A Brief Survery of Linux
Performance Engineering

Philip J. Mucci
University of Tennessee, Knoxville
mucci@pdc.kth.se

Overview

* On-chip Hardware Performance Counters
* Linux Performance Counter Infrastructure
* The PAPI Library

* Performance Tools

* Ongoing work at PDC

 Sample Tools for your use on Lucidor

Performance

“The single most important impediment to good parallel

performance is still poor single-node performance.”

- William Gropp
Argonne National Lab

The Fallacy of Reported
Linear Scalability
* But what about per/PE performance?

* With a slow code, overall performance of the
code 1s not vulnerable to other system parameters
like communication bandwidth, latency.

* Very common on tightly integrated systems
where you can simple add PE's for performance.

* The question 1s: “How Fast 1s Fast?”

e The answer can be found 1n the hardware.

Rising Complexity

Intel® ltanium ™ Processor Block Diagram
r'.1-l-"|-l-l-l-ﬂ-l-'-rn.-'!-'-l-"l-l-l-l-r-'-r-.-‘l

i Els e st St dn — -

EoQ L ki b Ssnadie el MLE

e TelchiPresleich Engite Lazap

BEranch = x :
FPeadlolian I-'I.'!II'I.II: I_Lln —_— FEhiiinithas ﬂl—":l:ldl_:'_ s
: and

| bk
| Regieter Stk Englne | Re Mapping |

ot T e S AlJ: i iy

"#-L | 1§
| .

- [s ‘# 4 I = BN Em;}::‘-,::::'“" e Irfﬂnﬂl Aegisters "H FP Ragistars '
iocolll Ll -
(&1 | ' A T Intzgar *uuH"'-rt i
ety ; and]

M "1 MCM [:"‘ Lol ' W it H S :L. Floating
' n LT { ,1_:: 3 Cals I||. Pt

" Hrril=

- PRFAEE : -

L2 Caphe

Pertormance Counters

Today most high performance processors include

hardware performance counters.

Some are easy to access, others not available to users.

On most platforms the APIs, if they exist, are not
appropriate for the end user or well documented.

Existing performance counter APIs

Compaq Alpha EV 6 & 6/7
SGI MIPS R1x000

IBM Power & PPC Series
CRAY T3E, X1

Sun UltraSparc

Pentiums, AMD

IA-64
HP-PA RISC
Hitachi
Fujitsu

NEC

Linux Performance Infrastructure

* Contrary to popular belief, the Linux
infrastructure 1s well established.

e PAPI 1s +7 years old.

* Wide complement of tools from which to
choose.

* Some are production quality.

* Sun, IBM and HP are now focusing on
Linux/HPC which means a focus on
performance.

Modity the Linux Kernel?
* Linux currently does not have an infrastructure
for x86/x86_64 or PPC in the mainline kernel

* Measurements (aggregate and statistical) are
needed for each process and thread.

e Thus context switch routines need to be
modified.

* No overhead when not used, similar to lazy FPU
state switching.

* http://user.it.uu.se/~mikpe/linux/perfctr/2.6/

PertCtr Patch for x86/x86 64/PPC

System/CPU/process/thread level counting
Programmable interrupt on overflow

High resolution, per thread/process virtualized cycle
counter

User space shared library
RPM components

Unofficial: included in next SUSE & we are very close to
being included in the mainline 2.6.x Linux kernel from

OSDL.

Soon to be installed on Linux Labs cluster and some of
the SweGrid machines.

1.4
1.3
1.2
1.1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

PerfCtr 2.6 and Context Switch Time

| Process
I FPU
B Thread

. | Thread & FPU

2.422-174 2.422-174- 2.422-174-
Perfctr (not PerfCtr
used) (used)

PFM for 1A64

* Developed by HP, included in the mainline
kernel and installed on Lucidor.

* Makes full use of IA64 monitoring.

* Not nearly as fast as PerfCtr, approximately 10x
slower.

* http://www.hpl.hp.com/research/linux/perfmon

PAPI

e Performance Application Programming Interface

* The purpose of PAPI 1s to implement a standardized portable
and efficient API to access the hardware performance monitor
counters found on most modern miCroprocessors.

* The goal of PAPI 1s to facilitate the optimization of parallel and
serial code performance by encouraging the development of
cross-platform optimization tools.

Available Performance Data

Cycle count e Cache
Instruction count — I/D cache misses for different
— All instructions levels

_ Floating point — Invalidations

— Integer * TLB

— Load/store — Misses

Branches — Invalidations

— Taken / not taken

— Mispredictions
Pipeline stalls due to

— Memory subsystem

— Resource conflicts

Parallel Ocean Program Performance
Run: x1 Data Set, 2x2 Procs, 10 Steps

Raw Data

PAPI_LD_INS
PAPI_SR_INS
PAPI_BR_INS
PAPI_FP_INS
PAPI_FMA_INS
PAPI_FPU_FDIV

PAPI_FPU_FSQRT

PAPI_TOT_INS
PAPI_TOT_CYC

PAPI_L1_LDM
PAPI_L1_STM
PAPI_L2_LDM
PAPI_FPU_IDL
PAPI_LSU_IDL
PAPI_MEM_RCY
PAPI_MEM_SCY
PAPI_STL_CCY

Debug

1.21E+011
2.02E+010
8.64E+009
2.21E+010
1.04E+010

3.28E+011
3.63E+011

1.03E+009
3.54E+008
6.94E+008
1.66E+011
4.06E+010
1.03E+011
1.26E+011
2.01E+011

Optimized

2.104E+10
7.783E+09
5.043E+09
2.251E+10
1.007E+10
2.551E+08
1.317E+08
6.257E+10
6.226E+10

1.011E+09
3.475E+08
6.894E+08
1.411E+10
1.483E+10
1.368E+10
2.413E+10
3.367E+10

Metric

% Ld Ins

% Sr Ins

% Br Ins

% FP Ins

% FMA Ins
% FP Divide
% FP SQRT

MFLIPS

% MFLIPS Peak
IPC

Mem Opts/FLIP

% L1 Ld HR

% L1 Sr HR

% L2 Ld HR

% FPU Idle Cyc
% LSU Idle Cyc
% Ld Stall Cyc
% Sr Stall Cyc

% No Ins. Cyc

Debug Optimized

36.86
6.17
2.63
6.75
3.16

12.19
3.05
0.90
6.38

99.15
98.25
99.43
45.77
11.17
28.28
34.59
55.25

33.63
12.44
8.06
35.98
16.09
0.41
0.21

72.31
18.08
1.00
1.28

95.19
95.54
96.72
22.66
23.82
21.97
38.76
54.08

—5——

High-level Interface

* Meant for application programmers wanting
coarse-grained measurements

* Requires little or no setup code, anyone can use
it.
* Restrictions:
— Allows only PAPI presets

— Only aggregate counting, no statistical profiling.

e Low-level Interface

* Increased efficiency and functionality over the
high level PAPI interface

* Approximately 60 functions

(http://icl.cs.utk.edu/projects/papi/files/html_man/papi.html#4)

* Thread-safe (SMP, OpenMP, Pthreads)

* Supports both presets and native events

Low-level Functionality

e Counter multiplexing

e (allbacks on user defined overflow value
 SVR4 compatible profiling

e Processor information

e Address space information

e Static and dynamic memory information

e Accurate and low latency timing functions
 Hardware event inquiry functions

* Eventset management functions

e Locking and thread specific data operators

e PAPI and Multiplexing

* Multiplexing allows simultaneous use of more
counters than are supported by the hardware.

— This 1s accomplished through timesharing the counter
hardware and extrapolating the results.

* Users can enable multiplexing with one API call
and then use PAPI normally.

— Hardware Profiling

* On overflow of hardware counter, dispatch a
signal/interrupt.

e Get the address at which the code was
interrupted.

e Store counts of interrupts for each address.

* Vendor/GNU prof and gprof (-pg and —p
compiler options) use interval timers.

Multiple Counter Profiling

LiDcM L2DCM

Event
Count

Program Text Addresses

New 1n PAPI 3.0

e [.ower Measurement Overheads

e Overtlow and Profiling on Multiple
Simultaneous Events

e Easy Access to Platform-Specitic Metrics
e High level API is now thread safe

 Internal timer/signal/thread abstractions

— For More Information

N

— LS

* http://icl.cs.utk.edu/projects/pap1/
— Software and documentation
— Reference materials
— Papers and presentations
— Third-party tools
— Mailing lists

Performance Work at PDC

* Beginning to install an infrastructure on Lucidor
and the grid.

* Working towards a comprehensive and
orthogonal tool suite that makes sense for the
user community.

- MPI, 10, Performance Counter, Statistical

e Feedback 1s welcome!

* Problem apps? Let us know.

Papiex: PAPI Execute on Lucidor

e Currently installed modules include:

* PAPI 2.3.4.3, 3.0.3beta
* PAPIEX v0.9

* Per Ekman's monitoring scripts.

* Want to get started on Lucidor?

$ module load papi/3.0.3beta
$ module load perftools/1.1

$ papiex -h
* Send mucci@pdc.kth.se your feedback.

New Projects

e [OTrack: (Per Ekman, Nils Smeds and myself)

— Passive system to generate statistics (and traces) of 10
activity for the purposes of optimization.

* DynaProt/IA64: (me)

— A system to dynamically instrument binary code while
in memory. Recent release of the instrumentation
infrastructure makes this possible. Extending to
include:

* Loops, Breakpoints, Lines, Arbitrary start stop points

Which Tool?

el

1. =FILE L/'H"

e Tk

[

T Ll -
mal [o
b ot [0
LiThS | .M

[RN L

——amar e EO

I

|] k..

TR TCTERI CETTLL

i

=

FE

il

LENNER LN
INTRRRIIT RN Rnnnitl
ARRIRRALERRRRdd KRR kLT
INTRRRIIT RN Rnnnitl
ddvandddleendddbenndddbLnn

IR RN
JLLIRRIJLLIRRdJ LLRRRddLLEN

LR
ITITRERInIn
AdRERREA4ED
JJLLERRILLD
ITITRERInIn

L IEENTY

~

fa . ' 1 Faen? Faeena' e M #d T~ =nd Fuen?
w Tumn H- i b= Ny - Hamn H =

e " L Frsm'] Peme™ 4ol “n
i e [N Hom n 1 <

The Right Pertormance Tool

e User Interface
— Complex Suite

— Quick and Dirty
e Data Collection Mechanism

— Statistical (low to medium overhead)
- Aggregate (low to medium overhead)

— Trace based (high overhead)

The Right Pertormance Tool 2

* Instrumentation Mechanism
- Source
— Binary (DPCL/Dynlnst)
— Library interposition

* Data Management

— Performance Database
— User (Flat file)

e Data Visualization
— Run Time
— Post Mortem

— Serial/Parallel Display
- ASCII

Oprofile and Linux

e Oprofile 1s a statistical profiler put into RedHat
kernels and adopted by other Linux vendors.

* Implementation 1s good for overall system
tuning, but useless for production environments.
— No aggregate counter support
— Must be configured by root
— Non-existant API

* A case where mature support existed in the
community, but was overlooked or 1gnored.

Some Tools that use PAPI

e TAU (U. Oregon)

- Source/dynamic instrumentation and tracing system

- http://www.cs.uoregon.edu/research/paracomp/tau/
e HPCToolkit (Rice U.)

— Command line statistical profiling (including shlibs)

— http://hipersoft.cs.rice.edu/hpctoolkit/
* PertSuite and PSRUN (NCSA)

- Command line aggegate and statistical profiling

— http://perfsuite.ncsa.uiuc.edu

N

[
Z "\
Eei
|

N

Some Tools that use PAPI 2 %
e KOJAK (Juelich, UTK)

— Instrumentation, tracing and analysis system for MPI,
OpenMP and Performanc Counters.

— http://www.fz-juelich.de/zam/kojak/
* SvPablo (UIUC)

— Instrumentation system for Performance Counters

— http://www-pablo.cs.uiuc.edu/Project/SVPablo
* Q-Tools (HP) (non-PAPI)

— Statistical profiling of system and user processes

— http://www.hpl.hp.com/research/linux/q-tools

Some Tools that use PAPI 3

* PapiEx: PAPI Execute

— Passive aggregate counter measurement tool.

— http://www.cs.utk.edu/~mucci/papiex
* DynaProf (P. Mucci, U Tenn)

— Dynamic instrumentation tool.

— http://www.cs.utk.edu/~muccir/dynaprof

Non Open Source Tools (Why?)

e SCALEA (U Innsbruck)

— Instrumentation system for MPI, OpenMP and Performance
Counters

— http://www.par.univie.ac.at/project/scalea/

* ParaVer (CEPBA)

— Performance tracing for MPI, OpenMP and Performance
Counters

— http://www.cepba.upc.es/paraver

* VAMPIR (Pallas)

— Trace visualizer for MPI and Performance Counters (when
used with TAU and other systems)

— http://www.pallas.com/e/products/vampir/index.htm

Questions”?

e This talk:
— http://www.cs.utk.edu/~mucci/latest/mucci_talks.html
* PAPI Homepage:
— http://icl.cs.utk.edu/papi
* How to reach me:
- mucci@pdc.kth.se
* Thanks for staying!

