Tutorial

Application Performance Analysis Tools for
Linux Clusters

Rick Kufrin
NCSA National Center for Supercomputing Applications

Phil Mucci

Royal Institute of Technology Sweden

Felix Wolf

University of Tennessee

Linux Clusters: The HPC Revolution 2004, Austin, TX, May 17, 2004

Introduction to PerfSuite

Rick Kufrin
National Center for Supercomputing Applications

Linux Clusters: The HPC Revolution 2004
Austin, TX
May 17, 2004

Tutorial Outline

Downloading & installation (5 mins)
Overview of PerfSuite (5 mins)
Basic usage (15 mins)

PerfSuite APIs (5 mins)

Advanced use / examples (10 mins)
— Parallel applications
— Auto-collection

Questions / support information

Download

Two primary websites:
— http://perfsuite.sourceforge. net/
— http://perfsuite.ncsa. ui uc. edu/

Software identical at each location
— Currently no anonymous CVS repository
Web site at NCSA has an additional “helper” script that retrieves
PerfSuite and auxiliary software with one command
What other software is necessary?

— At a minimum, you'll need the GNU C compiler and the expat library

— Highly recommended: Tcl/Tk, tDOM Tcl extension, and PAPI (either version 2
or 3)

Configuration and Build

PerfSuite follows the GNU Autotools model for configuration, build,
install, packaging and directory structure

N N N

Procedure is familiar “gunzip”, “configure”, “make”, “make check’,
“make install”

“configure —h” provides synopsis of configuration options. Some of
the most important include:

— --with-papi=<PAPI toplevel directory>

— --with-tdom=<tDOM lib directory>

— --enable-mpi

$F77 environment variable is used to detect Fortran calling
convention to use (underscore, case, etc)

SMPICPPFLAGS is used to find <mpi.h>

Things To Note During Configure

checki ng
checki ng
checki ng
checki ng
checki ng

whet her make sets $(MAKE). ..
for gawk... gawk
for gcc... gcc

checki ng

confi gure:
checking for tclsh8.4...
checking for wish8.4. ..
checking for use of Tcl

configuring Tcl/Tk support

l'ibrary...

confi gure:
checki ng for
checki ng PAP

configuring PAPI support
PAPI library init
version... 2

configure: configuring MI
checking for npi.h... yes

support

configure: configuring t DOM support
checking |l oad of tDOM fromthe Tcl
success

shel |

yes
for C conpiler default output file nane...
whet her the C conpiler works...

whet her we are using the GNU Fortran 77 conpiler...

in -l papi...

a. out
yes

yes

fusr/local/bin/tclsh8.4
[usr/local/bin/w sh8. 4
success

yes

(/usr/local/bin/tclsh8.4)...

Example Configuration

$./configure --prefix=/opt/perfsuite \
--wW t h- papi =/ opt/ papi \
--Ww th-tdoms/usr/local/tcl/lib F77=ifc \
MPlI CPPFLAGS="-1/usr /Il ocal / npi ch/incl ude” \
PTHREAD LI BS="-1 pt hr ead”

PerfSuite will be installed (entirely) under /opt/perfsuite

PAPI’s installation, specified as either DESTDIR or PREFIX when you built PAPI, is
in /opt/papi

The tDOM TCL extension was built with PREFIX=/usr/local/tcl

Intel’s ifc compiler will be used to determine C/Fortran calling convention

The MPI installation is in /ust/local/mpich

PTHREAD_LIBS not usually necessary (but doesn’t hurt)

Your configure command line will be stored in “config.log”

A Quick Tour Through the Directories

Once PerfSuite is successfully built and installed, you'll have the
following subdirectories under $PREFIX:

_ bin
« psconfig, psenv, psinv, psprocess, psrun
— I nclude
« perfsuite.h, fperfsuite.h, pshwpc.h
—_lib
« libperfsuite, |ibpshwpc, and other runtime/extensions
— man
e Man pages for each commandin bi n
— share
« perfsuite
The configure option - - I i bdi r = is helpful when installing with

multiple Fortran compilers

The per f sui t e/ shar e Subdirectory

o This directory contains machine-independent files with the following
structure:

doc -the license, a README, BUGS, and available documentation for
commands and libraries (in progress).

dt ds - Document Type Definitions (similar to a database schema) for
PerfSuite XML documents. These give the specifics for what can/must be
contained in a valid PerfSuite XML doc.

exanpl es - several example programs and makefiles that can be helpful
when getting started.

tclbin & tcllib-Tclscripts and packages that are used internally.

xm / pshwpc - contains all the standard hardware event configuration files
and associated XML docs and stylesheets. Can be used as-is or copied to your
own directories to be modified as you like. We’ll see more on these shortly.

A Little Bit of History

o PerfSuite grew out of experiences “in the field”, working with
computational scientists on a daily basis and learning which types of
tools “fit’, which don’t, and what gaps needed to be filled

— First such tool was a Tk-based tool called Memory Placement Monitor that
combined the information available from several different utilities to present a
graphical layout of the placement of pages on large distributed shared memory
machines (SGI Origin)

— Next effort was a graphical display of very high-dimensional data: the output of
the IRIX “perfex” tool when applied to highly-parallel programs (scaling runs on
varying processor counts, each processor contributing 32 different hardware
event counts)

— Natural extension was to provide a perfex-like capability under Linux

Performance Analysis in Practice

o QObservation: many application developers don’t use performance
tools at all (or rarely)

o Why?
— Learning curve can be steep
— Results can be difficult to understand
— Investment (time) can be substantial
— Maturity/availability of various tools
— Not everyone is a computer scientist

 Although it’s the norm for vendor-supplied tools to be available for
proprietary HPC operating systems, Linux is just beginning to catch
up with contributions from the open source community (independent
or vendor-supported).

PerfSuite

e Design Goals

— Remove the barriers to the initial steps of performance analysis (don’t make it
hard)

— Separate data collection from presentation
— Machine-independent representation

— Holistic viewpoint: compiler, hardware counters, message-passing, etc.
 (we'll only discuss counter support here)
— Focus on the “Big Picture” (remember that 80/20 rule?)

e A primary goal is to provide an “entry point” that can help you to
decide how to proceed

PerfSuite and XML

In PerfSuite, nearly all data (input, output, configuration, etc) is
represented as XML (eXtensible Markup Language) documents

This provides the ability to manipulate & transform the data in many
ways using standard software / skills
Machine-independent (no binary files)

— ...opens the data up to the user
There are numerous high-quality XML-aware libraries available from
either compiled or interpreted languages that can make it easy to
transform the data for your needs

Web browsers (e.g. Mozilla, I[E) have built-in XML capabilities

PerfSuite Counter-Related Software

o Four performance counter-related utilities:
— psconfig - configure / select performance events
— psinv - query events and machine information

— psrun - generate raw counter or statistical profiling data from an unmodified
binary
— psprocess - pre- and post-process data

o Four libraries (shared and static)

— libperfsuite — the “core” library that can be used standalone and will be built
regardless of the availability of other software

— libpshwpc — HardWare Performance Counter library, also built regardless of
other software. Without counter support, will only perform time-based profiling
through pr of i | (). A version suitable for threaded programs is available
(_r suffix).

— libpshwpc_mpi — a convenience library based on the MPI standard PMPI
interface.

Lists information about the
characteristics of the computer

This same information is also
stored in psrun XML output and is
useful for later generating derived
metrics (or for remembering
where you ran your program!)

x86/x86-64 version also shows
processor features and
descriptions

Lists available hardware
performance events

psinv

titan: ~3% psinv -v
System I nformation -
Processors:

Total Menory:

System Page Si ze:

Processor |Information -

Vendor :

Processor famly:
Model (Type):
Revi si on:

Cl ock Speed:

Cache and TLB I nformation -

Cache | evel s:
Caches/ TLBs:

Cache Details -
Level 1:

Type:

Si ze:

Li ne si ze:

Associ ativity:

Type:
Si ze:
Li ne si ze:

Associativity:

2
2007. 16 MB
16. 00 KB

I nt el

| PF

I tani um

6

800. 136 MHz

3
7

Dat a

16 KB

32 bytes
4-way set associative

| nstruction
16 KB
32 bytes

4-way set associative

psinv (cont’d)

PAPI Standard Event Information -

St andard events: 43
Non- deri ved events: 26
Deri ved events: 17

PAPI St andard Event Details -
Non- deri ved:

PAPI BR | NS: Branch instructions
PAPI _BR PRC: Condi tional branch instructions correctly
predi cted
PAPI L1 DCA: Level 1 data cache accesses
PAPI L1 DCM Level 1 data cache m sses
PAPI L1 | CM Level 1 instruction cache m sses
PAPI L2 DCA: Level 2 data cache accesses
PAPI L2 DCR: Level 2 data cache reads
PAPI L2 DCW Level 2 data cache writes
PAPI L2 | CM Level 2 instruction cache m sses
PAPI L2 STM Level 2 store m sses
PAPI L2 TCM Level 2 cache m sses
Deri ved:
PAPI _BR_MSP: Condi tional branch instructions m spredicted
PAPI _BR_NTK: Condi tional branch instructions not taken
PAPI _BR_TKN: Condi tional branch instructions taken
PAPI _FLOPS: Fl oati ng point instructions per second
PAPI _FP_1 NS: Fl cati ng point instructions

PAPI L1 DCH: Level 1 data cache hits

psconfig

Graphical user interface T BGIE

e ITachhes Tuformeatlon
makes it easy to select S o
events _ '
Can read in or write out e

Valld XML documents tO . [F == FT- 147 o I S el T o AU
be used by psrun " o N =1 FH [F "N TR -

PETLI LE L] Fa B L

Provides text description s
of events with mouse A I R TN e
click e h o

F&PI LR =0T M -

Searching capabilities RO L —— =

olaszoc el

leewl 1
[NTIISH
= Nk=

fir A4

CRC Sy IR B

i BT

Example XML Event Document

<?xm version="1.0" encodi ng="UTF-8"

<ps_hwpc_eventlist class="PAPI"
preset”
preset”
preset”
preset”
preset”
preset”
preset”
preset”
preset”
preset”
preset”
preset”
preset”
preset”
preset”

<ps_hwpc_event type="
<ps_hwpc_event type="

<ps_hwpc_event type="
<ps_hwpc_event type="
<ps_hwpc_event type="
<ps_hwpc_event type="
<ps_hwpc_event type="
<ps_hwpc_event type="
<ps_hwpc_event type="
<ps_hwpc_event type="
<ps_hwpc_event type="
<ps_hwpc_event type="
<ps_hwpc_event type="
<ps_hwpc_event type="
<ps_hwpc_event type="

</ ps_hwpc_eventlist>

nane="'
nane="'

nane="
nanme="
nane="
name="
nane="
name="
nane="
nane="
nane="
nane="
nane="
nane="
nane="

2>

' PAPI
' PAPI
PAPI
PAPI
PAPI
PAPI
PAPI
PAPI
PAPI
PAPI
PAPI
PAPI
PAPI
PAPI
PAPI

_BR MBP" />
_BR PRC" />
_BR TKN' />
_FP_INS" />
_TOor_cyc' />
_TOT_INS" />
_L1 DCA" />
L1 DCH' />
_L1 DM />
L1 ICR />
L1 Tam />
_L2_DCA" [>
L2 DM />
_L2 DCR" />
L2 DCW />

You can edit this
file like any text
file, load it into
psconfig, modify it,
save it, etc.

Select for use
through env
variable
PS_HWPC_CONFIG

Searching Events with psconfig

Selecting “Edit”, “Search
Events...” brings up a window
like this that allows you to
search events for keywords

Can restrict the search to only
events available on your
computer

The search is based on the
event’s description, not it’s
standard event name
(PAPI_TOT_CYC)

Search events for: wache

aearch

| Search availahle pvents only

Fyent Availahle

Fuant Nol Availabile

ALT Ll Den) Lewod 1 dsta ocohe acecssos E
eI Ll Dol | Lowol-lodste ccohc hikc

PpI L1 DoH o1 Letasl 'l Aot ozohic ndscos

DI Ll Doh 1 Lgesd 1 ocds b pizehor s Soaide

PRI L1 Ded Lédsed 1odots srebe writos

0TI Ll Ich 0 Lvel | iwsteaeticn avthe, asoisses

PACI L1 IcH 1 Lexssl | imshowstacn cnche hiits

PALT L1 Tod 0 Lol (1l iwsbrwmeticn oxche wiotoz

TACT. Ll Toh) Lewod 1 duwcbooehicn onche Coads

eIl Iow | Lewsolo b dustooebicn ocche rribos

T Ll Ton 0 Lodssl 1 eakal o soeke sacodzod

MTADI-L1 TOoH 1 Lol 1 e tad sacke hite

LI L1 oTeH) Lédsel 1 oeiohe miscos

0TI Ll Ten o Ll . tatal wndle oesds

FACT L1 Ter 1 Lewwol 1 tetocl emoko scites

ALY LY Doa 0 Lol 0P dite ‘ooght anpnccsos —_
TALT. LY DoH 1 Lewol 2 dota ocohe hiks

TnpI L& DoeH ¢ Levaod 2 dot ocohc ricsos

DT LE DoR) Lot FoAs£a arighie 2oxde

TADI -LE Ded | Lgeesd 3 ocds b oiiohor - owrdtioa

LI LE Tom 1 Leédsel 2 dwskEpmagckicn oochd jenassoz

TACI LY IoH 0 Lovel 2 iuskroebicn exche - hats

FACI L2 IcH 1 Letsal 2 Awmchoaetdcn ciche hWigzos

PALT LD Tom) Lewod 0¥ dwmsboaeticon oxche Teads

TADT. L2 To¥ | Lewod 2 dunchrosticn onche wrikos

MAEIT LI Toa | Loewsol 2 boda]l sooko xocassos

MADT LY ToH 1 Dedssl F ekl sosks haks | ,-"r

Clozp I

Browsing Default Event Configurations

Directory: fusrfappsftopls/perfsuitefsharefperfsuitefmlipshwpc _||

& rullzml E] papia_itaniuma sl =] papi_profile [3tem:=ml

E] papi2 aby—tullsmi E] papi3. miflops smi E] profilsmi

] papi2_itaniurm,=mi E] papi3_p2smi

E] papi2 itaniuma =mil E] papiz_pd =mi

E] papi2 mflops =ml] papi3 p& sl

E] papi2_p6 =ml E] PAPI metrics.xml

] papia_ipc_itanium2 xml E] papi_profile_cyoles xmi

E] papi3 itanium zml E] papi_profie_|2tem xml

~J | =

File name: | | Open

Files of type: XML Files (*.xml) — | Cancel

Selecting “File”, “Default Hardware Event Configurations...” brings up the directory
with pre-selected configuration documents

Opening one of them will show you which events will be used
You can base custom configuration files using these as a start

Configuring for Profiling

o Setting up for profiling is similar to counting - all you have to do is
modify the XML configuration document:

o The XML document “root element” is now <ps_hwpc_profile>, not
<ps_hwpc_eventlist>

e You can supply an optional “threshold”, or sampling rate
e Only one eventis allowed in the document
e psconfig does not yet support profiling, need to edit by hand

<?xm version="1.0" encodi ng="UTF-8" ?>
<ps_hwpc_profile class="PAPI">

<ps_hwpc_event type="preset" nane="PAPI BR MSP* threshol d="100000" />
</ ps_hwpc_profil e>

psrun

Hardware performance counting and profiling with unmodified
dynamically-linked executables

Available for x86, x86-64, and ia64

POSIX threads support

Automatic multiplexing

Can be used with MPI

Optionally collects resource usage

Supports all PAPI standard events

Input/Output = XML documents (can request plain text)

A Quick “Cookbook” for psrun

First, be sure to set all paths properly (can do in .cshrc/.profile)

% set PSDI R=/opt/perfsuite
% sour ce $PSDI R/ bi n/ psenv. csh

Use psrun on your programto generate the data,
then use psprocess to produce an HTM. file

% psrun nyprog
% psprocess --htm psrun. 12345. xm > nyprog. htn

Take a |l ook at the results
% nozilla nyprog. ht m
Second run, but this tine profiling instead of counting

% psrun -c $PSDI R/ share/ perfsuite/ xm /pshwpc/profil.xm nmyprog
% psprocess -e nyprog psrun. 67890. xm

PerfSuite Environment Variables

PS_HWPC: “off” or “on”, controls whether measurement takes place at all (for API)

PS_HWPC_CONFIG: set to the name of the XML event file created with psconfig or
“‘by hand”. A default is used if not set

PS_HWPC_FILE: controls the prefix of the XML output document (default “psrun”)
PS_HWPC_ANNOTATION - adds an arbitrary “note” to the XML output
PS_HWPC_DOMAIN: controls whether counting at user or system level (or both)
PS_HWPC_THRESHOLD: sets threshold for profiling

PS_HWPC_FORMAT: “text” or “xml”, controls whether output is in an XML
document or plain text (similar to a psprocess report)

PSRUN_DOFORK: if set (to anything), monitors child processes also

psprocess (HTML mode)

This style of output is
customizable by you.

By default, the information it
contains and its visual
appearance are based on
PerfSuite-provided defaults,
but these can be easily
replaced to suit your needs.
This output is generated by
psprocess using XML
Transformations. The
stylesheet is in the
share/perfsuite/xml/pshwpc
subdirectory, with a “xsl” file
extension

eh ol e 3

":- C?E#!EIFH;*»IT!IH_

B =" [@ mmearan i ‘i'h'l..i'-.'."" - .'\-.!.I.',q-

- .
St P L =
r

|.'!+ i AN Tk

g e B _'.p-l‘-'ll- Jlli"ﬂllrh'.' R R R R REr o

¥ oo _1

PerfSuite Hardware Performance

Report

| Derived Metrics

kevrac aterd 1-st1uchens percpde 1485
orac uated floatng point netruckons peraycs 0,195
antin;!-ﬂ"t paen=s of all g=do=tad o7
“sEucticns
racuatad leads & stores car cyche 0.2 16
Coran A bed lmads Frshooms ~er Hoah=gopoank

~atcticn ' a0 L34
|Dn:a rmeFzrenzes perinsirusdon 002
Rzt ct Hoating point i-stucticns to L1 deache Sa
LRSS
[LLi-stucticn cachs ~igs ratio 0.00%
||.]. dals cache read i rabis 0955
L3 dats zache mizs mtiz 0537
L3 cachs ¢ ats read ratio 085
0T rarha mebnicbaen aice Fatin noee =

psprocess (text mode)

Perf Sui te Hardware Perfornmance Summary Report

Ver si on 1.0

Creat ed . Mon Dec 30 11:31:53 AM Central Standard Tinme 2002
Cener at or . psprocess 0.5

XM. Sour ce . /ul ncsal anyuser/ performance/ psrun-i a64. xnl

Execution I nformation

Dat e : Sun Dec 15 21:01: 20 2002
Host - userO1

Node CPUs .2
Vendor . Intel
Fam |y . | PF
Model : ltanium

CPU Revision : 6

Clock (MHz) : 800.136
Menory (MB) : 2007. 16
Pagesi ze (KB): 16

psprocess (text mode, cont’d)

Cache | nformati on

Level 1

Type
Si ze (KB)

Li nesi ze (B)

AsSsoOC

Type
Si ze (KB)

Li nesi ze (B)

AsSsOC

Level 2

Type
Si ze (KB)

Li nesi ze (B)
: 6

AsSsoOC

© instruction
16

32

: unified
96

64

The reports (text or HTML) generated by
psprocess have several sections,
covering:

» Report creation details

e Run detalils

e Machine information

e Raw counter listings

o Counter explanations and index
e Derived metrics

* Run annotation defined by you

psprocess (text mode, cont’d)

| ndex Descri ption Count er Val ue
1 Conditional branch instructions mspredicted..... 4831072449
4 Floating point instructions...................... 86124489172
5 Total cycles...... 594547754568
6 Instructions conpleted............... 1049339828741

Statistics

Graduated instructions per cycle................... 1. 765
Graduated floating point instructions per cycle.... 0. 145
Level 3 cache miss ratio (data).................... 0. 957
Bandw dth used to | evel 3 cache (MB/S)............. 385. 087
% cycles with no instructionissue................. 10. 410
% cycles stalled on nmenory access. 43. 139
MFLOPS (cycles). e 115. 905

MFLOPS (wallclock)......., 114. 441

PerfSuite Library Access (API)

All of the functionality is also available from within your program
(C/C++/Fortran) through a small API

Same XML documents are read, same XML documents are written,
small additional functionality

Why would you want to use this?

— Primarily to gain finer control over where measurements are taken in your
program. For example, you might defer measurement until program
initialization has completed

For complex uses, you are probably better off using an “industrial-
strength” performance library

The intent of the APl is to “abstract out” the process of performance
measurement to a very high level

libpshwpc Library Routines

C/C++
ps_hwpc init (void)
ps_hwpc _start (void)
ps_hwpc_suspend (voi d)
ps_hwpc _stop (char *prefix)
ps_hwpc _shut down (voi d)

Fortran
call psf_hwpc init (ierr)
call psf_hwpc _start (ierr)
call psf_hwpc _suspend (ierr)
call psf_hwpc _stop (prefix,
lerr)
call psf_hwpc_shutdown (ierr)

The | 1 bpshwpc API contains five
routines that you can call from your
C/C++ or Fortran program.

Call “init” once, call “start” and
“suspend” as many times as you like.
Call “stop” (supplying a file name
prefix of your choice) to get the
performance data XML document.

Optionally, call “shutdown”.

libpshwpc Usage

This depicts the typical flow of calls to routines in the library

Routines in red may only be called once, routines in blue can be called multiple
times.

Newly-created threads can start, suspend, stop, etc. Dashed lines show the typical
flow of pthreads.

fork/exec work if managed properly (call shutdown in the child process)

—_—

- -

-
T R T (zhuldewn
'\+ — .
| inim | | sart | snspend | e
1"-\. __,_.d::'r __,_._-"'l‘ e .,_-;"'-.- l__."'
. Ve #
H'\. < \"\. -
. - -~ .
1 - - -‘H__._
-
plaread _create .'{ op
R
I W

Example Fortran API Use

i nclude 'fperfsuite.h'
call PSF_hwpc init(ierr)
call PSF_hwpc_start(ierr)
doj =1, n
doi =1, m
do k =1, |
c(i,j) =c(i,j) + a(i,k)y*b(k,j)
end do
end do
end do

call PSF_hwpc_stop(' perf', ierr)

cal | PSF_hwpc_shut down(i err)

%ifc -c matnult.f -1/opt/perfsuitel/include

%ifc matnult.o -L /usr/apps/tools/perfsuite/lib/intel
-L/usr/apps/tool s/papi/lib -1 pshwc -Iperfsuite -1 papi

Using Processor “Native” Events

It's easy to work with native events in addition to PAPI standard
events by modifying the configuration file slightly.

Instead of using the XML attributest ype=" pr eset”
nanme=" PAPI EVENTNANE", use the attribute
t ype="“nati ve” and enclose the event name as the content of

the element
Must have PAPI 3 support
Can be used with profiling configurations

<ps_hwpc_event type=“native”>NOPS _RETI RED<ps_hwpc_event >
<ps_hwpc_event type=“native”>BACK END BUBBLE ALL</ps_hwpc_event >

Advanced Use (psrun)

psrun supports a few options that can be useful in working with
shared or distributed memory programs:

-p / --pthreads

uses a POSIX thread-aware variant of the library that captures thread creation
and measures performance of each, depositing the results in an XML document
with the thread ID embedded:

-f /| --fork

monitors child processes that are created. Not enabled by default.

-a / --annotate
inserts an XML “element” with a user-supplied annotation (text)

Advanced Use (psprocess)

psprocess is meant to be a “generic” processor for different XML document types
generated by PerfSuite. For hardware counting, the most common type is
<hwpcr eport >

Individual documents can be combined into a “multi-document” with the option —
c / --conbi ne. With hardware counter data, psprocess summarizes the
information contained in them with descriptive statistics (mean, max, min, sum,
stddev)

-s LI ST is avery useful option to be used with profiling runs. LI ST is a comma-
separated listof nodul es, files, functions, |ines usedtolimit
the amount of output

-t THRESHCLD s also helpful in limiting the output of profiling runs.
THRESHOLDis a number that specifies the minimum % of samples required for a
given entry to be displayed. Example: “-t 2" means “don’t show me anything
that didn’t account for at least 2% of the samples collected”

Application Example: CX3D

Fortran 90 / MPI code (Forschungszentrum Jilich) that simulates
Czochralski crystal growth.

Spatial decomposition across processors can be specified at
runtime.

We'll look at the steps involved in using PerfSuite on 8 processors to
obtain profiling and counting information.

The application measures elapsed time internally with system_clock
(). Forthe 8-proc run, the measured wall clock time for a 4x2
decomposition is 40.88 secs.

We can also measure parallel runs using gprof by using the
environment variable GMON_OUT_PREFIX to override the default
“gmon.out’ filename.

Profile Procedure

* We have two executables: one compiled for gprof-style profiling and
the other compiled as normal with symbols retained (-g).

e Run with mpirun as usual

— gprof runs produce 8 ${GMON_OUT_PREFIX]}.PID files that can be looked at
individually or first combined with “-s” into a “gmon.sum?” file that can be post-
processed as usual

— psrun runs produce 8 XML documents that can be post-processed with
psprocess

* Note: gprof also retains the call graph information (psrun does not)

Profiling Results (gprof summary)

% cunul ative sel f sel f tota
tinme seconds seconds calls ns/call nms/call nane
76.79 246. 25 246. 25 8000 30.78 30.93 velo_
9.01 275. 15 28. 90 8000 3.61 3.64 tenp_
3.74 287. 14 11.99 8000 1.50 1.50 curr_
2.04 293. 68 6. 54
gnpi _net _| ookup
1.81 299. 49 5.81 gm ntoh_u8
1.31 303. 69 4.21
MPI D_RecvConpl et e
0.75 306. 12 2.42 _gm nt oh_u8
0.71 308. 38 2.27 8008 0. 28 0.32 bound_

% time attributed to the highest routine (velo) ranges from 79.21 to
74.42.

$ gprof —s cx.gprof ${GVON QUT PREFI X} . *
$ gprof —s cx.gprof gnon.sum

Profiling Results (psprocess individual)

Profile Information

C ass . PAPI

Event . PAPI _TOT_CYC (Total cycles)
Peri od 30600000

Sanpl es . 4012

Domai n . user

Run Ti ne . 40. 65 (seconds)

Mn Self % : (all)

Modul e Sunmary

Sanpl es Self % Total % WMbodule

3942 98.26% 98.26% /u/ncsalrkufrin/apps/cx3d/cx
69 1.72% 99.98% /opt/gmlib/libgmso.0.0.0
1 0.02% 100.00% /lib/tls/libpthread-0.34.so

Profiling Results (psprocess, cont’d)

File Summary

3182 79.31% 79.31% /ul/ncsalrkufrin/apps/cx3d/velo.f

384 .57% 88.88% /u/ncsalrkufrin/apps/cx3d/tenp.f
164 .09% 92.97% /u/ncsalrkufrin/apps/cx3d/testin.f
143 .56% 96.54% /u/ncsal/rkufrin/apps/cx3d/curr.f

.32% 97.86% ./include/gmsend_queue. h

.57% 98.43% 7?7

.55% 98.98% /u/ncsal/rkufrin/apps/cx3d/ bound. f
.37% 99.35% /ul/ncsalrkufrin/apps/cx3d/ csendxs. f
.35% 99.70% ./libgnigmsend.c

.25% 99.95% /u/ncsal/rkufrin/apps/cx3d/crecvxs.f
.02% 99.98% ./libgngmptr_hash.c

.02% 100.00% ./1ibgnm gm hash.c

Function Sumary

N
N
O O O OO O O Fr W~ oo

Sanpl es Self % Total % Function

3182 79.31% 79.31% velo
384 9.57% 88.88% tenp
164 4.09% 92.97% testin
143 3.56% 96.54% curr
54 1.35% 97.88% gm send_with_call back

Profiling Results (psprocess, cont’d)

Function: Fil e: Li ne Summary

Sanpl es Self % Total % Function:File:Line

687 17.12% 17.12% vel o:/u/ ncsal/rkufrin/apps/cx3d/velo.f:232
535 13.33% 30.46% velo:/u/ncsal/rkufrin/apps/cx3d/velo.f:260
509 12.69% 43.15% vel o:/u/ncsal/rkufrin/apps/cx3d/velo.f:210
378 9.42% 52.57% velo:/u/ncsal/rkufrin/apps/cx3d/velo.f: 356
189 4. 71% 57.28% velo:/ul/ncsalrkufrin/apps/cx3d/velo.f:493

$ npirun —np 8 psrun —c profile cycles.xm ./cx
$ psprocess —e cx psrun. Pl D. xm

profile_cycles.xml:

<ps_hwpc_profil e class="PAPI">

<ps_hwpc_event type="preset" nane="PAPI _TOI CYC'
t hr eshol d="30600000"/ >

</ ps_hwpc _profile>

Summary Information (psprocess)

.04

1.29

151.
148.
3924.
3854.
.00
.00

o P P

.00

29

.97
29.

57
18
37
68
91

.01
.00

.04

1.29

150.
147.
3922.
3848.
.00
.00

o P P

.00

29

.97
29.

28
40
57
56
68

.01
.00

o O

28.
30.
.00
.00

o

Wwkrooo

.00
.01

.00

01
00
22
63
64
18
42

.00
.00

1203.
1180.
31380.
30789.
.00
.00

.31
.28

.97
.33
.74
234.

26
21
56
47
40

.05
.00

Aggregate Statistics M n Max
% CPU utilization..................... 97. 88 98. 41
% cycles stalled on any resource...... 0.00 0.00
CPU tinme (seconds).................... 39. 95 40. 15
Fl oati ng poi nt operations per cycle... 0. 05 0. 05
Fl oating point operations per graduated instruction

0. 04 0. 04
Graduated instructions per cycle...... 1.27 1.30
Graduated instructions per issued instruction

0.99 1.00
I ssued instructions per cycle......... 1.28 1.31
Level 2 cache hit rate (data)......... 0. 96 0. 97
Level 2 cache line reuse (data)....... 27. 49 30. 82
MFLOPS (cycles). 145. 53 154.10
MFLOPS (wall clock)................ ... 142. 45 151.50
MPS (cycles)...... 3881.34 3952.56
MPS (wall clock)..................... 3799.24 3877.19
MVOPS (cycles). 0. 00 0. 00
MOPS (wall clock).................... 0. 00 0. 00
M spredi cted branches per correctly predicted branch

0.00 0.01
Vector instructions per cycle......... 0.00 0.00
Vector instructions per graduated instruction
0.00 0.00 0.00 0.00 0.00 0.00
Wall clock tine (seconds)............. 40. 60 40. 88

40.

79

40.

78

0.

10

$ psprocess —c psrun.*.xnl > conbi ned. xm

$ psprocess conbi ned. xni

326.

25

Case Study: Automatic Performance Collection on
NCSA Linux Clusters

o NCSA transition (c. 2000) from shared-memory “traditional”
supercomputers to cluster technology is a major shift:

— Does it translate in practice to high-performance cycles
delivered?

— What is the percentage of users making efficient use of the
resource?

— How can knowledge improve services (i.e., feedback loop)?

Project Requirements

* |nitial project definition (Jan 2003):

Measure the aggregate performance of all user applications on Linux clusters, (new) IBM
p690, and (retiring) Origin 2000 systems

Unmaodified binaries — no impact on or effort required of users

Operational within existing job management system — no “special queues” or contacts.
Avoid self-selecting users.

In-place and operational by March '03 in order to gather sufficient data for NSF reporting
by late summer.

e |mplementation

Focus narrowed to Linux clusters and PerfSuite used to gather the performance data
24X7

Implemented as a wrapper to the standard MPI launch commands
* Could be extended to serial applications relatively easily

Integrated with system support efforts (file management) and a relational database back-
end

By Supercomputing ‘03, nearly 5 million records of performance data gathered

Job Scale (time, processors)
Pentium Il FYO03

1,400,000
1,200,000
1,000,000

800,000
Dellvered 600,000

400,000
200,000

1,600,000 \
\ ““
\ ““‘
\ |

v ooc 7.9 Processor
Time

% Peak FP Performance

Pentium ll|

ltanium

17%

O<1%
m1-2%
02-5%
05-10%
m10-15%
= 15-20%
B>20%

0% — 2%

O<1%
H1-2%
02-5%
05-10%
m10-15%
315-20%
W 20-25%
025-30%
H>30%

10% of peak or greater: 12% on Pentium lll, 7% on ltanium

Note: vector/SIMD instructions not counted as FP_INS / FP_OPS by

PAPI

Are Performance Counters Enough?

o Performance counters provide valuable information required for an
analysis like this, but:
— They only provide a CPU-centric view
— They are not directly comparable across architectures

— There is no single metric suitable for determining whether an arbitrary
application is making “good use” of a machine

o Extensions are being planned to address “off-chip” performance
factors

Wouldn't it be nice if the computer told you how it was
doing?

PerfSuite Current Status

Available for download since December 2003
Currently in a beta cycle with minor enhancements and/or bug fixes

Expect next beta release (version 0.6.1 beta 5) in June 2004, with
the following additions:

— Support for AMD x86 and x86-64 processors

— Improved process-handling support

— New text-only basic mode for psrun (eliminates the need to use psprocess for

quick performance runs)

Likely last changes to be made before focusing on substantial new
version for the end of 2004

For More Information & Support

Three mailing lists available through SourceForge:
— perfsuite-announce, perfsuite-bugs, and perfsuite-users.

All are low-volume and no-spam (so far!)

Must be subscribed to post a note, but they are enabled for
archiving. Pointers to subscribing available at http:/perfsuite.
sourceforge.net/

The Perfctr, Perfmon, and PAPI lists are all good resources for the
underlying software that PerfSuite uses for counter access — you can
find links to them at http://perfsuite.ncsa.uiuc.edu/perftools/

DynaProf

A Tutorial on Dynamic Performance Analysis

Philip J. Mucci
mucci@cs.utk.edu
Innovative Computing Laboratory
University of Tenessee, Knoxville

The 5th LCI International Conference on Linux Clusters
The HPC Revolution 2004

May 17th, 2004

Outline

* DynaProf Introduction
— Goal and Overview
— Architecture

o Obtaining and Installing DynaProf
 Using DynaProf

— Instrument running executable
— Collect and browse performance data

* DynaProf Current Status

What is DynaProf?

o A portable tool to dynamically and selectively instrument serial and
parallel programs for the purpose of performance analysis and
application understand.

* DynaProf is a portable tool to gather hardware performance data
at run time for an unmodified application.

* Instrumentation is done through the dynamic insertion of
function calls to specially developed performance probes.

* DynaProf provides a simple and intuitive command line interface.

Why the “Dyna” in DynaProf?

 Dynamic Instrumentation means the application' $bject code is
modified at run-time.

 The instrumentation is contained in simple shared libraries DynaProf
calls probes.

* Object code to those functions is generated and then inserted into the
program’s address space.

o DPCL and DynlInst do all the dirty work.

DPCL vs. Dyninst

« DPCL

— Based on an early version of DynlInst.

— Supports Asynch./Sync. Operation.

— Provides functions for getting data back to tool.

— Integrated with IBM's Parallel Operating Environment.
— It's Stale! And it requires a working rsh/ssh. (AIX only)

e Dyninst

— Shared libraries, Loops, Basic blocks, Arbitrary locations
— Provides breakpoints, CFG
— Single process model.

— Actively supported on many platforms.

DynaProf Goals

» Make collection of run-time performance data easy!
o Avoiding the instrumentation/recompilation cycle.

o Avoiding interference with compiler optimization.

o Using the same tool with different probes.

e Providing useful and meaningful probe data.

* Providing different kinds of probes.

o Allow easy development of custom probes.
 Providing complete language independence.

DynaProf Probes

papiprobe

— Measure any combination of PAPI presets and native events.
papiclockprobe

— Measure accurate wallclock and virtual time using PAPI timers.
wallclockprobe

— Highly accurate elapsed wallclock time in microseconds.
perfometerprobe

— Visualize hardware counter traces in pseudo real-time.

tauprobe

— Support all TAU measurement methodologies including timing, memory tracking,
hardware counters and call stack tracing.

vmonprobe
— Statistical profiling of hardware counter events ala gprof.

DynaProf Probe Design

 Probes export a few functions with loosely standardized interfaces.

e Easy to roll your own.
— If you can code a timer, you can write a probe.

 DynaProf detects thread model and will load a special version of the
probe.

 The probes dictate how the data is recorded and visualized.

Papiprobe, Papiclockprobe & Wallclockprobe

* These are well tested probes.
e papiprobe
— Counts hardware counters using PAPI, either PAPI presets or Native events.

— Supports counter multiplexing:
* Not good for fine grained instrumentation.

e papiclockprobe
— Counts cycles using PAPI wallclock and virtual timers.

o wallclockprobe
— Counts microseconds using real time cycle counter available on each platform.

DynaProf Status

o Currently supported platforms with Dyninst 4.1:
— Linux 2.4, 2.6
o |A/64
o X86
o X86_64 on 32-bit executables.
— Solaris 2.8+
— IRIX 6.x

DynaProf Installation

* Download appropriate DynaProf binary distribution from web site
and follow the instructions.

o http://www.cs.utk.edu/~mucci/dynaprof

e Requirements:
— PAPI 2.x/3.x
— GNU Readline
— On Linux 2.x:
 Dynlnst 3.0, 4.0 or later

¢ May require a new binutils, libdwarf and libelf. Available from
http://www.paradyn.org.

— On AIX 4.3/5:
o DPCL (See /ust/lpp/ppe.dpcl)
o PMAPI (See /usr/pmapi/*, /ust/lib/libopmapi.a)

Performance Probes

* Three probes provide the ability to instrument specific regions of
code.

— Papiprobe
— Papiclock

— Wallclock

* These probes generate the following data for each instrumented
function:

- Inclusive: T =T +T_ .
- Exclusive: T, =T__

— 1-Level Call Tree: T .. = Inclusive T

Id function

Performance Probe Data

* The papiprobe, papiclock and wallclock probes produce data in
an identical format.

* These three probes always measure the entire executable
“TOTAL” in addition to any additional instrumentation points
the user has specified.

o All use a Perl script to display the data in a human readable
format. Usage:

— papiproberpt <file>
— papiclockrpt <file>
— wallclockrpt <file>

Papiprobe

By default, it measures PAPI_FP_INS or PAPI_TOT_INS if the
former is not available.

» Takes a comma separated list of options or PAPI events, either
preset or native.

 Passing 'help' as option prints out list of available PAPI
presets.

e Passing 'mpx' or “multiplex” as an option enables the use of
counter multiplexing if needed.

Making Sense of Papiprobe Data

» Sometimes the data might not make sense so we must to
understand the EXACT semantics of the events.

* There is a command that will list all the available PAPI events
and their native mappings.
— Type “papi_avail -a<cr>” for PAPI preset mappings.
— Type “papi_native_avail -a<cr>" for PAPI native mappings.

* Note the information at the end of each line between the
parenthesis. This can be cross-referenced with that in

Architecture Manual and the kernel header files. Doesn't that
sound fun?

DynaProf Exercises 1 & 2

» We will use DynaProf to evaluate different versions of SWIM,
the shallow water benchmark code.
— Discover delivered MFLOP/S and IPC of an entire serial run.

— Evaluate memory subsystem efficiency of the core compute solvers of a serial
run. (Cache miss counts.)

Exercise Preparation

 Setup the DynaProf tutorial module.
o <PREFIX> will be announced at tutorial time.
— For csh: Type “source <PREFIX>/dynaprof-setup.csh<cr>”
— For sh: Type “. <PREFIX>/dynaprof-setup.sh<cr>"
— This will set current environment variables and edit your .cshrc
or .profile login script.

 Build the swim executable.
— Type “cd ~/dynaprof/swim; make<cr>"

Exercise 1: Global MFLOP/S & IPC

* Type “dynaprof<cr>”
* Type “load swim<cr>”

* Type “use papiprobe PAPI_TOT_CYC, PAPI_FP_INS,
PAPI_TOT_INS<cr>”

* Type “run<cr>”

e Type “quit<cr>”
— Note name of the output file at beginning of run.
e Type “papiproberpt <output_file> | more<cr>”

Exercise 1 cont.

o Compute MFLOP/S & IPC:
— CPU Seconds = PAPI_TOT_CYC/(Mhz*1.0e6)
— TMFLOP = PAPI_FP_INS/(1.0e6)
— MFLOP/S = TMFLOP/Seconds
— IPC = PAPI_TOT_INS/PAPI_TOT_CYC

Yee bench

Benchmark developed at PDC and PSCI.
Kernel of FDTD method for Maxwell equations in C.E.M.
5 versions of the same serial code:

Fortran 90: Yee_bench_i386-linux_f90

Fortran 77: Yee_bench_i386-linux_{77

C: Yee_bench_i386-linux_c

C++: Yee_bench_i386-linux_cxx

C with non-contiguous arrays: Yee_bench_i386-linux_c_noncont

Cd Yee_bench

Type “make”.

Other Things to Try

o Listing the available PAPI events.
— Type “use papiprobe help” to DynaProf to list all PAPI events.

» Use multiplexing with lots of PAPI events.
— Type “use papiprobe mpx, <event>, ...”
— Use only with large granularity measurements!

o Attaching to a process instead of loading:
— Type “attach <exe> <pid>" after externally starting an application.

List command

The list command allows you to browse the executable's object code.
list - List modules in process.

list module[s] [module] - List modules.

list function[s] <module> [function] - List functions.

list child[ren] <module> <function> - List call points in function.

Instr command

The instr command controls the instrumentation.

Instr - List instrumented locations.

instr module[s] <module> - Instrument modules.

instr function[s] <module> <function> - Instrument functions in module.

The Fortran DEFAULT MODULE

* Normally the DEFAULT_MODULE contains the Fortran runtime
libraries.

e When -g is not specified on the command line, PGl and GNU
compilers put all user functions in this module.

Exercise 2: Cache Misses

* Measure solver routines to cache miss counts.
— Type “dynaprof<cr>”
— Type “load swim<cr>”
— Type “ist<cr>”
— Type “list module swim.F<cr>”
— Type “ist functions swim.F calc*<cr>”
— Type “list children swim.F inital<cr>"
— Type “list children swim.F shalow<cr>"

DynaProf Command Line Editing

* Provides robust command line editing

— Arrow Keys and Emacs Bindings:
* Delete char under cursor

C-a Beginning of Line

C-e End of line

C-<spc> Set mark

C-w Cut to mark

e C-y Yank cut text

— <TAB> triggers filename completion

Exercise 2 cont.

— Type “use papiprobe PAPI_FP_INS, PAPI_TOT_INS, PAPI_L2_DCM<cr>"
— Type “instr function swim.F calc*<cr>”

— Type “run<cr>”

— Type “quit<cr>

— Note name of the output file at beginning of run.

— Type “papiproberpt <output_file> | more<cr>”

* Try repeating with PAPI_L1_DCM

DynaProf and Threads

 For threaded code, just specify the the same probe!

* DynaProf detects a threaded executable and loads a special
version of the probe library.

* The probe detects thread creation and termination.
o All threads share the instrumentation.
 Qutput goes to <exe>.<probe>.<pid>.<tid>

DynaProf and MPI

* With Dyninst, DynaProf must be run in batch mode as part of
the line to mpirun.

* DynaProf provides a special load that waits until MPI_Init
finishes before continuing.
— mpiload <exe> <args>

* On AIX with DPCL, DynaProf talks directly to the parallel run-
time system. (POE)
— poeattach <exe> <pid_of_poe>
— poeload <exe> <poe args>

DynaProf Batch Mode

* DynaProf can run from a script via command line arguments:

— -¢ <FILE> Specifies the name of a script
- -b Exits after processing the script
- -q Suppress printing any output

* You can see all DynaProf's arguments by using the -h flag.
o All arguments have long versions.

*Exercise 3: Instrument an MPI Application

o Edit the DynaProf script.
— Type “vi swim_mpi.ex3.dp<cr>
o Edit the Load Leveler script.

— Type “vi swim_mpi.ex3.ll<cr>”
— Type “llsubmit swim_mpi.ex3.ll<cr>”

 Look in “swim_mpi.ex3.out” for name of probe output files
* Type “papiproberpt <output_file> | more<cr>”

DynaProf and MPI cont.

e To make it easy, DynaProf comes with a utility called dynaprof_mpi
that generates scripts for use with mpirun.

[mucci @orcO |1 cbench]$ dynaprof _npi -h
dynaprof npi [-1nmh] executable-file [-- executabl e-args]

- Generate script for LAM Ml inpl enentation.
-m Cenerate script for MPICH MPI i nplenentation. (default)
-h Print this nessage.

This is the script generation tool for using DynaProf with MPI
progr ans.

Thi s program produces two files:

<executable-file> sh to be used with npirun.
<executable-file> dp to be used as a skel eton DynaProf script.

dynaprof_mpi Example

[mucci @orcO | I cbench]$ dynaprof_npi ./npi_bench -- -b
Usi ng MPI CH MPI confi guration.

Created /hone/ mucci/LCI 04/11 cbench/ npi _bench. sh
Created /home/ nmucci/LCl 04/ 11 cbench/ npi _bench. dp

Now edit the /hone/nucci/LCl 04/11cbench/ npi _bench.dp file
and insert your dynaprof comrands.

Then run:
npi run <npirun args> /hone/ mucci/LClI 04/ 11 cbench/ npi _bench. sh

- - or - -
npi run <npirun args> dynaprof -q -b -c /hone/ nmucci/LC 04/11 cbench/ npi _bench. dp

PGl Fortran 90 Name Mangling

* PGI Fortran 90 name mangling consist of 3 parts:
— Name of source file + _
- “mod” + _
— Lowercase function name

o Example: update.f90, subroutine updateH_homo
 update_mod_updateh_homo

References

* DynaProf and PAPI
— http://www.cs.utk.edu/~mucci/dynaprof
— http://icl.cs.utk.edu/projects/papi

* Dyninst

— http://www.dyninst.org
— http://www.paradyn.org

* DPCL

— http://oss.software.ibm.com/dpcl

References

* Yee bhench
— http://www.pdc.kth.se

— http://www.psci.kth.se

— Technical Report: Yee_bench — A PDC benchmark code, Report No: TRITA-
PDC-2002:1, ISRN KTH/PDC/R—0 2/1—S E, November 2002, Ulf Andersson

References 2

* GNU Binutils
— http://ftp.gnu.org/gnu/binutils
— http://sources.redhat.com/binutils

* GNU Readline

— http://cnswww.cns.cwru.edu/~chet/readline/rltop.html
— http:/ftp.gnu.org/gnu/readline

References 3

o Libdwarf - DWARF Debugging Library

— http://reality.sgi.com/davea
o Libelf — ELF Object File Access Library

— http://www.stud.uni-hannover.de/~michael/software/english.htmi

Acknowledgments

* This work was supported by:
— DOE SciDAC via PERC

Thank You.

KOJAK / CUBE

Tutorial

Felix Wolf
University of Tennessee, ICL

Linux Clusters: The HPC Revolution 2004
Austin, TX
May 17, 2004

KOJAK / CUBE

Collaborative research project between
— Forschungszentrum Julich
— University of Tennessee
Automatic performance analysis
— MPI and/or OpenMP applications
— Parallel communication analysis
— CPU and memory analysis

WWW

— http://www.fz-juelich.de/zam/kojak/
— htttp://icl.cs.utk.edu/kojak/

Contact
— kojak@cs.utk.edu

Introduction
Overall architecture

Functionality

— Instrumentation
— Analysis

— Presentation
Installation

Usage

Outline

Complexity in Parallel Systems

o Parallel applications rarely achieve available performance
o Performance behavior hard to understand
o Complex interactions between different system layers

o

Application

Parallel programming interface

Operating system

Hardware

Low-level View of Performance Behavior

-

Lot v =
P N LT P B e

Wl ~smam mirl m..

=0 Cooe
= ETER ETETT 19

[|_|.' PR

= ||ii
S II o

I-—

LS TLA JLY IRTR J¥]

IRRLLIRLEI R T T ER e JRRL IR TR RN TR LI

ARRFARFIARF AR FHA RN RRFIAREFIARFFARRHHEREA0EIAN

g
[N] Y

- . I

AELJIELIJN

mra 1am
ITJELIJELLIN

LIdELIJRLIJENLIN N WddBLIJRLIJRLLY

AELJIELIJN

Automatic Performance Analysis

Transformation of low-level performance data

Oy
Low-level High-level
data data

~

Take event traces of MP1/OpenMP applications
Search for execution patterns

Calculate mapping
— Problem, call path, system resource 1 time

Display in performance browser

Problem

" ﬂ System

Program

aaaaa

Proccz: Jour-

Me=reme 1 = -

Process 2 ure:

Pracez=s = our~

Proco=: 4 cur-

I'""ocese oour -

Fronp-z2 S5 2

Pracese Fours

214,85

Example

VakiPIR - TenAline

Lelc

Overall Architecture

Automatic instrumentation
— Profiling interface PGI compiler / TAU

Abstract representation of event trace
— Simplified specification of performance problem
— Simplified extension of predefined problems

Automatic analysis
— Classification and quantification of performance behavior
— Automatic comparison of multiple experiments
* Not yet released
Presentation
— Navigating / browsing through performance space
— Can be combined with time-line display

Abstraction

Instrumentation

..........................

Overall Architecture

Semiautomatic

Source | opaRl/ | Instrumented _
code 1 TAU ™ source code Instrumentation
o
T [POMP+PMPI |
i Libraries
Executable |« Compiler /
Linker
Z \ EPILOG
Library
[PAPI]
= Librar
Run y
DPCL
EXPERT | Anaiysis ‘
Analyzer | report » CUBE |
EPILOG X
Trace file ” EARL
Z Automatic Analysis
| Trace | VIF3 ‘
| converter ”| Trace file » VAMPIR
Y - 4

Manual Analysis

Release Version 2.0b

o Platforms

— Instrumentation, measurement, analysis, and display
o Linux IA-32 clusters with GNU, PGl, or Intel compilers
* |BM Power3/Power4 based clusters
o SGIMips (02K, O3K) and I1A-64 based (Altix) clusters
o SUN Sparc based clusters

— Instrumentation and measurement only
o Hitachi SR-8000
e Cray T3E
o NECSX

e Requirements

— CUBE 1.0.2 (separate download)
* Requires wxWidgets, libxmi2

— PAPI Performance Application Programming Interface

Tracing

Recoding of individual time-stamped program events as opposed to
aggregated information

— Entering and leaving a function

— Sending and receiving a message
Typical event records include

— Timestamp

— Process or thread identifier

— Event type

— Type-specific information

Event trace

— Sequence of events in chronological order

Process A:

void master {
trace(ENTER, 1);

trace(SEND, B);
send(B, tag, buf);

trace(EXIT, 1);
}

Process B:

void slave {
trace(ENTER, 2);

recv(A, tag, buf);
trace(RECV, A);

trace(EXIT, 2);

}

~N

Tracing (2)

l

MONITOR

1 | master

2 | slave

3 |
58 | A | ENTER 1
60 | B | ENTER 2
62| A | SEND B
64 | A | EXIT 1
68 | B | RECV A
69| B | EXIT

EPILOG Trace File Format

Event Processing, Investigation, and LOGging
MPI and OpenMP support (i.e., thread-safe)

— Region enter and exit

— Collective region enter and exit (MPl & OpenMP)
— Message send and receive

— Parallel region fork and join

— Lock acquire and release e
Stores source code + HW counter information

Input of the EXPERT analyzer
Visualization using VAMPIR =
~ EPILOG VTF3 converter H—

..........................

EPILOG Trace File Format (2)

Machine

Interconnection Network

node memor

VM

Processes Threads

e Hierarchical location ID
— (machine, node, process, thread)

o Specification
— http://www.fz-juelich.de/zam/docs/autoren2004/wolf

Clock Synchronization

Time ordering of parallel events require global time

Accuracy requirements
— Correct order of message events (latency!)

Linux clusters usually provide only distributed local clocks

Local clocks may differ in drift and offset
— Drift; clocks may run differently fast
— Offset: clocks may start at different times
Clock synchronization
— Hardware:cannot be changed by tool builder
— Software: online / offline

Online: (X)NTP accuracy usually too low

Offline Clock Synchronization

e Model

— Different offset
— Different but constant drift (approximation!)

— One master clock

clock time

-
Ll

e Algorithm
uTC
— Measure offset slave — master (2x)
— Request time from master (Nx) slave master

* Take shortest propagation time
* Assume symmetric propagation
— Get two pairs of (slave time offett)

time

S

— Master time

m(s)=s+

Instrumentation

Generating event traces requires extra code to be inserted into the
application

Supported programming languages
— C, C++, Fortran

Automatic instrumentation of MPI
— PMPI wrapper library

Automatic instrumentation of OpenMP
— POMP wrapper library

Automatic instrumentation of user code / functions
— Using PGI compiler and kinst tool
— Using TAU

Manual instrumentation of user code / functions
— Using POMP directives and kinst-pomp tool

PGl Compiler and kinst Tool

o Putkinstin front of every compile and link line in your makefile

conpi l er

CC = ki nst pgcc

FO0 = ki nst pgf90

conpil er MPI

MPI CC = kinst npicc
s LMPIF90 = kinst npif90

[} Vlyllllllv WIVW IV LAIWVIT VWUIT v VI

— Instrumentation of OpenMP constructs
— Instrumentation of user functions

o Iftrace file becomes too big, exclude certain files from
instrumentation

— Compile those files without kinst

Other Platforms

o Compiler-supported automatic instrumentation of user functions also
available on the following platforms
— HITACHI SR-8000
— SUN Solaris (Fortran90 only)
- NECSX6

o Autmatic instrumentation with DPCL
— IBM AIX

TAU Source Code Instrumentor

Based on PDTOOLKIT

Part of the TAU
performance framework

Supports
- {77,190, C, and C++
_ Openl\/lP, MPI Tuning and Analysis Litlitles
— HW performance counters
— Selective instrumentation
http://www.cs.uoregon.edu/research/paracomp/tau/

Configure with -epilog=<dir> to specify location of EPILOG library

POMP Directives

 Instrumentation of user-specified arbitrary (non-function) code
regions

* ClC++ #pragnma ponp i nst begi n(nane)
[#pragma ponp inst altend(nane)]

#pragma ponp i nst end(nane)

e Fortran | SPOVP | NST BEG N(nane)
[! $POVP | NST ALTEND(nane)]

| SPOVP | NST END(nane)

POMP Directives (2)

* Insert once as the first executable line of the main program

#pragma ponp I nst begi n(nane)

| $SPOVP | NST BEG N(nane)

conpi l er

CC = ki nst-ponp pgcc
FO0 = ki nst-ponp pgf 90
conpil er MPI

MPI CC = kinst-ponp npicc
MPI FO0 = ki nst-ponp npif90

KOJAK Event Model

e Type hierarchy EVENT

FLOW TEAM SYNC

l ENTER |l EXIT | l SEND |l RECV | l FORK |i JOIN | l ALOCK |l RLOCK |
l MPICEXIT |l OMPCEXIT |

o Eventtype
— Set of attributes (time, location, position, ..))

e Eventtrace
— Sequence of events in chronological order

Automatic Analysis with EXPERT

Offline trace-analyzer
— EPILOG input format

Searches for execution patterns that indicate inefficient behavior
— Performance properties of an application

Transforms traces into compact representation of performance
behavior

— Mapping of call paths, process or threads into metric space
Implemented in C++

— Earlier version in Pyhton
Uses EARL library to access event trace

%ERT

Abstraction with EARL

EARL library provides random access to individual events
Computes links between corresponding events
— E.g., From RECV to SEND event

Identifies groups of events that represent an aspect of the program’s
execution state
- E.g., all SEND events of messages in transit at a given moment

Implemented in C++
Language bindings
— C++

— Python

Pattern Specification

o Pattern
— Compound event
— Set of primitive events (= constitutents)
— Relationships between constituents
— Constraints

o Patterns specified as a C++ class

— Provides callback method to be called upon occurrence of a specific event type
in event stream (root event)

— Uses links or state information to find remaining constituents

— Calculates (call path, location) matrix containing the time spent on a specific
behavior in a particular (call path, location) pair

— Location can be a process or a thread

Pattern Specification (2)

Two types of patterns

Profiling patterns
— Simple profiling information
* How much time was spent in MPI calls?

— Described by pairs of events
o ENTER and EXIT of certain routine (e.g., MPI)

Patterns describing complex inefficiency situations

— Usually described by more than two events

— E.g., late sender or synchronization before all-to-all operations
All patterns are arranged in an inclusion hierarchy

— Inclusion of execution-time interval sets exhibiting the performance behavior
— E.g., execution time includes communication time

Pattern Hierarchy

2l
]
- [=taatra Zelv o]
| 1mnre Msans |
|'.'F| |
L — .
Tur sy, el |
P N 1 P |

-y Heder

s Hwansay
malzlk ok

it e Mo, |

Wz RS

j SRS T R Rl BRSSP

RO P

S EE ST PN Il TH MG | PO

I |

I |

wekcrRams e

E “lazn |

-ar |

Ioncraneian |

—— Zxdui.

ok skEr s
I 2k
1 2=l ol R i

ae g, g
al'l
i et |

U | o el

Pattern Search

* Register each pattern for specific event type
— Type of root event

» Read the trace file one from the beginning to the end

— Depending on the type of the current event
* Invoke callback method of pattern classes registered for it

— Callback method
* Accesses additional events to identify remaining constituents
 To do this it may follow links or obtain state information

o Pattern from an implementation viewpoint
— Set of events hold together by links and state-set boundaries

location

»

Late Sender

\4

MPI_SEND

MPI_RECV

OLUEE

b

ENTER
EXIT
SEND
RECV

Message
Link

time

location

»

Late Sender / Wrong-Order

\4

MPI_SEND

MPI_RECV

OLUEE

ENTER
EXIT
SEND
RECV

Message
Link

time

Successive Refinement

Exploit specialization relationships among different patterns
Pass on compound-event instances from more general pattern
(class) to more specific pattern (class)

— Along a path in the pattern hierarchy

Previous strategy
— Patterns could register only for primitive events (e.g., RECV)

New strategy in KOJAK 2.0

— Patterns can publish compound events
— Patterns can register for primitive events and compound events

Potential Pathway of a Pattern Instance

2l
]
- [=taatra Zelv o]
| 1mnre Msans |
|'.'F| |
L — .
Tur sy, el |
P N 1 P |

-y Heder

s Hwansay
malzlk ok

S e Mo,
AE T

o HELn AN

j SRS T R Rl BRSSP

uom Sy

EE ST PN Il TH MG | PO

I |

I |

wekcrRams e

E “lazn |

-ar |

Ioncraneian |

—— Zxdui.

ok skEr s
I 2k
1 2=l ol R i

ae g, g
al'l
i et |

U | o el

Hardware Counters

Small set of CPU registers that count events
— Events: signal related to a processor’s function
Original purpose
— Verification and evaluation of CPU design
Can help answer question
— How efficiently is my application mapped onto the underlying architecture?
KOJAK and hardware counters

— Can be recorded as part of ENTER/EXIT event records

— KOJAK identifies tuples (call path, thread) whose event rate is below/above
average

— GUI computes aggregated time of those tuples

Representation of Performance Behavior

o Three-dimensional matrix Performance
— Performance property (problem) R
— Call-tree node
— Process or thread
 Uniform mapping onto time .
— Each cell contains fraction of Location

Call tree

(severity)
— E.g. waiting time, overhead

* Each dimension is organized in a hierarchy

xecution ain Machine
SMP Node
A /\ L\ o

Specific Behavior Subroutine Thread

Process 1

Process 0

location

Thread 1.1
Thread 1.1

Thread 1.1
Thread 1.0

Thread 0.3

Thread 0.2
Thread 0.1
Thread 0.0

KOJAK Time Model

Performance Properties

[0 CPU Reservation
] Execution
O |dle Threads

time

Profiling Patterns (Samples)

o Execution time

Total
Execution

Execution time including idle threads

Execution time

e CPU and memory performance

e MPIand OpenMP

MPI # MPI API calls
OpenMP # OpenMP AP calls
|dle Threads

Time lost on unused CPUs during OpenMP

anntinntial Fa\VZ.VaY! AN
UVWUV' TUGAT A“AAY L1A"4A N |

Complex Patterns (Samples)

MPI
Late Sendgr # Blocked receiver
Late Receiver # Blocked sender

Messages in Wrong Order # Waiting for new messages although older

messages ready to be received

Waiting for last participantin N-to-N
operation

Waiting for sender in broadcast operation

Waitat N x N

Late Broadcast

OpenMP

Wait at Barrier # Waiting time in explicit or implicit barriers

Waiting for lock owned by another thread
Lock Synchronization

CUBE Uniform Behavioral Encoding

Abstract data model of performance behavior
Portable data format (XML)

Documented C++ API to write CUBE files
Generic presentation component
Performance-data algebra

CUBE GUI

: ﬁE
ihih

CUBE A __ f
| (XML) 1 el || s =
| » e e

CUBE Data Model

Most performance data are mappings of aggregated metric values

onto program and system resources
— Performance metrics
* Execution time, floating-point operations, cache misses
— Program resources (static and dynamic)
* Functions, call paths
— System resources Program
* Cluster nodes, processes, threads
Hierarchical organization of each dimension
— Inclusion of metrics, e.g., cache misses [1 memory accesses
— Source code hierarchy, call tree
— Nodes hosting processes, processes spawning threads

Metric

System

CUBE API

Writing CUBE data files

 Defining metric hierarchies
— Times, events, sizes

 Defining the call tree
— Flat profiles considered special case of tree profiles

o Defining system hierarchies consisting of
— Machines, nodes, processes, and threads

* Entering metric values
— Provide value for each tuple (metric, call path, thread)

CUBE GUI

Design emphasizes simplicity by combining a small number of
orthogonal features

Three coupled tree browsers
Each node labeled with metric value

Limited set of actions = 10 main
Selecting a metric / call path 30 foo
— Break down of aggregated values 60 bar

Expanding / collapsing nodes

— Collapsed node represents entire subtree
— Expanded node represents only itself without children

Scalable because level of detail can be adjusted

CUBE GUI (2)

CX3D application Forschungszentrum Jlich, IFF

=m CIRF: I'!!-l_ﬂ!lll!l b

File ‘ziew; Hulp

Fueifurm =iiew Felalri_ s | Co | Tray | Luwal vy
I O 0.2 Tetal O 0.2 <ong: = 0 O 00 oo Chuser
= [2u4a _=ecutcr 5 [L R W, T = [Ul iam__4He’
= M .53 L Bl -7.2 2ruszzx 0
= O a7 Sarmna Where in the source code? O an ~mrazz |
= 5 Tellsc Which call path? W 29 Process 2
n O & 2P B 46 Frocess s
= I I e O B YT RN = 0l ram Hed
=11 W 25 “rocazs <
OopN O 9 2rocass s
= Ou 12 TTCMIZEN0N B =Y Croczesi b
O 5 .2 Fruszzss 7
. [naA-lnck
Which type of | 102421 &l =zuce
problem? M O 0: Lmp

L1 rs_ai=eued Which process / thread ?
=] 10D e

[J 1 d=21_F rallzr

| | | | |||IIIIW
F 10 £0 50 41 50l /N 62 i =0 3] 00

, How severe is .
the problem?

View Options

-+ CUDL: cx_8x1.cube |=|o x|
Fle View | Help
Perfon « Call ree Tall Tree Locacichs
= Heglon frofi e 1 L.L koast == T U0 Linus Claster
- Absolute 1+ [Z05 hound -1 [0.0 zamangel
Pereer lzy- (] C.Ccurr [0 7.3 Frozes: 3
+ Helaive perzentage atlon = [C.C velo [0 36 Prccass |
[+ [7.1 Caleziwa [+]] 0.0 csend=s B Z3Frccass &
- C TEPEF =]] 0.0 crezvss B ¢ 6 Prccass 3
[0.1 Lde Beikive: 731 MFI_ReLy =1 [0.0 :am00des
+ O] 0.0 diluck B 55 Priczaes4d
(] colD] 00 WPLA Ir2duse [0 79PrLLz2es 5
O 0.0 Synchron zalivn F= O 4 l2ng B c3PrlCzes 6
[] C.C rPL_&llreduLe [] 513 Pusess 7
[C.C na=y
[1 C.C kPl Finalize
FIIII ‘ ‘ ‘ | ‘ | *HIIIIII’IIIIIIII Inn
10 Pl il 40 a0 G0 100

1=1

View Options (2)

Number representation

— Absolute
* Allvalues accumulated time values in seconds
* Scientific notation, color legend shows exponent
— Percentage
o Allvalues percentages of the total execution time
— Relative percentage
o Allvalues percentages of the selection in the left neighbor tree

Program resources
— Calltree
— Flat region profile
* Module, region, subregions
Note that the more general CUBE model also allows for other
metrics (e.g., cache misses)

Absolute Mode

All values accumulated time values in seconds
o Scientific notation, color legend shows exponent

Elo

vide Eop

=rrmruanre b=tirs

mal Ter

| nratinnz

O M1 uu ctl
=1 [1.537 Cxecutioq
= W "r*we
= [C.oorZomemmicali-n
[+ T 003 CClaclva
[T s

= O

[J conic
_ [C.onaynckmoalzaich

FIIII

& L nnr stz Rarzieee

[05 neos
L] 0.0 kanst
= W 071 brwed
(] 0,20 cuar
=[] 000 »ela
Nl [JLU ok =
=1 L 0N ~rFrxs
CQC.05 WP _Fecw
C 2Co deluzk
[2Co P S Irzdacz
O WU iemp
L] nom kA2 ANedur e
[0000 =

O N 1 el e s
=L C.LOczardCa:z"
B N1 Proress 0
O o000 Fwees: -
[l 0.00Process 2
O wuuHFroces: 4
= L rrnrarnri=2
[0 000 Process 4
O 000 Piucus: 5
[0.00FProcess &

(el || s

Iﬁlllllllllll....lll‘tf
10531

CHE

— Exponent at the bottom

o

Percentage Mode

All values percentages of the total execution time

-+ CURF: rx_Mxl .cobe

File wiww: Hulp

N\
=aTarmanca wietr ¢z CalTrea
= _] FF =l Crr zird==
= B rnd =xecuirn C rr knnast
= W 1F tFI = Wl 11 bnnd
= [0.0 Cwirmwciicalion C CCuur
-0 51 Cullzcive = [C.C welu

= [7.2 FEF
[+ 0.1 Lztc Racelvet
=+ &
] 0.0 2
L0 [0.0 &y kzhror 2ol ok

FII

|E:—:1 |
1

1n| ?n| n1|

F | C.Cocsand=y
[}] C.Ccrazyss
B EERRIGER
] C.C delock
] CCRPL A Ircdace
[[LLtzrmg
[LL & A lrzdace
M LL sy

4r il rn|

Values can become very small =1ES

\ Locat ars

O rrlinus Custar
=] [7auline
B rrFoaness N
7] CAdPuces:
7] Ca Puces: 2
7] CEPuwces: 3
[}] C.Czam00aes
] C.Z Focass
7] C.2ZPocess 5
Tl C.l Prociss G
W - Foocose S

na

=
FIIIIIIIFIIIIIII
ol M a7

Relative Percentage Mode

All values percentages of the selection in the left neighbor tree

17.5 % of 79.1 % of 5.6 %

= CUBE: ux_dx1.ubw (=] &
Sile Wiww Hzlp
Poilun=ngs bdalrics ag? 79.1 % 0f 5.6 % L_vwiu: ¥ /
= sl =1 idR= = = nf Ao ae
L1 [&04 Execution 07g L | #0zamIogz
=l 16 rFI 3 Z buun O 175 ez 0
= L Nr & nmwun catins mllis L TR Mirress 1
T O b7 Calecliec r vl B Y Procoss
=B 7ZP:F R HE T L B - GPrcuss 3
_| 01 Laze Receiver Y Tt = _| 20 zam-00=2
s m W ihrre d
O oc s O o2dzmzk C FaPrcoess 5
=[O 0.C Swnchr_izalivn 0 022 _al sl ue B Z5Priuus 6
E] "< enp L N1F Frnr=sa T
 TRE AT et M
m g T e
1L|| cl i.‘iU| 4U| ol 1] s EUF Ju 1u_
ael |
1 1

Call Tree View

=¢ CUEBE: w2 el cubn

Sle MZw Hzip
I'rnrriAn T/ k=N 5 LAl |ree | nir=11-ns
1 | S i Rl 2= T 000 s Clush
B 1 RPN =1 [20 earn0ZGel
L] 0.2 kPI_Ecast I "2£9Prozess 0
O i BN Arn=r C "naim-esz1
O u o denck C f-1'var=ss ¢
Y o 1 C &z ProcIssa
M 0.2 fest- Lt [20 zam0Zaes
L R T [8.2 Pruczsz
O 0.2 i ude C 9.2 Pruzs:5
L 0.2 sidles L 0.F Pracssiz B
O knns C & 1 1'n-ess s
+ [44 nhnnd
O &1cor
I [5-5vzla
= M Z6 caunn:
= 11 vz [
I nna-ine
W 21 m_al=du-e -

o

0=1

F:’IIIIIEI:’IIIIIE”IIIIIEIDI

3:| Ll 5:| E|:|

==
| S

Region Profile View

—w CUBE' £%_H¥1.cube (=] o]]
Filz MYicy Eela

Farformanca ketrics Region Profile _Jcationg
[] 0.0Tcta T [00n_nadzf “I 2 [0 noLrus Zlustor
O = T [00 sindos<f 1 [J0zwr00ge
= -G +1 [0.0 Eonstf O] 125 Mocess 0
=1 [2C Communicasion + [l 15 bouadf] 13.7 Mocess 1
+ [5° Colleclive <+ M 10 crecwssT Tl 137 Mocess ¢
=] 72PeP =+ M 27 caendssf 71 12.0 Piocess
[0.1 Late Receiver 1 [162 curf =1 1 20zawnones
+ 2 0.3 Late Sender = 00 wvelcd 1 129 Piocess 4
] 2CIo 1 B R T 150 Process 3
=1 [JC SwrLhrunizaliun B 54 subrz2gun: Tl 135 Proess 6
+ [37 Ikmpr O]l FOPnnkss 7
F1-[NN omesser
w
FIIII | | | IFﬁIIIIIII [0 Im
1C 2] a0 40 al EiC T] 100
i | \
| |

Load imbalance in velo

Performance Algebra (will be released soon)

o Cross-experiment analysis
— Different execution configuration
— Different measurement tools
— Different random errors

Thu., ! 5 Thu., ! 5 e o

s A I.-_-' s A I.-_-' s A I.-_-'
iy ' iy ' iy '
1 i 1 i 1 i

- - -

G G G

CUBE CUBE CUBE
(XML) O, (XML) (2 (XML)

| ________ »~ I d

o Arithmetic operations on CUBE instances
— Difference, mean, merge
— Obtain CUBE instance as result
— Display it like ordinary CUBE instance

Nano-particle simulation PESCAN

» Application Lawrence Berkeley National Lab
* Numerous barriers to avoid buffer overflow when using large

processor counts — not needed for smaller counts

== CLIAF: CdfE Sl 2l [=][] =]
Clle lew | =i
Farar-arze Karzs | Lall l1ga | Lacabons
[B T C [r1a mp A2l 9 T ar i che o =
T I BE 3 Saovulivg O 22ke= Ewrvie: 2 [0. comOnge
1 [l - 2 kP m [20wa ooea | =R TR

= [€0 T ar c=oan
- Wl 2E e 2onue
] 0.C Cadw =2dace
o] 0.C Lade Croae st

-l :T Sonchrar ooy

= [20bps coms s

ju
T e o =
B A& kAPl Dsprzr

L Cxwlisend

[l C3 Moz

[C3racessz

[l C5racass 3
=] 0.C 2zmOnEez

| RS- A T =F |_ @3 Inwcpi ccnp o] C3 racesss
o IsrprcT =F | @2 tdcant coed I C2 rracess S
L] ca = W T Carer I €1 racass 3 —

IO C2 raczes s

Bl z£ Earie - complallan 13.2 % Waltlng time I o W T T
in front of barriers [) GE RGeS 2
1= 1 1 “racazs 11 ol
| Il
I 1l i kil 2N i - 1

1|| A1
el |
1 1

(Re)moving Waiting Times

o Difference between before / after barrier removal
o Raised relief shows improvement
* Sunken relief shows degradation

al Fraction of the waiting time
'ir_*"* ™ migrated to collective operations.
Frmnmeaben A1 ca" tree shows where | ne~1nk s
e = = = Lk st =
=L i = |2 00 glub=zl sonr =11 i £ L
= [O ulJ zxecu _ =1 [] u. zamuuuz
o 05 zloba _susc
= [-03 = [0 bps _eoenonen Bl 05 20 w0
—] P F__ W 032 o
- r. m |_I oo I‘l\.‘1F|_E-3.|'|'|E' . SR e pas
= W -z e & H (00 3. Lurip T -u- 'azess 3
] 0.2 KFIIG - = 00 L = [0 zarm00nz2
w2 17 A Svnche o isdiun [00 MEL Rec T -02 20 _us: A
- RN
LI 00 KFI Wl ; i ::ﬁ)
Significant reduction | LJ 0 - tok= 5. I -02%3mes5 7

W - YA e
- 0 car00d=35
T -1 : e comp =L =

I , /] oo Frocess &

IIIIIIIIIIIIIIIFIII-IH
=0 3 0:

in barrier time

1E & |

IIII| co GIII| 40 E-III| il

Installation

Install wxWidgets http://www.wxwidgets.org
Install lioxml2 http://www.xmlsoft.org

The following commands should be in your search path
— xml2-config
— wx-config

Install CUBE http://icl.cs.utk.edu/kojak/cube/

— Two options

» CUBE library only (analysis without presentation)
o CUBE library + GUI

— Follow the installation instructions in the manual

Install KOJAK http://www.fz-juelich.de/zam/kojak/

— Follow the installation instructions in ./INSTALL

KOJAK Runtime Parameters

Global directory to store final trace file

Local directory to store local files

Trace file prefix

Size of the internal event buffer

Printing of EPILOG related control messages

Hardware counters to be recorded as part of the trace file
— EPILOG defines names for most common counters

export ELG METRI C=L1 D M SS: FLOATI NG _PO NT

Buffer parameters of EXPERT analyzer

Usage

e Run your instrumented application
o Application will generate a trace file a.elg
* Run analyzer and generate CUBE intput file a.cube

> expert a.elg
> cube cube. el g&

Acknowledgment

e People
— Bernd Mohr
— Fengguang Song

* Sponsors
- DOE
— Forschungszentrum Julich

Thank you!

Questions ?

