
1

Open Source Performance Analysis Tools
for HPC/Linux Systems

Philip J. Mucci
mucci@cs.utk.edu

http://www.cs.utk.edu/~mucci
KTH/UTK/SiCortex

HPCiA '07
Tromsø, Norway

mailto:mucci@cs.utk.edu
http://www.cs.utk.edu/~mucci

2

Outline

•Motivation
•Background
•Middleware
•Tools

Motivation

•Economic: Time is Money
– Average lifetime of these large machines is a handful

years before being decommissioned.
– Many HPC centers charge departments by the CPU

hour.
– Consider the cost per day of a 4 million dollar machine,

retired after 4 years, with annual
support/maintenance/infrastructure/personnel costs of
$300,000.

– That's $1500.00 per hour of compute time.
• Price per sq. ft/m, per KW/h, per employee, all going up.
• Faster than delivered performance (vs. peak)?

Memory Bandwidth

1 2 4 8
0

500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000

Stream Triad Bandwidth (peak and per-core)

Peak Clovertown
Peak Ia64
Clovertown/core
Ia64/core

Cores

K/
se

c

Motivation

•Qualitative: Improvements in Science
– Poorly written code can easily run many times worse

than an optimized version.
– Consider how hard it is to write a decent:
• DGEMM/FFT/2D/3D Convolution

•Performance IS the difference in resolving the
phenomena of interest.
•Predictions about the limiting factors of

performance codes are (usually) erroneous:
– Working set size and memory bandwidth
– P2P latency & collective performance

•How can you plan for additional resources?

Rising Processor Complexity

•Architectural can innovations can 'hide'
performance from the programmer.
– Performance cannot be easily predicted.
• Static/dynamic branch prediction
• Hardware prefetching
• Out-of-order scheduling/execution
• Predication
• Coherency

•A measure of wallclock time, even comparative,
is not enough.
•How fast is fast, how high is up?

Intel Clovertown Block Diagram

Intel Clovertown 2x4 Node

Motivation

•Application Scientists
– Plan, code and test for performance during entire

development cycle. (K.R. 'Clever Contributors')
• Retrofitting performance isn't possible without a significant

investment.
• Be wary of promises of 'free' performance, i.e. OpenMP,

HPF, BSP, UPC. All contain trade-offs.

•Computer Scientists
– Develop tools, infrastructure and expertise to develop

and track performance in terms of architecture and
applications in the long term.

•Education and cooperation is the key.

Performance Evaluation

•Traditionally, performance evaluation has been
somewhat of an art form:
– Limited set of tools (/bin/time, gprof)
– Major differences between systems, SW and HW
– Lots of intuition/experience/guesswork involved in

looking 'behind the numbers'
• Few individuals possessed all the knowledge

•Today, the situation is different.
– Hardware support for performance analysis and a wide

variety of quality Open Source tools to choose from.
– Exporting the knowledge down into the user base.

11

The State of
Linux Performance Tools

•Linux kernel has no code to support hardware
performance measurements in production (non-
root, shared) environments.*
– Despite highly stable kernel patches being available for

> 10 years on some platforms.
– Patch deployment complicated for smaller users where

support agreements preclude patching of the kernel.

•No major commercial Linux distribution contains
anything beyond OProfile and Gprof.*
– Gprof: requires recompilation, does not support threads
– Oprofile: requires root privileges to use, does not allow

sharing of the PMU resources

11

12

The State of
Linux Performance Tools

•Vendors have developed some good tools, but
kept much of the code private.
•Numerous quality open-source tools exist but

many are lacking in good release engineering
practices:
– Documentation/Installation/Usage semantics
– Parallel run-time integration and interoperability
– Distribution (no RPM's, Ebuilds, Debs...)

12

13

Evaluation of Workloads

•Characterization
– Overall evaluation of performance
– Isolate specific components for focus.

•Analysis and Optimization
– Establish baseline performance data
– Focus experimentation and optimization passes.

•Performance Development
– Integration of robust performance evaluation
– Regular performance regression testing

13

The Trouble with Timers

•They depend on the load on the system.
– Elasped wall clock time does not reflect the actual time

the program is doing work due to:
• OS work/interference.
• Other processes.

– Per-thread timers are coarse grained.

•The solution?
– We need measurements that are accurate yet

independent of external factors. (With some help from
the OS)

Hardware Performance Counters

•Performance Counters are hardware registers
dedicated to counting certain types of events
within the processor or system.
– Usually a small number of these registers (2,4,8)
– Sometimes they can count a lot of events or just a few
– Symmetric or asymmetric
– May be on or off chip

•Each register has an associated control register
that tells it what to count and how to do it.
– Interrupt on overflow
– Edge detection (cycles vs. events)
– User vs. kernel mode

•Cycle count
• Instruction count
– All instructions
– Floating point
– Integer
– Load/store

•Branches
– Taken / not taken
– Mispredictions

•Pipeline stalls due to
– Memory subsystem
– Resource conflicts

•Cache
– I/D cache misses for

different levels
– Invalidations

•TLB
– Misses
– Invalidations
–

Sample Performance Data Available

17

Intel Core 2 PMU

•5 counters
– 2 fully programmable counters
– 3 fixed function counters
• INSTR_RETIRED.ANY
• CPU_CLK_UNHALTED.CORE
• CPU_CLK_UNHALTED.REF

•Each register can:
– Count in any combination of the counting domains:

• User, Kernel, etc..

– Interrupt on overflow

•Plus an RTC

17

Hardware Performance Counter
Virtualization

•Every process appears to have its own
counters.
•OS accumulates counts into 64-bit quantities

for each thread and process.
– Saved and restored (lazily) on context switch.

•Both user, kernel and other domains can be
measured.
•Explicit counting or histograms based on

sampling upon counter overflow.
•Counts are largely independent of load.

Direct Measurements

•Start/stop paradigm, usually requiring explicit
instrumentation.
•Aggregate
– Reduce data at run-time avg/min/max measurements.
– Useful for application and architecture characterization

and optimization.

•Tracing
– Generate a record for each measured event.
– Useful only when evidence of performance anomalies is

present due to the large volume of data generated.

Indirect Measurements

•Form probabilistic estimates of the distribution
of performance related events.
•Profiling
– Histogram pointer values based on interrupts every N

performance events. (i.e. Histogram the IP every 1000
L1 D-cache misses.)

•Sampling
– Record values of performance related events based on

the trigger of some other event. (i.e. Record effective
data address of cache miss, IP, timestamp and miss
latency type every 1000 L1 D-cache misses.)

•Boundary between indirect and direct is
somewhat fuzzy.

Statistical Profiling

Location

Am
ou

nt

Time

Hardware Statistical Profiling

Location

Am
ou

nt

TimeCache Misses

Parallel Performance

“The single most important
impediment to good parallel

performance is still poor
single-node performance.”

- William Gropp
Argonne National Lab

Beware the Fallacy of
Reported Linear Scalability

•But what about per-core performance?
•With a slow code, overall performance of the

code is not vulnerable to other system
parameters like communication bandwidth,
latency.
•Very common on tightly integrated systems

where you can simple add PE's for performance.

Which Tool?

26

Why a Kernel Patch is Needed?

•PMU registers are of finite and limited precision
– PMU registers are virtualized into 64 bit quantities.

•Measure multiple users/processes/threads
simultaneously
– Context switch boundaries are preserved just like the

FPU registers
– Measurements should be independent of system

load/activity.

26

27

PerfCtr Kernel Subsystem

•Lightweight and thin kernel patch that provides
minimal set of functionality for hardware
performance analysis.
– Efficient code structure with lazy updates.
– System wide and per-thread counting.
– First-person and third-person (attach) operation.
– Platform support:
• x86[_64] and ppc
• Many kernel revisions and distributions

– Actively supported

•The recommended patch as of today for
production installation.

28

PerfCtr: More Information

•Websites
– http://user.it.uu.se/~mikpe/linux/perfctr/
– http://sourceforge.net/projects/perfctr/

•Mailing Lists
– perfctr-devel@lists.sourceforge.net

http://user.it.uu.se/~mikpe/linux/perfctr/
http://sourceforge.net/projects/perfctr/
mailto:perfctr-devel@lists.sourceforge.net

29

The Perfmon2 Kernel Subsystem

•Additional features over PerfCtr:
– Buffered interrupts with sampling.
– Kernel mode multiplexing.
– Flexible event sampling interface for advanced

hardware.
• Event address registers
• Branch trace buffers

– Additional platforms: ia64,ppc,sparc64,mips,cell

• In the pipe for adoption (see LKML).
•Support of many vendors.

29

30

PerfMon2: More Information

•Websites
– http://perfmon2.sourceforge.net/

•Mailing Lists
– perfmon2-devel@lists.sourceforge.net

http://perfmon2.sourceforge.net/
mailto:perfmon2-devel@lists.sourceforge.net

PAPI

•Performance Application Programming Interface
•The purpose of PAPI is to implement a

standardized portable and efficient API to access
the hardware performance monitor counters
found on most modern microprocessors.
•The goal of PAPI is to facilitate the optimization

of parallel and serial code performance by
encouraging the development of cross-platform
optimization tools.

32

PAPI

•Ad-hoc standard library for the implementation
of application performance analysis tools.
•2 level API, high-level (apps) and low-level

(tools)
•Provides first and third person semantics for

‘thread-centric’ counting and sampling based
on PMU events.
•Handles the ‘gory details’ and allows one to

focus on tool development.
•Portable: write once, run anywhere.

32

PAPI Events

•Preset events: proposed set of events deemed
most relevant for application performance
tuning.
– Mappings from symbolic names to machine specific

definitions for a particular hardware resource.
• Total Cycles is PAPI_TOT_CYC

•Native events: performance metrics as specified
by the hardware reference documentation.
– Usually require a more detailed understanding of the

architecture.
– Names are different for every architecture.

•PAPI also supports presets that may be derived
from the underlying hardware metrics.

PAPI Presets on IA64
Preset Description
PAPI_L1_DCM Level 1 data cache misses
PAPI_L1_ICM Level 1 instruction cache misses
PAPI_L2_DCM Level 2 data cache misses
PAPI_L2_ICM Level 2 instruction cache misses
PAPI_L3_DCM Level 3 data cache misses
PAPI_L3_ICM Level 3 instruction cache misses
PAPI_L1_TCM Level 1 cache misses
PAPI_L2_TCM Level 2 cache misses
PAPI_L3_TCM Level 3 cache misses
PAPI_CA_SNP Requests for a snoop
PAPI_CA_INV Requests for cache line invalidation
PAPI_L3_LDM Level 3 load misses
PAPI_L3_STM Level 3 store misses
PAPI_TLB_DM Data translation lookaside buffer misses
PAPI_TLB_IM Instruction translation lookaside buffer misses
PAPI_TLB_TL Total translation lookaside buffer misses
PAPI_L1_LDM Level 1 load misses
PAPI_L2_LDM Level 2 load misses
PAPI_L2_STM Level 2 store misses
PAPI_L3_DCH Level 3 data cache hits
PAPI_STL_ICY Cycles with no instruction issue
PAPI_STL_CCY Cycles with no instructions completed
PAPI_BR_MSP Conditional branch instructions mispredicted
PAPI_BR_PRC Conditional branch instructions correctly predicted
PAPI_TOT_IIS Instructions issued
PAPI_TOT_INS Instructions completed
PAPI_LD_INS Load instructions
PAPI_SR_INS Store instructions
PAPI_BR_INS Branch instructions
PAPI_RES_STL Cycles stalled on any resource
PAPI_FP_STAL Cycles the FP unit(s) are stalled
PAPI_TOT_CYC Total cycles

35

Other Noteworthy Middleware

•Monitor
– Dynamically insert callbacks for relevant events, thread

creation, destruction, library loading, fork/exec, etc...

•DyninstAPI
– Full dynamic instrumentation infrastructure
• In-memory and on-disk binary instrumentation

•SymtabAPI
– Efficient symbol table lookup

•Mrnet
– Multicast-reduction network for efficient exchange of

data by parallel tools

•Libpfm/libperfctr: low level counter access libs

Internal Timers

•C/C++
– getrusage(), process (user & kernel)

– times(), process (user & kernel)

– gettimeofday(), wallclock

– clock_gettime(),wallclock

•Fortran
– call cpu_time (value), process (user+kernel)

– call etime (array,cpu_time), process (user &
kernel, sum)

– call second (value), process (user+kernel)

– call system_clock (count,rate,max), wallclock

Internal Timers(2)

•MPI_Wtime(), microseconds
•Timers are usually not synchronized between

nodes beyond what NTP can achieve.
•Latency is different than resolution.
•Timers may be expensive,
– Many calls to this function will affect your wall clock

time.

•Arch specific timers:
– TSC register (Intel, PPC, etc)
• May not even be synchronized among cores
• May change rate

– Central switch clock (BG, SP, Altix)

38

PAPI Performance Experiment Tools

•Set of commands that provide the interface to
the underlying performance monitoring tools.
– All are based on Monitor and PAPI

•papiex, mpipex, ioex, hpcex, gptlex
– Easy to use as /bin/time, generating concise text

output where appropriate.
– Take the same arguments, except for tool-specific

options.
– Provide standard and HTML man pages and

documentation.
– Requires no recompilation.
– Monitors all subprocesses/threads.
– Output goes to stderr or a file.

38

39

PapiEx

•Used to obtain summary information about an
application using PAPI and other metrics.
•Represents the first pass of application

performance evaluation.
• It provides:
– Memory footprint
– Percent of time in I/O
– Percent of time in MPI
– PAPI, native and derived metrics
– Provides per-thread, per-task and per-job summaries
– Simple instrumentation API for further focus

39

PapiEx Output

PapiEx Version: 0.99rc2
Executable: /afs/pdc.kth.se/home/m/mucci/summer/a.out
Processor: Itanium 2
Clockrate: 900.000000
Parent Process ID: 8632
Process ID: 8633
Hostname: h05n05.pdc.kth.se
Options: MEMORY
Start: Wed Aug 24 14:34:18 2005
Finish: Wed Aug 24 14:34:19 2005
Domain: User

Real usecs: 1077497
Real cycles: 969742309
Proc usecs: 970144
Proc cycles: 873129600

PAPI_TOT_CYC: 850136123
PAPI_FP_OPS: 40001767

Mem Size: 4064
Mem Resident: 2000
Mem Shared: 1504
Mem Text: 16
Mem Library: 2992
Mem Heap: 576
Mem Locked: 0
Mem Stack: 32

41

Papiex: Workload Characterization

MFLIPS 66.51
IPC .. 0.40
CPU Utilization 0.96
% Memory Instructions 39.02
% FP Instructions 33.38
% Branch Instructions 18.87
% Integer Instructions 66.62
Loads/Stores Ratio 18.14
L1 D-cache Hit % 97.22
L1 I-cache Hit % 100.00
D-TLB Hit % 87.43
I-TLB Hit % 99.97
FP ins. per D-cache Miss 30.72
Computational Intensity 0.86
Branch Misprediction % 14.47
Dual Issue % 11.41
Est. Stall % 17.06
Est. L1 D-cache Miss Stall % 7.79
Est. L1 I-cache Miss Stall % 0.02
Est. D-TLB Miss Stall % 3.91
Est. I-TLB Miss Stall % 0.03
Est. TLB Trap Stall % 0.00
Est. Mispred. Branch Stall % 1.09
Dependency Stall % 4.22
T: Actual/Ideal Cycles 3.77
T: Ideal (max dual) MFLIPS 250.55
P: Actual/Ideal Cycles 2.83
P: Ideal (curr dual) MFLIPS 188.41
% MPI Cycles 18.49
% I/O Cycles 0.02

PapiEx Caliper Fortran Example

#include "papiex.h"

 program zero

 real a, b, c;
 a = 0.1
 b = 1.1
 c = 2.1

 PAPIEX_START_ARG(1,"write")
 print *, "Doing 10000000 iters. of a += b * c on doubles."
 PAPIEX_STOP_ARG(1)

 PAPIEX_START_ARG(2,"do loop")
 do i=1,100000000
 a = a + b * c
 end do
 PAPIEX_STOP_ARG(2)

 end

43

Ioex

•Used to characterize the I/O performance of an
application.
– Based on concepts from IOtrack written at PDC/KTH.

•Per-file statistics:
– Flags
– Access type
– Bandwidth
– Chunk size
– Time spent

43

44

Ioex: Per-file profile

File: /dev/zero
 open64
 calls : 1
 read
 calls : 10
 usecs : 587
 usecs/call : 58
 bytes : 10485760
 bytes/call : 1048576
 MB/s : 17863
File: /home/out
 open64
 calls : 1
 flags : O_WRONLY|O_CREAT|O_TRUNC
 write
 calls : 10
 usecs : 157444
 usecs/call : 15744
 bytes : 10485760
 bytes/call : 1048576
 MB/s : 66

45

PapiEx: More Information

•Multiple tools in one:
– MpiP: mpipex
– HPCToolkit: hpcex
– GPTL: gptlex
– PAPI: papiex
– IO: ioex

•Project websites
– http://www.cs.utk.edu/~mucci/papiex

•Mailing list
– ptools-perfapi@cs.utk.edu

http://www.cs.utk.edu/~mucci/papiex
mailto:ptools-perfapi@cs.utk.edu

MPI Performance Analysis

•There are 2 modes, both accomplished through
intercepting the calls to MPI.
– Aggregate
– Tracing

•Often aggregate is sufficient.
– MPIP, FMPI

•Tracing
– Jumpshot and the MPE libraries.
– Vampir
– Intel Trace Analyzer

47

mpiP: Lightweight MPI Profiling

•Used to characterize the MPI performance of
an application and quickly find MPI bottlenecks.
• It provides:
– MPI load balance
– MPI function profile
– Message size distribution
– Call site information: file, function and line

•Used by simply relinking with the mpiP library.
– Preloading can be used

47

48

MPI Profile by Callsite

--
@--- Aggregate Time (top twenty, descending, milliseconds) -
--
Call Site Time App% MPI% COV
Barrier 29 9.65e+05 4.96 30.20 0.00
Barrier 18 6.1e+05 3.14 19.10 0.21
Allgather 12 3.68e+05 1.89 11.51 0.47
Barrier 43 3.25e+05 1.67 10.18 0.43
Sendrecv 78 2.2e+05 1.13 6.88 2.19
Sendrecv 21 1.57e+05 0.81 4.92 0.51

49

Load Balance

@--- MPI Time (seconds) ---------------

Task AppTime MPITime MPI%
 0 1.06e+03 79.8 7.53
 1 1.06e+03 89.9 8.47
 2 1.06e+03 85.2 8.03
 3 1.06e+03 85.8 8.09
 4 1.06e+03 85.1 8.03
 5 1.06e+03 111 10.42
 6 1.06e+03 144 13.54
 7 1.06e+03 142 13.37
 8 1.06e+03 139 13.12
 9 1.06e+03 147 13.85
 10 1.06e+03 140 13.16
 11 1.06e+03 141 13.33
 12 1.06e+03 143 13.47
 13 1.06e+03 138 13.03
 14 1.06e+03 144 13.55
 15 1.06e+03 182 17.19
 * 1.7e+04 2e+03 11.76

MPIP Output
@ Command : /afs/pdc.kth.se/home/m/mucci/mpiP-2.7/testing/./sweep-ops-stack.exe
/tmp/SPnodes-mucci-0
@ Version : 2.7
@ MPIP Build date : Aug 17 2004, 17:04:36
@ Start time : 2004 08 17 17:08:48
@ Stop time : 2004 08 17 17:08:48
@ MPIP env var : [null]
@ Collector Rank : 0
@ Collector PID : 17412
@ Final Output Dir : .
@ MPI Task Assignment : 0 h05n05-e.pdc.kth.se
@ MPI Task Assignment : 1 h05n35-e.pdc.kth.se
@ MPI Task Assignment : 2 h05n05-e.pdc.kth.se
@ MPI Task Assignment : 3 h05n35-e.pdc.kth.se

@--- MPI Time (seconds) ---

Task AppTime MPITime MPI%
 0 0.084 0.0523 62.21
 1 0.0481 0.015 31.19
 2 0.087 0.0567 65.20
 3 0.0495 0.0149 29.98
 * 0.269 0.139 51.69

@--- Aggregate Time (top twenty, descending, milliseconds) ----------------

Call Site Time App% MPI%
Barrier 1 112 41.57 80.42
Recv 1 26.2 9.76 18.89
Allreduce 1 0.634 0.24 0.46
Bcast 1 0.3 0.11 0.22
Send 1 0.033 0.01 0.02

MPIP Output
@--- Aggregate Sent Message Size (top twenty, descending, bytes) ----------

Call Site Count Total Avrg Sent%
Allreduce 1 8 4.8e+03 600 46.15
Bcast 1 8 4.8e+03 600 46.15
Send 1 2 800 400 7.69

@--- Callsite Time statistics (all, milliseconds): 16 ---------------------

Name Site Rank Count Max Mean Min App% MPI%
Allreduce 1 0 2 0.105 0.087 0.069 0.21 0.33
Allreduce 1 1 2 0.118 0.08 0.042 0.33 1.07
Allreduce 1 2 2 0.11 0.078 0.046 0.18 0.27
Allreduce 1 3 2 0.102 0.072 0.042 0.29 0.97
Barrier 1 0 3 51.9 17.3 0.015 61.86 99.44
Barrier 1 1 3 0.073 0.0457 0.016 0.29 0.91
Barrier 1 2 3 54.9 18.8 0.031 64.90 99.53
Barrier 1 3 3 1.56 1.02 0.035 6.20 20.68
Bcast 1 0 2 0.073 0.0535 0.034 0.13 0.20
Bcast 1 1 2 0.037 0.023 0.009 0.10 0.31
Bcast 1 2 2 0.084 0.046 0.008 0.11 0.16
Bcast 1 3 2 0.03 0.0275 0.025 0.11 0.37
Recv 1 1 1 14.6 14.6 14.6 30.48 97.71
Recv 1 3 1 11.6 11.6 11.6 23.37 77.98
Send 1 0 1 0.013 0.013 0.013 0.02 0.02
Send 1 2 1 0.02 0.02 0.02 0.02 0.04
Send 1 * 32 54.9 4.34 0.008 51.69 100.00

@--- Callsite Message Sent statistics (all, sent bytes) -------------------

Name Site Rank Count Max Mean Min Sum
Allreduce 1 0 2 800 600 400 1200
Allreduce 1 1 2 800 600 400 1200
Allreduce 1 2 2 800 600 400 1200
Allreduce 1 3 2 800 600 400 1200
Bcast 1 0 2 800 600 400 1200
Bcast 1 1 2 800 600 400 1200
Bcast 1 2 2 800 600 400 1200
Bcast 1 3 2 800 600 400 1200
Send 1 0 1 400 400 400 400
Send 1 2 1 400 400 400 400
Send 1 * 18 800 577.8 400 1.04e+04

@--- End of Report --

52

mpiP: More Information

•Project websites
– http://mpip.sourceforge.net/

•Mailing list
– mpip-help@lists.sourceforge.net
– mpip-users@lists.sourceforge.net

•Similar tool:
– FMPI: Fast MPI Profiling

http://mpip.sourceforge.net/
mailto:mpip-help@lists.sourceforge.net
mailto:mpip-users@lists.sourceforge.net

HPCToolkit

•A statistical profiling package based on
interrupts from the performance monitoring
hardware.
•No instrumentation required, but compiling with

-g helps.
•3 phase:
– Collection
– Analysis (optional)
– Presentation/visualization.

54

Hpcrun

• Used to produce statistical profiles without
instrumentation.
– Based on HPCToolkit from Rice University.

• Take interrupts when a counter overflows a
certain threshold.
– i.e. every 10000 cache misses, interrupt/sample the PC.
– Supports multiple simultaneous profiles

•Data is viewed with hpcprof (text) and hpcviewer
(Java GUI)
– Advanced source code correlation and visualization

through bloop (a binary analyzer) and hpcviewer.

• Profile by load module, file, function, line and
even instruction.

54

55

Hpcprof: Hotspot analyses
Columns correspond to the following events [event:period (events/sample)]
 PAPI_TOT_CYC:999999 - Total cycles (2553 samples)

Load Module Summary:
 65.5% testconv2d
 34.5% /lib64/libc-2.5.so

File Summary:
 36.9% <<testconv2d>>/home/phil/ISC/new/convolution/simplest_conv.c
 34.5% <</lib64/libc-2.5.so>><unknown>
 10.0% <<testconv2d>>/home/phil/ISC/new/convolution/support.c
 9.8% <<testconv2d>>/home/phil/ISC/new/convolution/testconv2d.c
 8.8% <<testconv2d>>/home/phil/ISC/new/convolution/convCore.c

Function Summary:
 36.9% <<testconv2d>>conv2d_simple
 17.0% <</lib64/libc-2.5.so>>random
 12.9% <</lib64/libc-2.5.so>>random_r
 10.0% <<testconv2d>>makeRandomDouble
 9.8% <<testconv2d>>main
 8.8% <<testconv2d>>conv2dBy3TileZero
 4.6% <</lib64/libc-2.5.so>>rand

Line Summary:
 34.5% <</lib64/libc-2.5.so>><unknown>:0
 26.1% <<testconv2d>>/home/phil/ISC/new/convolution/simplest_conv.c:27
 6.5% <<testconv2d>>/home/phil/ISC/new/convolution/simplest_conv.c:24

56

Hpcprof: Source code annotation

 19 0.8% for (j = coff; j < nca-coff; j++)
 20 {
 21 0.1% out = 0.0;
 22 2.5% for (ki = 0; ki < nrk; ki++)
 23 {
 24 6.5% for (kj = 0; kj < nck; kj++)
 25 {
 26 // out += a[i+ki][j+kj] * k[ki][kj];
 27 26.1% out += *(a+(i+ki-roff)*nca + j+kj-coff) * *(k+(ki*nck)+kj);
 28 }
 29 }
 30 // c[i+roff][j+coff] = out;
 31 1.0% *(c+(i)*nca + j) = out;
 32 }
 33 }

57

Hpcprof: Assembly annotation

0x1200068c0: 0.01% move v0,v1
0x1200068c4: 0.06% daddu a0,a2,v0
0x1200068c8: 0.60% dsll a1,a0,0x3
0x1200068cc: 5.48% ld v0,48(s8)
0x1200068d0: 0.01% daddu v1,a1,v0
0x1200068d4: 4.18% ldc1 $f0,0(v1)
0x1200068d8: mul.d $f2,$f3,$f0
0x1200068dc: 0.03% ldc1 $f1,8(s8)
0x1200068e0: add.d $f0,$f1,$f2
0x1200068e4: 0.04% sdc1 $f0,8(s8)
0x1200068e8: 5.04% lw v0,16(s8)
0x1200068ec: 0.01% addiu v1,v0,1
0x1200068f0: 6.60% sw v1,16(s8)
0x1200068f4: 7.80% lw v0,16(s8)
0x1200068f8: 0.02% lw v1,60(s8)
0x1200068fc: 0.03% slt a0,v0,v1
0x120006900: 0.02% bnez a0,0x12000683c

58

Hpcviewer: Loop-level profiling

59

HPCToolkit: More Information

•Project websites
– http://www.hipersoft.rice.edu/hpctoolkit/
– http://lacsi.rice.edu/software/hpctoolkit/

http://www.hipersoft.rice.edu/hpctoolkit/
http://lacsi.rice.edu/software/hpctoolkit/

60

Pfmon

•Used to perform highly focused
instrumentation and/or advanced sampling.
– Uses libpfm and the Perfmon2 kernel subsystem..

•Per-thread, per-CPU, system-wide sampling
and counting.
•Allows one to attach to a running code.
•Limited but highly accurate dynamic

instrumentation support.
•Very rich feature set, but complicated

interface.
•Not MPI aware.

60

61

Pfmon: More Information

•Project websites
– http://www.hpl.hp.com/research/linux/perfmon/pfmon.php4
– http://perfmon2.sourceforge.net/

•Mailing list
– perfmon2-devel@lists.sourceforge.net

http://www.hpl.hp.com/research/linux/perfmon/pfmon.php4
http://perfmon2.sourceforge.net/
mailto:perfmon2-devel@lists.sourceforge.net

62

GPTL

•Used to easily instrument applications for the
generation of performance data.
– Developed at NCAR for inclusion into their

applications.

•Optimized for usability.
•Provides access to timers as well as PAPI

events.
•Thread-safe and per-thread statistics.
•Provides estimates of overhead.
•Call-tree generation.
•Preserves parent/child relationships.

62

63

GPTL: More Information

•Project websites
– http://www.burningserver.net/rosinski/gptl/index.html

http://www.burningserver.net/rosinski/gptl/index.html

64

TAU Parallel Performance System

•Parallel Performance Evaluation Tool for
Fortran, C, C++, Python and Java
•Used for in-depth performance studies of an

application throughout its lifecycle.
•Supports Parallel Profiling
– Flat, callpath, and phase based profiling
– PerfDMF performance database and PerfExplorer cross

experiment analysis tool
– PAPI counters, wallclock time, CPU time

•Supports Event Tracing
– Generates traces in OTF, Vampir, Kojak formats..
– Supports Memory and PAPI counters in trace files with

synchronized time stamps.

65

TAU Parallel Performance System

•Multi-level instrumentation
– Source code (manual), pre-processor (Program

Database Toolkit, PDT), MPI library
– Memory, I/O instrumentation in Fortran and C/C++
– Supports runtime throttling, selective instrumentation

at routine and loop level.

•Widely-ported parallel performance profiling
system.
– All HPC systems, compilers, MPI-1 and 2

implementations, OpenMP and pthreads .

66

Tauex

•Used to control the behavior of the TAU
performance system on instrumented and
uninstrumented executables.
•Previously, TAU required extensive setup and

relinking when options changed.
– Now, all TAU options can be changed at run-time.

66

67

Paraprof Function Profile

68

ParaProf 3D Profile

69

TAU: More Information

•Project websites
– http://www.cs.uoregon.edu/research/tau/

http://www.cs.uoregon.edu/research/tau/

MPI Tracing with Jumpshot

•Visualization and tracing infrastructure for MPI
– Can also be used to instrument user code

•Based around the MPE tracing library
– Relink your codes with MPE and run

•GUI and trace format has limited scalability yet
it's a good Open Source solution for small(ish)
runs.

Jumpshot Basics

Jumpshot Zoomed Timeline

Jumpshot Histogram Window

74

Jumpshot: More Information

•Project websites
– http://www-unix.mcs.anl.gov/perfvis/software/viewers/index.htm

• Included with MPICH(1/2)

http://www-unix.mcs.anl.gov/perfvis/software/viewers/index.htm

75

PerfSuite

•Small set of libraries and tools built upon them
to provide basic, commonly-requested
performance measurement capabilities for the
average (not expert) HPC user
•Flexible data file formats (XML applications)
•Motivated by NCSA’s move from traditional

“supercomputers” (e.g., Cray, SGI, Convex,
Thinking Machines) to Linux clusters
•Greatly influenced by SGI’s perfex and

SpeedShop
•Key enabling technologies: PAPI (UTK), Perfctr

(Uppsala), and Perfmon (H-P)

76

PerfSuite Tools

• psrun
– the PerfSuite variant of SGI’s “perfex”. Monitors unmodified dynamically-

linked executables using libperfsuite/libpshwpc
– Optionally provides resource measurement by creating a second

monitoring thread
• psprocess
– pre- and post-processing utility that interprets and presents raw data

contained in PS XML docs to human-consumable form
– Entirely written in Tcl scripting language + Tcl/C-coded extensions (for

things like accessing PAPI/Perfmon from a Tcl script)
• psinv
– system information utility, a la hinv, sysinfo, cpuinfo, etc.
– What is the CPU type? (family, model, revision, etc)
– What counters are available?
– What are cache/TLB sizes?
– Memory size, OS info

• psconfig
– Tk point-and-click tool to make it easier to configure measurements
– Not heavily used or maintained (lately)

77

PerfSuite: More Information

•Project websites
– http://www.sourceforge.net/projects/perfsuite/
– http://perfsuite.ncsa.uiuc.edu/

•Email contacts and mailing lists
– perfsuite@ncsa.uiuc.edu

– perfsuite-users@lists.sourceforge.net

– perfsuite-announce@lists.sourceforge.net

– perfsuite-bugs@lists.sourceforge.net

http://www.sourceforge.net/projects/perfsuite/
http://perfsuite.ncsa.uiuc.edu/
mailto:perfsuite@ncsa.uiuc.edu
mailto:perfsuite-users@lists.sourceforge.net
mailto:perfsuite-announce@lists.sourceforge.net
mailto:perfsuite-bugs@lists.sourceforge.net

IPM – Integrated Performance Monitor

• It is an easy-to-use, lightweight profiling
infrastructure.
– Based on MPI call interception and PAPI.

• It provides a concise summary of the
performance of a parallel calculation.
• It has a low memory and CPU overhead.
• It is scalable to high concurrencies.
• It allows for the direct comparison of

performance between different architectures.

IPM: HTML Output

IPM: XML log files

•There’s a lot more information in the logfile than
you get to stdout. A logfile is written that has
the hash table, switch traffic, memory usage,
executable information, ...
•Parallelism in writing of the log (when possible)
•The IPM logs are durable performance profiles

serving:
– https://www.nersc.gov/nusers/status/llsum/
– http://www.sdsc.edu/user_services/top/ipm/
– http://www.nersc.gov/projects/ipm/ex3/
– your own XML consuming entity, feed, or process

Message Sizes : CAM 336 way

per MPI call per MPI call & buffer size

Message Sizes : CAM 336 way

per MPI call per MPI call & buffer size

IPM: Scalability

32K tasks AMR code

IPM: More than a pretty picture

Discontinuities in performance are often key to 1st order improvements

85

IPM: More Information

•Project websites
– http://ipm-hpc.sourceforge.net/
– http://sourceforge.net/projects/ipm-hpc/

•Email contacts and mailing lists
– perfsuite@ncsa.uiuc.edu

– perfsuite-users@lists.sourceforge.net

– perfsuite-announce@lists.sourceforge.net

– perfsuite-bugs@lists.sourceforge.net

http://ipm-hpc.sourceforge.net/
http://sourceforge.net/projects/ipm-hpc/
mailto:perfsuite@ncsa.uiuc.edu
mailto:perfsuite-users@lists.sourceforge.net
mailto:perfsuite-announce@lists.sourceforge.net
mailto:perfsuite-bugs@lists.sourceforge.net

86

What is Open|SpeedShop?

•Comprehensive Open Source
Performance Analysis Environment
– Targeting both End Users and Tool Developers
– Performance analysis with single look & feel
– Infrastructure to develop/prototype new tools

•Funding
– DOE/NNSA as part of ASC PathForward
– Initial phase co-funded by SGI

•Partners
– DOE/NNSA Tri-Labs (LLNL, LANL, SNLs)
– Krell Institute
– Universities of Wisconsin and Maryland

87

Highlights

•Open Source Performance Analysis Tool
Framework
– Most common performance analysis steps all in one tool
– Extensible by using plugins for data collection and

representation

• Instrumentation at Runtime
– Use of unmodified application binaries
– Attach to running applications

•Flexible and Easy to use
– User access through GUI, Command Line, and Python

Scripting

88

Highlights

•Large Range of Platforms
– Linux Clusters with x86, IA-64, Opteron, and EM64T

CPUs
– Designed with portability in mind

•Version 1.5 released in Nov. 2007
– Used at all three ASC labs with lab-size applications
– Source and RPM versions at

http://www.openspeedshop.org/

http://www.openspeedshop.org/

89

Results

Workflow & High-level Design

R
un

Application
“Experiment”

Results can be
displayed using
several “Views”

Process
Management

Panel

Consists of one
or more data
“Collectors”

Stored in SQL
database

90

Performance Experiments

•Existing Experiments
– Profiling: PC sampling, User time, Hardware counter
– Tracing: MPI calls, I/O calls, Floating Point Exceptions

Per line/function display

Mapping to source code

91

Extensible Infrastructure

QT
PythonFramework

DynInst
PAPI SQ-

Lite
DPCL

AMD and Intel based clusters using Linux

ExistingO|SS Partners

GUIpyO|SS

Semantic Routines

CLI

User Interface Access

Panel
Plugin

Collector
Plugin

View
Plugin

•Support for performance tool developers
– Reusable tool infrastructure and user interfaces
– Plugin architecture
– Open source (O|SS and underlying libraries)

•Three plugin types
– Data Collection
– Data View Preparation
– Visualization in Panels

92

Open SpeedShop: More Information

•Project websites
– http://oss.sgi.com/openspeedshop/
– http://sourceforge.net/projects/openss/
– http://www.openspeedshop.org/

•Email contacts and mailing lists
– oss-questions@openspeedshop.org

http://oss.sgi.com/openspeedshop/
http://sourceforge.net/projects/openss/
http://www.openspeedshop.org/
mailto:oss-questions@openspeedshop.org

93

Scalasca project

•Research group led by Prof. Felix Wolf
– funded by Helmholtz Initiative & Networking Fund
– in collaboration with University of Tennessee

•Follow-up to pioneering KOJAK project
– automatic pattern-based trace analysis

•Developing toolset for scalable performance
analysis of large-scale parallel applications
– started January 2006 with initial focus on MPI-1
– open-source release v0.9 in August 2007

94

Key functionality of Scalasca v0.9

•Search for patterns representing inefficient
behavior
•Common event & measurement manager
– Identifier registration and unification at finale
– Callpath tracking and measurement forwarding

•Scalable parallel runtime summarization
– Aggregation of measurements per call path
– Collation into integrated report at finalization

•Scalable parallel trace collection & analysis
– Distributed trace recording per process
– Replay-based distributed trace analysis

95

Scalasca components

program
sources

unified
defs+maps trace Ntrace ..trace 2trace 1

application+EPIKapplication+EPIKapplication+EPIKapplication + measurement lib

trace
analysis

summary
analysis

analysis report explorer

 instrumentercompiler

instrumented executable

SCOUTSCOUTSCOUT parallel trace analyser

expt config

•Automatic/manual
code instrumenter
•Measurement library

for runtime summary
& traces
•Replay-based trace

analyser
•Common analysis

report explorer

96

Scalasca summary analysis presentation

Tree of MPI
processes

Hierarchies
of metrics

Application
call tree

Severity colour scale

Selected
values

97

Scalasca trace metrics

•Trace analysis based on parallel replay
– receivers determine severities from sent msg

•Aggregated for each call-path (& thread)
– Visits & message statistics as for summary
– Waiting & Imbalance times
• Pt2Pt: Late Sender, Late Sender/Wrong Order, ...
• Collective synch: Wait at Barrier/Barrier Completion
• Collective comm: Wait at N x N/N x N Completion,

 Early Reduce/Scan, Late Broadcast

•Post-processing remaps into hierarchies

SWEEP3D

Late Sender
16K CPUs

Which type of
problem? Which call path?

Where in the source code?

Virtual topology

99

Scalasca: More Information

•Project websites
– http://www.fz-juelich.de/jsc/kojak/
– http://www.fz-juelich.de/jsc/scalasca/
– http://icl.cs.utk.edu/kojak/

•Email contacts and mailing lists
– kojak@cs.utk.edu
– kojak@fz-juelich.de
– scalasca@fz-juelich.de

http://www.fz-juelich.de/jsc/kojak/
http://www.fz-juelich.de/jsc/scalasca/
http://icl.cs.utk.edu/kojak/
mailto:kojak@cs.utk.edu
mailto:kojak@fz-juelich.de
mailto:scalasca@fz-juelich.de

100

Vampir

•Commercial offering from Dresden
•Used to visualize traces of performance data.
•3 Components
– VampirTrace, can be invoked from TAU or directly
– VampirServer
– VampirServer Browser

100

101

VampirTrace

•Recorded events
– Function entry/exit if compiler instrumentation is

used.
– MPI and OpenMP events
– Hardware/software performance counters (e.g. PAPI)
– OS events: Process creation, resource management

•Collected event properties
– Time stamp
– Location (process / thread / MPI)
– MPI specifics like message size etc.

•Generates data in Open Trace Format (OTF)
– Human readable
– Fast searching and indexing
– On-the-fly compression

101

102

VampirServer

• VampirServer: Distributed high-end performance
visualization
– Client/server architecture

– Parallel event processing

– Runs on a (part of a) production environment

– No need to transfer huge traces, uses parallel I/O

• VampirServer Browser: Lightweight client on local
workstation
– Outer appearance identical to Vampir

– Highly scalable display engine

– Statistics, profiles and summary charts

– Message traffic and timelines

– Receives visual content only

– Already adapted to display resolution (but no images)

– Moderate network bandwidth and latency requirements

– Scales to trace data volumes > 40GB
102

103

Vampir Timeline

104

Vampir Message Statistics

105

Vampir Summary Chart

106

Vampir Process Timeline

107

Vampir Call Tree

108

Vampir Message Profile

109

Visualizing TAU Traces with VampirNG

110

Vampir: More Information

•Project websites
– http://www.vampir.eu

http://www.vampir.eu/

111

Acknowledgments

• Argonne National Laboratory.
• HiPerSoft, Rice University.
• Innovative Computing Laboratory, University of

Tennessee, Knoxville.
• Lawrence Livermore National Laboratory.
• Lawrence Berkeley National Laboratory.
• National Center for Atmospheric Research.
• ParaTools, Inc.
• Research Centre Juelich, Germany.
• SiCortex Inc.
• Technische Universität Dresden, Germany.
• U. Oregon

112

Acknowledgments

• Stefane Eranian of HP Laboratories/Google
• Rick Kufrin, NCSA
• John Mellor-Crummey, Rice University
• Bernd Mohr, Felix Wolf, Brian Wylie, FZ Juelich
• Alan Morris, Allen Malony, Sameer Shende, Paratools,

U. Oregon
• Martin Schulz, Lawrence Livermore National

Laboratory
• David Skinner, NERSC and Lawrence Berkeley

National Laboratory
• Nick Wright, San Diego Super Computing Center

