizationNOTUR2009

The Right Tool for the JobThe Right Tool for the Job

Thanks to Felix Wolf, Juelich

201

Philip Mucci, Multicore OptimizationNOTUR2009

Issues to Consider Issues to Consider

● Usage
– GUI
– ASCII
– Simplicity vs...

● Collection
– Instrumentation
– Direct vs Indirect
– Tracing

● Performance Data
– MPI, Pthreads,

OpenMP
– Libraries
– Processor
– I/O

● Experiment
management

● Visualization

202

Philip Mucci, Multicore OptimizationNOTUR2009

ToolsTools

● ompP
● mpiP
● HPCToolkit
● PerfSuite
● PapiEx
● GPTL
● pfmon

● TAU
● Scalasca
● valgrind
● gprof
● Non-OS

– Vampir
– SlowSpotter

203

Philip Mucci, Multicore OptimizationNOTUR2009

ompP: The OpenMP ProfilerompP: The OpenMP Profiler

● Provides easy to read reports at end of execution.
– Based on source code instrumentation

● Report on each OpenMP primitive
– Flat Profiles
– Callgraph Profiles
– Hardware counter values

● Overhead Analysis
● Scalability Analysis

204

Philip Mucci, Multicore OptimizationNOTUR2009

ompP: UsageompP: Usage

● Recompile code with wrapper.
– Works on all compilers: source to source.
– Optional: hand-instrument user regions.

● Set environment variables if necessary.
● Run and read report!

205

Philip Mucci, Multicore OptimizationNOTUR2009

ompP: Flat Region ProfileompP: Flat Region Profile

● Components:

– Region number
– Source code location and region type
– Timing data and execution counts, depending on the particular

construct
– One line per thread, last line sums over all threads
– Hardware counter data (if PAPI is available and HW counters are

selected)
– Data is exact (measured, not based on sampling)

#pragma omp parallel
{
 #pragma omp critical
 {
 sleep(1)
 }
}

R00002 main.c (34-37) (default) CRITICAL
 TID execT execC bodyT enterT exitT PAPI_TOT_INS
 0 3.00 1 1.00 2.00 0.00 1595
 1 1.00 1 1.00 0.00 0.00 6347
 2 2.00 1 1.00 1.00 0.00 1595
 3 4.00 1 1.00 3.00 0.00 1595
 SUM 10.01 4 4.00 6.00 0.00 11132

206

Philip Mucci, Multicore OptimizationNOTUR2009

ompP: Call GraphsompP: Call Graphs

[*00] critical.ia64.ompp
[+01] R00004 main.c (42-46) PARALLEL
[+02] R00001 main.c (19-21) ('foo1') USER REGION
 TID execT/I execT/E execC
 0 1.00 0.00 1
 1 3.00 0.00 1
 2 2.00 0.00 1
 3 4.00 0.00 1
 SUM 10.01 0.00 4

[*00] critical.ia64.ompp
[+01] R00004 main.c (42-46) PARALLEL
[+02] R00001 main.c (19-21) ('foo1') USER REGION
[=03] R00003 main.c (33-36) (unnamed) CRITICAL
 TID execT execC bodyT/I bodyT/E enterT exitT
 0 1.00 1 1.00 1.00 0.00 0.00
 1 3.00 1 1.00 1.00 2.00 0.00
 2 2.00 1 1.00 1.00 1.00 0.00
 3 4.00 1 1.00 1.00 3.00 0.00
 SUM 10.01 4 4.00 4.00 6.00 0.00

 Incl. CPU time
 32.22 (100.0%) [APP 4 threads]
 32.06 (99.50%) PARALLEL +-R00004 main.c (42-46)
 10.02 (31.10%) USERREG |-R00001 main.c (19-21) ('foo1')
 10.02 (31.10%) CRITICAL | +-R00003 main.c (33-36) (unnamed)
 16.03 (49.74%) USERREG +-R00002 main.c (26-28) ('foo2')
 16.03 (49.74%) CRITICAL +-R00003 main.c (33-36) (unnamed)

207

Philip Mucci, Multicore OptimizationNOTUR2009

ompP: Overhead AnalysisompP: Overhead Analysis
Total runtime (wallclock) : 172.64 sec [32 threads]
Number of parallel regions : 12
Parallel coverage : 134.83 sec (78.10%)

Parallel regions sorted by wallclock time:
 Type Location Wallclock (%)
R00011 PARALL mgrid.F (360-384) 55.75 (32.29)
R00019 PARALL mgrid.F (403-427) 23.02 (13.34)
R00009 PARALL mgrid.F (204-217) 11.94 (6.92)
...
 SUM 134.83 (78.10)

Overheads wrt. each individual parallel region:
 Total Ovhds (%) = Synch (%) + Imbal (%) + Limpar (%) + Mgmt (%)
R00011 1783.95 337.26 (18.91) 0.00 (0.00) 305.75 (17.14) 0.00 (0.00) 31.51 (1.77)
R00019 736.80 129.95 (17.64) 0.00 (0.00) 104.28 (14.15) 0.00 (0.00) 25.66 (3.48)
R00009 382.15 183.14 (47.92) 0.00 (0.00) 96.47 (25.24) 0.00 (0.00) 86.67 (22.68)
R00015 276.11 68.85 (24.94) 0.00 (0.00) 51.15 (18.52) 0.00 (0.00) 17.70 (6.41)
...

Overheads wrt. whole program:
 Total Ovhds (%) = Synch (%) + Imbal (%) + Limpar (%) + Mgmt (%)
R00011 1783.95 337.26 (6.10) 0.00 (0.00) 305.75 (5.53) 0.00 (0.00) 31.51 (0.57)
R00009 382.15 183.14 (3.32) 0.00 (0.00) 96.47 (1.75) 0.00 (0.00) 86.67 (1.57)
R00005 264.16 164.90 (2.98) 0.00 (0.00) 63.92 (1.16) 0.00 (0.00) 100.98 (1.83)
R00007 230.63 151.91 (2.75) 0.00 (0.00) 68.58 (1.24) 0.00 (0.00) 83.33 (1.51)
...
 SUM 4314.62 1277.89 (23.13) 0.00 (0.00) 872.92 (15.80) 0.00 (0.00) 404.97 (7.33)

208

Philip Mucci, Multicore OptimizationNOTUR2009

ompP: Performance PropertiesompP: Performance Properties

--
---- ompP Performance Properties Report ----------------------
--

Property P00001 'ImbalanceInParallelLoop' holds for
 'LOOP muldoe.F (68-102)', with a severity (in percent) of 0.1991

Deductions by ompP about what the problem is.

WaitAtBarrier

ImbalanceInParallel[Region/Loop/Workshare/Sections]

ImbalanceDueToNotEnoughSections

InbalanceDueToUnevenSectionDistribution

CriticalSectionContention

LockContention

FrequentAtomic

InsufficienWorkInParallelLoop

UnparallelizedIn[Master/Single]Region

209

Philip Mucci, Multicore OptimizationNOTUR2009

ValgrindValgrind

● A tool infrastructure for debugging and
performance evaluation.

● Works by instruction emulation and tracing.
– Code can run up to 100x slower.
– But can catch errors that other tools can't.

● Many tools
– memcheck, cachegrind, callgrind, massif, helgrind,

drd
– cachegrind is based on simulated machine model

(not real hardware)

210

Philip Mucci, Multicore OptimizationNOTUR2009

Valgrind: HelgrindValgrind: Helgrind

● Detects
– Pthreads API errors
– Deadlocks and Data races
– Broken for GNU OpenMP

● valgrind –tool=helgrind <app>
Thread #1 unlocked a not-locked lock at 0x7FEFFFA90
 at 0x4C2408D: pthread_mutex_unlock (hg_intercepts.c:492)
 by 0x40073A: nearly_main (tc09_bad_unlock.c:27)
 by 0x40079B: main (tc09_bad_unlock.c:50)
 Lock at 0x7FEFFFA90 was first observed
 at 0x4C25D01: pthread_mutex_init (hg_intercepts.c:326)
 by 0x40071F: nearly_main (tc09_bad_unlock.c:23)
 by 0x40079B: main (tc09_bad_unlock.c:50)

211

Philip Mucci, Multicore OptimizationNOTUR2009

Valgrind: DRDValgrind: DRD

● Detects
– Pthreads API errors
– Deadlocks, Data races and Lock contention
– Broken for GNU OpenMP

● valgrind –tool=drd –var-info=yes <app>

==10668== Acquired at:
==10668== at 0x4C267C8: pthread_mutex_lock
(drd_pthread_intercepts.c:395)
==10668== by 0x400D92: main (hold_lock.c:51)
==10668== Lock on mutex 0x7fefffd50 was held during 503 ms (threshold:
10 ms).
==10668== at 0x4C26ADA: pthread_mutex_unlock
(drd_pthread_intercepts.c:441)
==10668== by 0x400DB5: main (hold_lock.c:55)
...

212

Philip Mucci, Multicore OptimizationNOTUR2009

mpiP: The MPI ProfilermpiP: The MPI Profiler

● Easy to use, easy to interpret performance
reports.

● mpiP performances only trace reduction and
summarization.

● Compatible with all MPI's.
● No recompilation required.

– Just relink or run with environment variable.

213

Philip Mucci, Multicore OptimizationNOTUR2009

mpiP: Some outputmpiP: Some output

214Philip Mucci, Multicore OptimizationNOTUR2009

mpipex: Profile and Load Balancempipex: Profile and Load Balance

@--- MPI Time (seconds) ---------------

Task AppTime MPITime MPI%
 0 1.06e+03 79.8 7.53
 1 1.06e+03 89.9 8.47
 2 1.06e+03 85.2 8.03
 3 1.06e+03 85.8 8.09
 4 1.06e+03 85.1 8.03
 5 1.06e+03 111 10.42
 6 1.06e+03 144 13.54
 7 1.06e+03 142 13.37
 8 1.06e+03 139 13.12
 9 1.06e+03 147 13.85
 10 1.06e+03 140 13.16
 11 1.06e+03 141 13.33
 12 1.06e+03 143 13.47
 13 1.06e+03 138 13.03
 14 1.06e+03 144 13.55
 15 1.06e+03 182 17.19
 * 1.7e+04 2e+03 11.76

--
@--- Aggregate Time (top twenty, descending, milliseconds) -
--
Call Site Time App% MPI% COV
Barrier 29 9.65e+05 4.96 30.20 0.00
Barrier 18 6.1e+05 3.14 19.10 0.21
Allgather 12 3.68e+05 1.89 11.51 0.47
Barrier 43 3.25e+05 1.67 10.18 0.43
Sendrecv 78 2.2e+05 1.13 6.88 2.19
Sendrecv 21 1.57e+05 0.81 4.92 0.51

215

Philip Mucci, Multicore OptimizationNOTUR2009

PerfSuitePerfSuite

● Command line tool that can
– Provides summaries of MPI and Performance

Counters
– Provide statistical profiles as well.
– Output is XML or ASCII

● Works on uninstrumented code.
● Well supported and documented.
● Lots of derived events for Intel processors.

216

Philip Mucci, Multicore OptimizationNOTUR2009

psrun Outputpsrun Output

217

Philip Mucci, Multicore OptimizationNOTUR2009

HPCToolkitHPCToolkit

● Statistical call-stack profiling of unmodified
applications.
– Uses hardware counters and timers.
– Produce profiles per-thread.
– Works on unmodified and fully optimized code.

● Visualizer can compare multiple profiles with
derived metrics.

● Concise ASCII output or with a Java GUI

218

Philip Mucci, Multicore OptimizationNOTUR2009

Call Path ProfilingCall Path Profiling

Call path sample

instruction pointer

return address

return address

return address

 Calling Context Tree (CCT)

Overhead proportional to sampling frequency ...
... not call frequency

219

Philip Mucci, Multicore OptimizationNOTUR2009

HPCToolkit Call StackHPCToolkit Call Stack

costs for
•inlined procedures
•loops
•function calls in full

context

calling context
view

220

Philip Mucci, Multicore OptimizationNOTUR2009

Scaling Study with Multiple ProfilesScaling Study with Multiple Profiles

- =

8 1

221

Philip Mucci, Multicore OptimizationNOTUR2009

HPCToolkit 1-core v 8-coreHPCToolkit 1-core v 8-core

221

Multicore
Loss

(Multicore
time - single

core time)

highlighted loop is
2.84x slower on 8
cores in a weak
scaling study

flat view

222Philip Mucci, Multicore OptimizationNOTUR2009

Performance Experiment ToolsPerformance Experiment Tools

● A set of tools, easy to use as time.
● Provide a uniform interface to a number of

underlying tools.
● Largely work on uninstrumented code.
● Mostly take the same arguments.
● papiex, mpipex, ioex, hpcex, gptlex, tauex

223

Philip Mucci, Multicore OptimizationNOTUR2009

papiexpapiex

● A simple to use tool that generates performance
measurements for the entire run of a code,
including summaries for job, task and thread.
– Hardware performance metrics
– I/O
– Thread synchronization
– MPI

● Simple instrumentation API
● No recompilation

224Philip Mucci, Multicore OptimizationNOTUR2009

Papiex: Workload Papiex: Workload
CharacterizationCharacterization

Est. L2 Private Hit Stall % 10.76
Est. L2 Other Hit Stall % 2.79
Est. L2 Miss (private,other) Stall % 17.24
Total Est. Memory Stall % 30.79
Est. L1 D-TLB Miss Stall % 2.26
Est. L1 I-TLB Miss Stall % 0.04
Est. TLB Trap Stall % 0.15
Total Est. TLB Stall % 2.45
Est. Mispred. Branch Stall % 1.15
Dependency (M-stage) Stall % 6.17
Total Measured Stall % 9.77
Total Underestimated Stall % 34.39
Total Overestimated Stall % 40.56
Actual/Ideal Cyc (max. dual) 2.29
Ideal IPC (max. dual) 1.07
Ideal MFLOPS (max. dual) 148.88
Actual/Ideal Cyc (cur. dual) 2.40
Ideal IPC (cur. dual) 1.12
Ideal MFLOPS (cur. dual) 156.29
MPI cycles % 8.85
MPI Sync cycles % 0.00
I/O cycles % 0.00
Thr Sync cycles % 0.00

Stall Cycles

L2 Hit
L2 Other Hit
L2 Miss
TLB
Mispredictions
Dependency

Instruction Mix

Integer
Loads
Stores
FP
FMA
Branch

225Philip Mucci, Multicore OptimizationNOTUR2009

GPTLGPTL

 Used to easily instrument applications for the
generation of performance data.

 Optimized for usability.
 Provides access to timers as well as PAPI events.
 Thread-safe and per-thread statistics.
 Provides estimates of overhead.
 Call-tree generation.

225

226

Philip Mucci, Multicore OptimizationNOTUR2009

TAUTAU

● Entire toolkit for parallel and serial performance
instrumentation, measurement, analysis and
visualization.

● Steep(ish) learning curve, but payoff can be
worth it.

● Works via source instrumentation and limited
dynamic instrumentation

● Very good at OpenMP instrumentation

227Philip Mucci, Multicore OptimizationNOTUR2009

TAU Parallel Performance SystemTAU Parallel Performance System

 Parallel Performance Evaluation Tool for
Fortran, C, C++ and Python

 Used for in-depth performance studies of an
application throughout its lifecycle.

 Supports all forms of parallel profiling
 Flat, callpath, and phase based profiling
 PAPI counters, wallclock time, CPU time,

memory
 PerfExplorer cross experiment analysis tool

228Philip Mucci, Multicore OptimizationNOTUR2009

TAUTAU

229

Philip Mucci, Multicore OptimizationNOTUR2009

Comparing Effects of MultiCore ProcessorsComparing Effects of MultiCore Processors

 AORSA2D on 4k cores
 PAPI resource stalls
 Jaguar Cray XT (ORNL)
 Blue is single node
 Red is dual core

230

Philip Mucci, Multicore OptimizationNOTUR2009

Comparing FLOPS: MultiCore ProcessorsComparing FLOPS: MultiCore Processors

 AORSA2D on 4k cores
 Jaguar Cray XT3(ORNL)
 Floating pt ins/second
 Blue is dual core
 Red is single node

231

Philip Mucci, Multicore OptimizationNOTUR2009

Other Performance ToolsOther Performance Tools

● Oprofile
– Hardware counter profiling for Linux

● But you need to have dedicated access to the node.

● Scalasca
– Tracing for OpenMP and MPI

232

Philip Mucci, Multicore OptimizationNOTUR2009

Ways to Avoid Multicore Ways to Avoid Multicore
Performance Problems Performance Problems

● Don't write your own solvers.
– Know what libraries are available and plan your data

structures.
– Spend your time on innovation not implementation.
– Libraries are well documented and well publicized.
– Remember the 80/20 rule.

233

Philip Mucci, Multicore OptimizationNOTUR2009

Ways to Avoid Multicore Ways to Avoid Multicore
Performance Problems Performance Problems

● Don't use more data and memory bandwidth
than necessary.
– Do you need double or can you live with float?
– Do you need > 2GB of address space?
– After comm., memory bandwidth is always the

biggest bottleneck.
● Running in 32-bit mode does not mean you can't

use double precision floating point.

234

Philip Mucci, Multicore OptimizationNOTUR2009

Ways to Avoid Multicore Ways to Avoid Multicore
Performance Problems Performance Problems

● Help the compiler help you (optimize for cache).
– Flags
– Directives
– Good code structure
– Compilers are better at optimizing simple code than

you are.
– Reading the manual is worth it.

235

Philip Mucci, Multicore OptimizationNOTUR2009

Ways to Avoid Multicore Ways to Avoid Multicore
Performance Problems Performance Problems

● If you have to write your own code, tune it for
cache on a single processor.
– Make sure the algorithm scales first.
– If you get good cache utilization, it will make multi-

core performance that much easier.

236

Philip Mucci, Multicore OptimizationNOTUR2009

Ways to Avoid Multicore Ways to Avoid Multicore
Performance Problems Performance Problems

● Maximize granularity and minimize
synchronization (and communication).
– Larger, longer and more independent the

computations, the greater the speedup.

237

Philip Mucci, Multicore OptimizationNOTUR2009

Ways to Avoid Multicore Ways to Avoid Multicore
Performance Problems Performance Problems

● Don't violate the usage model of your
programming environment.
– If something seems 'hard' to get right, you may be

doing something wrong.
– Have reasonable expectations.
– Recall the CUDA comment.

238

Philip Mucci, Multicore OptimizationNOTUR2009

ReferencesReferences

● http://www.cs.utk.edu/~mucci/MPPopt.html
● http://www.cs.utk.edu/~mucci/latest/mucci_talks.html
● Multithreaded Algorithms

– http://www.cilk.com/resources/multithreaded-algorithms-textbook-chapter/
● Multicore Optimization

– http://software.intel.com/en-us/articles/software-techniques-for-shared-cache-multi-core-systems/

– http://drops.dagstuhl.de/opus/volltexte/2008/1374/pdf/07361.GroeszlingerArmin.Paper.1374.pdf

– http://www.cis.udel.edu/~cavazos/cisc879/BryanY.pdf

– http://crd.lbl.gov/~oliker/papers/ipdps08_final.pdf
– http://isdlibrary.intel-dispatch.com/isd/1588/MC_Excerpt.pdf

http://www.cs.utk.edu/~mucci/MPPopt.html
http://www.cs.utk.edu/~mucci/latest/mucci_talks.html
http://www.cilk.com/resources/multithreaded-algorithms-textbook-chapter/
http://software.intel.com/en-us/articles/software-techniques-for-shared-cache-multi-core-systems/
http://drops.dagstuhl.de/opus/volltexte/2008/1374/pdf/07361.GroeszlingerArmin.Paper.1374.pdf
http://www.cis.udel.edu/~cavazos/cisc879/BryanY.pdf
http://crd.lbl.gov/~oliker/papers/ipdps08_final.pdf
http://isdlibrary.intel-dispatch.com/isd/1588/MC_Excerpt.pdf

239

Philip Mucci, Multicore OptimizationNOTUR2009

ReferencesReferences

● Pthreads
– https://computing.llnl.gov/tutorials/pthreads/

– http://randu.org/tutorials/threads/
– http://www.cs.umu.se/kurser/TDBC64/VT03/pthreads/pthread-primer.pdf

– http://www.cs.utsa.edu/~whaley/teach/cs6643/LEC/pthreads_ho.pdf
● OpenMP

– http://www.compunity.org/events/pastevents/ewomp2004/suess_leopold_pap_ew04.pdf

– https://computing.llnl.gov/tutorials/openMP/

– http://infostream.rus.uni-stuttgart.de/lec/288/291/real/

– https://fs.hlrs.de/projects/par/par_prog_ws/2004C/22_openmp_performance_2.pdf

https://computing.llnl.gov/tutorials/pthreads/
http://randu.org/tutorials/threads/
http://www.cs.umu.se/kurser/TDBC64/VT03/pthreads/pthread-primer.pdf
http://www.cs.utsa.edu/~whaley/teach/cs6643/LEC/pthreads_ho.pdf
https://computing.llnl.gov/tutorials/openMP/
http://infostream.rus.uni-stuttgart.de/lec/288/291/real/
https://fs.hlrs.de/projects/par/par_prog_ws/2004C/22_openmp_performance_2.pdf

240

Philip Mucci, Multicore OptimizationNOTUR2009

ReferencesReferences

● FFTW
– http://www.fftw.org

● PetSC
– http://www-unix.mcs.anl.gov/petsc

● SUPERLU

– http://crd.lbl.gov/~xiaoye/SuperLU
● ScaLAPACK etc...

– http://www.netlib.org
● VSIPL

– http://www.vsipl.org

http://www.fftw.org/
http://www-unix.mcs.anl.gov/petsc
http://crd.lbl.gov/~xiaoye/SuperLU
http://www.netlib.org/
http://www.vsipl.org/

241

Philip Mucci, Multicore OptimizationNOTUR2009

ReferencesReferences

● GNU compilers
– http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

● Intel Compiler
– http://www.ncsa.edu/UserInfo/Training/Workshops/Multicore/presentations/Optimization%20for%20Performance.ppt

– http://www.intel.com/cd/software/products/asmo-na/eng/222300.htm
– http://www.ichec.ie/support/tutorials/intel_compiler.pdf

● CILK tutorials
– http://supertech.csail.mit.edu/cilk

– http://www.cilk.com/resource-library/resources/
● UPC

– http://upc.gwu.edu/tutorials.html
● Co-Array Fortran

– http://www.co-array.org

http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://www.ncsa.edu/UserInfo/Training/Workshops/Multicore/presentations/Optimization%20for%20Performance.ppt
http://www.intel.com/cd/software/products/asmo-na/eng/222300.htm
http://www.ichec.ie/support/tutorials/intel_compiler.pdf
http://supertech.csail.mit.edu/cilk
http://www.cilk.com/resource-library/resources/
http://upc.gwu.edu/tutorials.html
http://www.co-array.org/

242

Philip Mucci, Multicore OptimizationNOTUR2009

ReferencesReferences

● OpenMPI and SLURM process binding
– http://icl.cs.utk.edu/open-mpi/faq/?category=tuning

– https://computing.llnl.gov/linux/slurm/mc_support.html
● Hoard memory allocator

– http://www.cs.umass.edu/~emery/hoard/index.html
● PAPI

– http://icl.cs.utk.edu/projects/papi
● ompP

– http://www.ompp-tool.com
● Valgrind

– http://www.valgrind.org
– http://valgrind.org/docs/manual/hg-manual.html
– http://valgrind.org/docs/manual/drd-manual.html

http://icl.cs.utk.edu/open-mpi/faq/?category=tuning
https://computing.llnl.gov/linux/slurm/mc_support.html
http://www.cs.umass.edu/~emery/hoard/index.html
http://icl.cs.utk.edu/projects/papi
http://www.ompp-tool.com/
http://www.valgrind.org/
http://valgrind.org/docs/manual/hg-manual.html
http://valgrind.org/docs/manual/drd-manual.html

243

Philip Mucci, Multicore OptimizationNOTUR2009

ReferencesReferences
● mpiP

– http://mpip.sourceforge.net
● PerfSuite

– http://perfsuite.ncsa.uiuc.edu
● HPCToolkit

– http://hipersoft.cs.rice.edu/hpctoolkit
● papiex

– http://www.cs.utk.edu/~mucci/papiex
● TAU

– http://www.paratools.com
● GPTL

– http://www.burningserver.net/rosinski/gptl

http://mpip.sourceforge.net/
http://perfsuite.ncsa.uiuc.edu/
http://hipersoft.cs.rice.edu/hpctoolkit
http://www.cs.utk.edu/~mucci/papiex
http://www.paratools.com/
http://www.burningserver.net/rosinski/gptl

244

Philip Mucci, Multicore OptimizationNOTUR2009

ReferencesReferences
● Prefetching

– http://gcc.gnu.org/projects/prefetch.html
● Aliasing

– http://developers.sun.com/solaris/articles/cc_restrict.html
– http://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/gcc/restricted-pointers.html

– http://www.cellperformance.com/mike_acton/2006/05/demystifying_the_restrict_keyw.html

– http://www.cellperformance.com/mike_acton/2006/06/understanding_strict_aliasing.html

● Alignment
– http://software.intel.com/en-us/articles/align-and-organize-data-for-better-performance

– http://www.jauu.net/data/pdf/beware-of-your-cacheline.pdf

http://gcc.gnu.org/projects/prefetch.html
http://developers.sun.com/solaris/articles/cc_restrict.html
http://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/gcc/restricted-pointers.html
http://www.cellperformance.com/mike_acton/2006/05/demystifying_the_restrict_keyw.html
http://www.cellperformance.com/mike_acton/2006/06/understanding_strict_aliasing.html
http://software.intel.com/en-us/articles/align-and-organize-data-for-better-performance
http://www.jauu.net/data/pdf/beware-of-your-cacheline.pdf

