
LAPACK Working Note 41
Installation Guide for LAPACK1

Edward Anderson2, Jack Dongarra, and Susan Ostrouchov
Department of Computer Science

University of Tennessee
Knoxville, Tennessee 37996-1301

Corrections and re-typeset: March 2018
Revised: version 2.0, September 30, 1994

Date: October, 1994

Abstract

This working note describes how to install, test, and time version 2.0 of LAPACK, a linear
algebra package for high-performance computers. Separate instructions are provided for
the Unix and non-Unix versions of the test package. Further details are also given on the
design of the test and timing programs.

1This work was supported by NSF Grant No. ASC-8715728.
2Current address: Cray Research Inc., 655F Lone Oak Drive, Eagan, MN 55121

1

Contents

1 Introduction . 6
2 Revisions Since the First Public Release . 6
3 File Format . 7
4 Overview of Tape Contents . 7

4.1 LAPACK Routines . 8
4.2 Level 1, 2, and 3 BLAS . 8
4.3 LAPACK Test Routines . 8
4.4 LAPACK Timing Routines . 9

5 Installing LAPACK on a Unix System . 9
5.1 Read the Tape or Untar the File . 9
5.2 Edit the file LAPACK/make.inc . 10
5.3 Edit the file LAPACK/Makefile . 10

6 Further Details of the Installation Process 11
6.1 Test and Install the Machine-Dependent Routines. 11

6.1.1 Installing LSAME . 12
6.1.2 Installing SLAMCH and DLAMCH 12
6.1.3 Installing SECOND and DSECND 13

6.2 Create the BLAS Library . 14
6.3 Run the BLAS Test Programs . 14
6.4 Create the LAPACK Library . 15
6.5 Create the Test Matrix Generator Library 15
6.6 Run the LAPACK Test Programs 15

6.6.1 Testing the Linear Equations Routines 15
6.6.2 Testing the Eigensystem Routines 16

6.7 Run the LAPACK Timing Programs 17
6.7.1 Timing the Linear Equations Routines 18
6.7.2 Timing the BLAS . 19
6.7.3 Timing the Eigensystem Routines 19

6.8 Send the Results to Tennessee . 21
7 More About Testing . 22

7.1 The Linear Equation Test Program 22
7.1.1 Tests for General and Symmetric Matrices 23
7.1.2 Tests for Triangular Matrices 25
7.1.3 Tests for the Orthogonal Factorization Routines 27
7.1.4 Tests for the Least Squares Driver Routines 29

2

7.1.5 Tests for the Equilibration Routines 30
7.1.6 Input File for Testing the Linear Equation Routines 30

7.2 Testing the Eigenproblem Balancing and Backward Transformation
Routines . 32

7.3 Testing the Nonsymmetric Eigenvalue Routines 32
7.3.1 The Nonsymmetric Eigenvalue Drivers 33
7.3.2 Test Matrices for the Nonsymmetric Eigenvalue Routines . 33
7.3.3 Test Matrices for the Nonsymmetric Eigenvalue Drivers . . 34
7.3.4 Tests Performed on the Nonsymmetric Eigenvalue Routines 35
7.3.5 Tests Performed on the Nonsymmetric Eigenvalue Drivers . 36
7.3.6 Input File for Testing the Nonsymmetric Eigenvalue Routines 37
7.3.7 Input File for Testing the Nonsymmetric Eigenvalue Drivers 38

7.4 Testing the Generalized Nonsymmetric Eigenvalue Routines 40
7.4.1 The Generalized Nonsymmetric Eigenvalue Drivers 40
7.4.2 Test Matrices for the Generalized Nonsymmetric Eigenvalue

Routines . 40
7.4.3 Test Matrices for the Generalized Nonsymmetric Eigenvalue

Drivers . 42
7.4.4 Tests Performed on the Generalized Nonsymmetric Eigen-

value Routines . 42
7.4.5 Tests Performed on the Generalized Nonsymmetric Eigen-

value Drivers . 43
7.4.6 Input File for Testing the Generalized Nonsymmetric Eigen-

value Routines and Drivers 44
7.5 Testing the Nonsymmetric Eigenvalue Condition Estimation Routines 45
7.6 Testing the Symmetric Eigenvalue Routines 45

7.6.1 The Symmetric Eigenvalue Drivers 46
7.6.2 Test Matrices for the Symmetric Eigenvalue Routines . . . 46
7.6.3 Test Matrices for the Symmetric Eigenvalue Drivers 46
7.6.4 Tests Performed on the Symmetric Eigenvalue Routines . . 47
7.6.5 Tests Performed on the Symmetric Eigenvalue Drivers . . . 50
7.6.6 Input File for Testing the Symmetric Eigenvalue Routines

and Drivers . 50
7.6.7 Input File for Testing the Banded Symmetric Eigenvalue

Routines and Drivers . 51
7.7 Testing the Generalized Symmetric Eigenvalue Routines and Drivers 52

7.7.1 The Generalized Symmetric Eigenvalue Drivers 52
7.7.2 Test Matrices for the Generalized Symmetric Eigenvalue

Routines and Drivers . 53
7.7.3 Tests Performed on the Generalized Symmetric Eigenvalue

Routines and Drivers . 53
7.7.4 Input File for Testing the Generalized Symmetric Eigenvalue

Routines and Drivers . 54
7.8 Testing the Singular Value Decomposition Routines 55

7.8.1 The Singular Value Decomposition Driver 56

3

7.8.2 Test Matrices for the Singular Value Decomposition Routines 56
7.8.3 Test Matrices for the Banded Singular Value Decomposition

Routines . 57
7.8.4 Test Matrices for the Singular Value Decomposition Driver 57
7.8.5 Tests Performed on the Singular Value Decomposition Rou-

tines . 57
7.8.6 Tests Performed on the Banded Singular Value Decomposi-

tion Routines . 58
7.8.7 Tests Performed on the Singular Value Decomposition Driver 59
7.8.8 Input File for Testing the Singular Value Decomposition

Routines . 59
7.8.9 Input File for Testing the Banded Singular Value Decompo-

sition Routines . 60
7.9 Testing the Generalized Singular Value Decomposition Driver 61

7.9.1 Test Matrices for the Generalized Singular Value Decompo-
sition Driver . 62

7.9.2 Tests Performed on the Generalized Singular Value Decom-
position Driver . 62

7.9.3 Input File for Testing the Generalized Singular Value De-
composition Driver . 63

7.10 Testing the Generalized QR and RQ Factorization Routines 63
7.10.1 Test Matrices for the Generalized QR and RQ Factorization

Routines . 64
7.10.2 Tests Performed on the Generalized QR and RQ Factoriza-

tion Routines . 64
7.10.3 Input File for Testing the Generalized QR and RQ Factor-

ization Routines . 65
7.11 Testing the Generalized Linear Regression Model Driver 66

7.11.1 Test Matrices for the Generalized Linear Regression Model
Driver . 66

7.11.2 Tests Performed on the Generalized Linear Regression Model
Driver . 67

7.11.3 Input File for Testing the Generalized Linear Regression
Model Driver . 67

7.12 Testing the Constrained Linear Least Squares Driver 68
7.12.1 Test Matrices for the Constrained Linear Least Squares Driver 68
7.12.2 Tests Performed on the Constrained Linear Least Squares

Driver . 69
7.12.3 Input File for Testing the Constrained Linear Least Squares

Driver . 69
8 More About Timing . 71

8.1 The Linear Equation Timing Program 71
8.2 Timing the Level 2 and 3 BLAS . 75
8.3 Timing the Nonsymmetric Eigenproblem 76
8.4 Timing the Generalized Nonsymmetric Eigenproblem 78

4

8.4.1 Input File for Timing the Generalized Nonsymmetric Eigen-
problem . 80

8.5 Timing the Symmetric and Generalized Symmetric Eigenproblem . . 81
8.6 Timing the Singular Value Decomposition 85
8.7 Timing the Generalized Singular Value Decomposition 87
8.8 Timing the Generalized QR and RQ Factorizations 87
8.9 Timing the Generalized Linear Regression Model Problem 87
8.10 Timing the Constrained Linear Least Squares Problem 87

A LAPACK Routines 89

B LAPACK Auxiliary Routines 94

C Operation Counts for the BLAS and LAPACK 99

D Caveats 105

E Installation Guide for Non-Unix Systems 108
E.1 Installing LAPACK on a non-Unix System 115

E.1.1 Read the Tape or Tar the File . 115
E.1.2 Test and Install the Machine-Dependent Routines. 115

E.1.2.1 Installing LSAME . 116
E.1.2.2 Installing SLAMCH and DLAMCH 116
E.1.2.3 Installing SECOND and DSECND 117

E.1.3 Create the BLAS Library . 118
E.1.4 Run the BLAS Test Programs . 118
E.1.5 Create the LAPACK Library . 119
E.1.6 Create the Test Matrix Generator Library 119
E.1.7 Run the LAPACK Test Programs 119

E.1.7.1 Testing the Linear Equation Routines 119
E.1.7.2 Testing the Eigensystem Routines 120

E.1.8 Run the LAPACK Timing Programs 120
E.1.8.1 Timing the Linear Equations Routines 121
E.1.8.2 Timing the BLAS . 121
E.1.8.3 Timing the Eigensystem Routines 122

E.1.9 Send the Results to Tennessee . 123
Bibliography . 125

5

1 Introduction

LAPACK is a linear algebra library for high-performance computers. The library in-
cludes Fortran 77 subroutines for the analysis and solution of systems of simultaneous linear
algebraic equations, linear least-squares problems, and matrix eigenvalue problems. Our ap-
proach to achieving high efficiency is based on the use of a standard set of Basic Linear
Algebra Subprograms (the BLAS), which can be optimized for each computing environ-
ment. By confining most of the computational work to the BLAS, the subroutines should
be transportable and efficient across a wide range of computers.

This working note describes how to install, test, and time this release of LAPACK.
The instructions for installing, testing, and timing are designed for a person whose

responsibility is the maintenance of a mathematical software library. We assume the installer
has experience in compiling and running Fortran programs and in creating object libraries.
The installation process involves reading the tape or tarring the file, creating a set of
libraries, and compiling and running the test and timing programs.

This guide combines the instructions for the Unix and non-Unix versions of the LAPACK
test package (the non-Unix version is in Appendix E). At this time, the non-Unix version
of LAPACK can only be obtained after first untarring the Unix tar tape and then following
the instructions in Appendix E.

Section 3 describes how the files are organized on the tape or file, and Section 4 gives
a general overview of the parts of the test package. Step-by-step instructions appear in
Section 5 for the Unix version and in the appendix for the non-Unix version.

For users desiring additional information, Sections 7 and 8 give details of the test and
timing programs and their input files. Appendices A and B briefly describe the LAPACK
routines and auxiliary routines provided in this release. Appendix C lists the operation
counts we have computed for the BLAS and for some of the LAPACK routines. Appendix D,
entitled “Caveats”, is a compendium of the known problems from our own experiences, with
suggestions on how to overcome them. It is strongly advised that the user read Appendix
D before proceeding with the installation process. Appendix E contains the instructions to
install LAPACK on a non-Unix system.

2 Revisions Since the First Public Release

Since its first public release in February, 1992, LAPACK has had several updates, which
have encompassed the introduction of new routines as well as extending the functionality
of existing routines. The first update, June 30, 1992, was version 1.0a; the second update,
October 31, 1992, was version 1.0b; the third update, March 31, 1993, was version 1.1;
and finally, September 30, 1994, version 2.0. All LAPACK routines reflect the current
version number with the date on the routine indicating when it was last modified. For more
information on revisions please refer to the LAPACK release notes file on netlib, or the
second edition of the LAPACK Users’ Guide.

We plan to have only one or two updates a year, and provide a PRERELEASE directory
on netlib to contain new software that is being considered for inclusion. Users can then pro-
vide input and experimentation with these prerelease routines. The tar file lapack.tar.z

that is available on netlib is always the most up-to-date.

6

LAPACK

INSTALL

Machine depen-
dent routines

BLAS

SRC

Level 1 BLAS
Level 2 BLAS
Level 3 BLAS

TESTING

BLAS2 & 3 test
routines

SRC

LAPACK routines
& auxiliary routines

TESTING

LIN MATGEN EIG

Linear eqn.
test routines

Test matrix
generators

Eigensystem
test routines

TIMING

LIN EIG

Linear eqn.
timing routines

Eigensystem
timing routines

Figure 1: Unix organization of LAPACK

On-line manpages (troff files) for LAPACK driver and computational routines, as well
as most of the BLAS routines, are available via the lapack index on netlib.

3 File Format

The software for LAPACK is distributed in the form of a compressed tar file (via xnetlib,
anonymous ftp, or the World Wide Web) or a Unix tar tape from NAG (Numerical Al-
gorithms Group, Inc.), which contains the Fortran source for LAPACK, the Basic Linear
Algebra Subprograms (the Level 1, 2, and 3 BLAS) needed by LAPACK, the testing pro-
grams, and the timing programs. Users who wish to have a non-Unix installation should go
to Appendix E, although the overview in section 4 applies to both the Unix and non-Unix
versions.

The software on the tar tape or tar file is organized in a number of essential directories
as shown in Figure 1. Please note that this figure does not reflect everything that is
contained in the LAPACK directory. Input and instructional files are also located at various
levels. Libraries are created in the LAPACK directory and executable files are created in
one of the directories BLAS, TESTING, or TIMING. Input files for the test and timing
programs are also found in these three directories so that testing may be carried out in the
directories LAPACK/BLAS, LAPACK/TESTING, and LAPACK/TIMING. A top-level
makefile in the LAPACK directory is provided to perform the entire installation procedure.

4 Overview of Tape Contents

Most routines in LAPACK occur in four versions: REAL, DOUBLE PRECISION,
COMPLEX, and COMPLEX*16. The first three versions (REAL, DOUBLE PRECISION,

7

and COMPLEX) are written in standard Fortran 77 and are completely portable; the
COMPLEX*16 version is provided for those compilers which allow this data type. For
convenience, we often refer to routines by their single precision names; the leading ‘S’ can
be replaced by a ‘D’ for double precision, a ‘C’ for complex, or a ‘Z’ for complex*16. For
LAPACK use and testing you must decide which version(s) of the package you intend to
install at your site (for example, REAL and COMPLEX on a Cray computer or DOUBLE
PRECISION and COMPLEX*16 on an IBM computer).

4.1 LAPACK Routines

There are three classes of LAPACK routines:

• driver routines solve a complete problem, such as solving a system of linear equations
or computing the eigenvalues of a real symmetric matrix. Users are encouraged to use
a driver routine if there is one that meets their requirements. The driver routines are
listed in Appendix A.

• computational routines, also called simply LAPACK routines, perform a distinct
computational task, such as computing the LU decomposition of an m-by-n matrix
or finding the eigenvalues and eigenvectors of a symmetric tridiagonal matrix using the
QR algorithm. The LAPACK routines are listed in Appendix A; see also LAPACK
Working Note #5 [3].

• auxiliary routines are all the other subroutines called by the driver routines and
computational routines. The auxiliary routines are listed in Appendix B.

4.2 Level 1, 2, and 3 BLAS

The BLAS are a set of Basic Linear Algebra Subprograms that perform vector-vector,
matrix-vector, and matrix-matrix operations. LAPACK is designed around the Level 1, 2,
and 3 BLAS, and nearly all of the parallelism in the LAPACK routines is contained in the
BLAS. Therefore, the key to getting good performance from LAPACK lies in having an
efficient version of the BLAS optimized for your particular machine. If you have access to
a library containing optimized versions of some or all of the BLAS, you should certainly
use it (but be sure to run the BLAS test programs). If an optimized library of the BLAS is
not available, Fortran source code for the Level 1, 2, and 3 BLAS is provided on the tape.
Users should not expect too much from the Fortran BLAS; these versions were written to
define the basic operations and do not employ the standard tricks for optimizing Fortran
code.

The formal definitions of the Level 1, 2, and 3 BLAS are in [9], [7], and [5]. Copies of
the BLAS Quick Reference card are available from the authors or netlib.

4.3 LAPACK Test Routines

This release contains two distinct test programs for LAPACK routines in each data
type. One test program tests the routines for solving linear equations and linear least
squares problems, and the other tests routines for the matrix eigenvalue problem. The

8

routines for generating test matrices are used by both test programs and are compiled into
a library for use by both test programs.

4.4 LAPACK Timing Routines

This release also contains two distinct timing programs for the LAPACK routines in
each data type. The linear equation timing program gathers performance data in megaflops
on the factor, solve, and inverse routines for solving linear systems, the routines to generate
or apply an orthogonal matrix given as a sequence of elementary transformations, and the
reductions to bidiagonal, tridiagonal, or Hessenberg form for eigenvalue computations. The
operation counts used in computing the megaflop rates are computed from a formula; see
Appendix C. The eigenvalue timing program is used with the eigensystem routines and
returns the execution time, number of floating point operations, and megaflop rate for each
of the requested subroutines. In this program, the number of operations is computed while
the code is executing using special instrumented versions of the LAPACK subroutines.

5 Installing LAPACK on a Unix System

Installing, testing, and timing the Unix version of LAPACK involves the following steps:

1. Read the tape or uncompress and tar the file.

2. Edit the file LAPACK/make.inc.

3. Edit the file LAPACK/Makefile and type make.

5.1 Read the Tape or Untar the File

If you received a tar tape of LAPACK, type one of the following commands to unload
the tape (the device name may be different at your site):

tar xvf /dev/rst0 (cartridge tape), or

tar xvf /dev/rmt8 (9-track tape)

Alternatively, if you received a tar file of LAPACK via xnetlib, anonymous ftp, or the
World Wide Web, enter the following two commands to untar the file:

uncompress file (where file is the name of the compressed tar file)

tar xvf file (where file is the name of the tar file)

This will create a top-level directory called LAPACK, which requires approximately 33 Mbytes
of disk space. The total space requirements including the object files and executables is
approximately 80 Mbytes for all four data types.

9

5.2 Edit the file LAPACK/make.inc

Before the libraries can be built, or the testing and timing programs run, you must define
all machine-specific parameters for the architecture to which you are installing LAPACK.
All machine-specific parameters are contained in the file LAPACK/make.inc. First, you will
need to modify the PLAT definition, which is appended to all library names, to specify the
architecture to which you are installing LAPACK. This features avoids confusion in library
names when you are installing LAPACK on more than one architecture. Next, you will
need to modify FORTRAN, OPTS, NOOPT, LOADER, LOADOPTS, ARCH, ARCHFLAGS, and RANLIB

to specify the compiler, compiler options, loader, loader options, archiver, archiver options,
and ranlib for your machine. If your architecture does not require ranlib to be run after
each archive command (as is the case with CRAY computers running UNICOS, or Hewlett
Packard computers running HP-UX), set ranlib=echo. And finally, you must modify the
BLASLIB definition to specify the BLAS library to which you will be linking. If an optimized
version of the BLAS is available on your machine, you are highly recommended to link to
that library. Otherwise, by default, BLASLIB is set to the Fortran 77 version.

5.3 Edit the file LAPACK/Makefile

This Makefile can be modified to perform as much of the installation process as the user
desires. Ideally, this is the ONLY makefile the user must modify. However, modification
of lower-level makefiles may be necessary if a specific routine needs to be compiled with a
different level of optimization.

First, edit the definitions of blaslib, lapacklib, tmglib, testing, and timing in the
file LAPACK/Makefile to specify the data types desired. For example, if you only wish to
compile the single precision real version of the LAPACK library, you would modify the
lapacklib definition to be:

lapacklib:

(cd SRC; $(MAKE) single)

Likewise, you could specify double, complex, or complex16 to build the double pre-
cision real, single precision complex, or double precision complex libraries, respectively. By
default, the presence of no arguments following the make command will result in the build-
ing of all four data types. The make command can be run more than once to add another
data type to the library if necessary.

If you are installing LAPACK on a Silicon Graphics machine, you must modify the
respective definitions of testing and timing to be

testing:

(cd TESTING; $(MAKE) -f Makefile.sgi)

and

timing:

(cd TIMING; $(MAKE) -f Makefile.sgi)

10

Next, if you will be using a locally available BLAS library, you will need to remove
blaslib from the lib definition. And finally, if you do not wish to build all of the libraries
individually and likewise run all of the testing and timing separately, you can modify the
all definition to specify the amount of the installation process that you want performed.
By default, the all definition is set to

all: install lib blas_testing testing timing blas_timing

which will perform all phases of the installation process – testing of machine-dependent
routines, building the libraries, BLAS testing, LAPACK testing, LAPACK timing, and
BLAS timing.

The entire installation process will then be performed by typing make.
Questions and/or comments can be directed to the authors as described in Section 6.8.

If test failures occur, please refer to the appropriate subsection in Section 6.
If disk space is limited, I would suggest building each data type separately and/or delet-

ing all object files after building the libraries. Likewise, all testing and timing executables
can be deleted after the testing and timing process is completed. The removal of all object
files and executables can be accomplished by the following:

cd LAPACK

make clean

6 Further Details of the Installation Process

Alternatively, you can choose to run each of the phases of the installation process separately.
The following sections give details on how this may be achieved.

6.1 Test and Install the Machine-Dependent Routines.

There are five machine-dependent functions in the test and timing package, at least
three of which must be installed. They are

LSAME LOGICAL Test if two characters are the same regardless of case
SLAMCH REAL Determine machine-dependent parameters
DLAMCH DOUBLE PRECISION Determine machine-dependent parameters
SECOND REAL Return time in seconds from a fixed starting time
DSECND DOUBLE PRECISION Return time in seconds from a fixed starting time

If you are working only in single precision, you do not need to install DLAMCH and
DSECND, and if you are working only in double precision, you do not need to install
SLAMCH and SECOND.

These five subroutines are provided in LAPACK/INSTALL, along with five test programs.
To compile the five test programs and run the tests, go to LAPACK and type make install.
The test programs are called testlsame, testslamch, testdlamch, testsecond, and
testdsecnd. If you do not wish to run all tests, you will need to modify the install

definition in the LAPACK/Makefile to only include the tests you wish to run. Otherwise,
all tests will be performed. The expected results of each test program are described below.

11

6.1.1 Installing LSAME

LSAME is a logical function with two character parameters, A and B. It returns .TRUE.
if A and B are the same regardless of case, or .FALSE. if they are different. For example,
the expression

LSAME(UPLO, ’U’)

is equivalent to

(UPLO.EQ.’U’).OR.(UPLO.EQ.’u’)

The test program in lsametst.f tests all combinations of the same character in upper
and lower case for A and B, and two cases where A and B are different characters.

Run the test program by typing testlsame. If LSAME works correctly, the only message
you should see after the execution of testlsame is

ASCII character set

Tests completed

The file lsame.f is automatically copied to LAPACK/BLAS/SRC/ and LAPACK/SRC/. The
function LSAME is needed by both the BLAS and LAPACK, so it is safer to have it in
both libraries as long as this does not cause trouble in the link phase when both libraries
are used.

6.1.2 Installing SLAMCH and DLAMCH

SLAMCH and DLAMCH are real functions with a single character parameter that
indicates the machine parameter to be returned. The test program in slamchtst.f simply
prints out the different values computed by SLAMCH, so you need to know something
about what the values should be. For example, the output of the test program executable
testslamch for SLAMCH on a Sun SPARCstation is

Epsilon = 5.96046E-08

Safe minimum = 1.17549E-38

Base = 2.00000

Precision = 1.19209E-07

Number of digits in mantissa = 24.0000

Rounding mode = 1.00000

Minimum exponent = -125.000

Underflow threshold = 1.17549E-38

Largest exponent = 128.000

Overflow threshold = 3.40282E+38

Reciprocal of safe minimum = 8.50706E+37

On a Cray machine, the safe minimum underflows its output representation and the overflow
threshold overflows its output representation, so the safe minimum is printed as 0.00000
and overflow is printed as R. This is normal. If you would prefer to print a representable

12

number, you can modify the test program to print SFMIN*100. and RMAX/100. for the
safe minimum and overflow thresholds.

Likewise, the test executable testdlamch is run for DLAMCH.
The files slamch.f and dlamch.f are automatically copied to to LAPACK/SRC/. If both

tests were successful, go to Section 6.1.3.
If SLAMCH (or DLAMCH) returns an invalid value, you will have to create your own

version of this function. The following options are used in LAPACK and must be set:

‘B’: Base of the machine

‘E’: Epsilon (relative machine precision)

‘O’: Overflow threshold

‘P’: Precision = Epsilon*Base

‘S’: Safe minimum (often same as underflow threshold)

‘U’: Underflow threshold

Some people may be familiar with R1MACH (D1MACH), a primitive routine for set-
ting machine parameters in which the user must comment out the appropriate assignment
statements for the target machine. If a version of R1MACH is on hand, the assignments in
SLAMCH can be made to refer to R1MACH using the correspondence

SLAMCH(‘U’) = R1MACH(1)

SLAMCH(‘O’) = R1MACH(2)

SLAMCH(‘E’) = R1MACH(3)

SLAMCH(‘B’) = R1MACH(5)

The safe minimum returned by SLAMCH(’S’) is initially set to the underflow value, but
if 1/(overflow) ≥ (underflow) it is recomputed as (1/(overflow)) ∗ (1 + ε), where ε is the
machine precision.

BE AWARE that the initial call to SLAMCH or DLAMCH is expensive. We suggest
that installers run it once, save the results, and hard-code the constants in the version they
put in their library.

6.1.3 Installing SECOND and DSECND

Both the timing routines and the test routines call SECOND (DSECND), a real function
with no arguments that returns the time in seconds from some fixed starting time. Our
version of this routine returns only “user time”, and not “user time + system time”. The
version of SECOND in second.f calls ETIME, a Fortran library routine available on some
computer systems. If ETIME is not available or a better local timing function exists, you
will have to provide the correct interface to SECOND and DSECND on your machine.

13

The test program in secondtst.f performs a million operations using 5000 iterations of
the SAXPY operation y := y+αx on a vector of length 100. The total time and megaflops
for this test is reported, then the operation is repeated including a call to SECOND on each
of the 5000 iterations to determine the overhead due to calling SECOND. The test program
executable is called testsecond (or testdsecnd). There is no single right answer, but the
times in seconds should be positive and the megaflop ratios should be appropriate for your
machine. The files second.f and dsecnd.f are automatically copied to LAPACK/SRC/ for
inclusion in the LAPACK library.

6.2 Create the BLAS Library

Ideally, a highly optimized version of the BLAS library already exists on your machine.
In this case you can go directly to Section 6.3 to make the BLAS test programs. You
may already have a library containing some of the BLAS, but not all (Level 1 and 2, but
not Level 3, for example). If so, you should use your local version of the BLAS wherever
possible.

a) Go to LAPACK and edit the definition of blaslib in the file Makefile to specify the
data types desired, as in the example in Section 5.3.

If you already have some of the BLAS, you will need to edit the file LAPACK/BLAS/SRC/-
Makefile to comment out the lines defining the BLAS you have.

b) Type make blaslib. The make command can be run more than once to add another
data type to the library if necessary.

The BLAS library is created in LAPACK/blas PLAT.a, where PLAT is the user-defined archi-
tecture suffix specified in the file LAPACK/make.inc.

6.3 Run the BLAS Test Programs

Test programs for the Level 1, 2, and 3 BLAS are in the directory LAPACK/BLAS/TESTING.
To compile and run the Level 1, 2, and 3 BLAS test programs, go to LAPACK and

type make blas testing. The executable files are called xblat s, xblat d, xblat c, and
xblat z, where the (underscore) is replaced by 1, 2, or 3, depending upon the level of
BLAS that it is testing. All executable and output files are created in LAPACK/BLAS/. For
the Level 1 BLAS tests, the output file names are sblat1.out, dblat1.out, cblat1.out,
and zblat1.out. For the Level 2 and 3 BLAS, the name of the output file is indicated on
the first line of the input file and is currently defined to be SBLAT2.SUMM for the Level 2
REAL version, and SBLAT3.SUMM for the Level 3 REAL version, with similar names for the
other data types.

If the tests using the supplied data files were completed successfully, consider whether
the tests were sufficiently thorough. For example, on a machine with vector registers, at
least one value of N greater than the length of the vector registers should be used; otherwise,
important parts of the compiled code may not be exercised by the tests. If the tests were
not successful, either because the program did not finish or the test ratios did not pass
the threshold, you will probably have to find and correct the problem before continuing. If

14

you have been testing a system-specific BLAS library, try using the Fortran BLAS for the
routines that did not pass the tests. For more details on the BLAS test programs, see [8]
and [6].

6.4 Create the LAPACK Library

a) Go to the directory LAPACK and edit the definition of lapacklib in the file Makefile

to specify the data types desired, as in the example in Section 5.3.

b) Type make lapacklib. The make command can be run more than once to add
another data type to the library if necessary.

The LAPACK library is created in LAPACK/lapack PLAT.a, where PLAT is the user-defined
architecture suffix specified in the file LAPACK/make.inc.

6.5 Create the Test Matrix Generator Library

a) Go to the directory LAPACK and edit the definition of tmglib in the file Makefile to
specify the data types desired, as in the example in Section 5.3.

b) Type make tmglib. The make command can be run more than once to add another
data type to the library if necessary.

The test matrix generator library is created in LAPACK/tmglib PLAT.a, where PLAT is the
user-defined architecture suffix specified in the file LAPACK/make.inc.

6.6 Run the LAPACK Test Programs

There are two distinct test programs for LAPACK routines in each data type, one for
the linear equation routines and one for the eigensystem routines. In each data type, there
is one input file for testing the linear equation routines and seventeen input files for testing
the eigenvalue routines. The input files reside in LAPACK/TESTING. For more information
on the test programs and how to modify the input files, see Section 7.

If you do not wish to run each of the tests individually, you can go to LAPACK, edit the
definition testing in the file Makefile to specify the data types desired, and type make

testing. This will compile and run the tests as described in sections 6.6.1 and 6.6.2.
If you are installing LAPACK on a Silicon Graphics machine, you must modify the

definition of testing to be

testing:

(cd TESTING; $(MAKE) -f Makefile.sgi)

6.6.1 Testing the Linear Equations Routines

a) Go to LAPACK/TESTING/LIN and type make followed by the data types desired. The
executable files are called xlintsts, xlintstc, xlintstd, or xlintstz and are
created in LAPACK/TESTING.

15

b) Go to LAPACK/TESTING and run the tests for each data type. For the REAL version,
the command is

xlintsts < stest.in > stest.out

The tests using xlintstd, xlintstc, and xlintstz are similar with the leading ‘s’
in the input and output file names replaced by ‘d’, ‘c’, or ‘z’.

If you encountered failures in this phase of the testing process, please refer to Section 6.8.

6.6.2 Testing the Eigensystem Routines

a) Go to LAPACK/TESTING/EIG and type make followed by the data types desired. The
executable files are called xeigtsts, xeigtstc, xeigtstd, and xeigtstz and are
created in LAPACK/TESTING.

b) Go to LAPACK/TESTING and run the tests for each data type. The tests for the eigen-
system routines use seventeen separate input files for testing the nonsymmetric eigen-
value problem, the symmetric eigenvalue problem, the banded symmetric eigenvalue
problem, the generalized symmetric eigenvalue problem, the generalized nonsymmet-
ric eigenvalue problem, the singular value decomposition, the banded singular value
decomposition, the generalized singular value decomposition, the generalized QR and
RQ factorizations, the generalized linear regression model, and the constrained linear
least squares problem. The tests for the REAL version are as follows:

xeigtsts < nep.in > snep.out

xeigtsts < sep.in > ssep.out

xeigtsts < svd.in > ssvd.out

xeigtsts < sec.in > sec.out

xeigtsts < sed.in > sed.out

xeigtsts < sgg.in > sgg.out

xeigtsts < ssg.in > ssg.out

xeigtsts < ssb.in > ssb.out

xeigtsts < sbb.in > sbb.out

xeigtsts < sbal.in > sbal.out

xeigtsts < sbak.in > sbak.out

xeigtsts < sgbal.in > sgbal.out

xeigtsts < sgbak.in > sgbak.out

xeigtsts < glm.in > sglm.out

xeigtsts < gqr.in > sgqr.out

xeigtsts < gsv.in > sgsv.out

xeigtsts < lse.in > slse.out

16

The tests using xeigtstc, xeigtstd, and xeigtstz also use the input files nep.in,
sep.in, svd.in, glm.in, gqr.in, gsv.in, and lse.in, but the leading ‘s’ in the other
input file names must be changed to ‘c’, ‘d’, or ‘z’.

If you encountered failures in this phase of the testing process, please refer to Section 6.8.

6.7 Run the LAPACK Timing Programs

There are two distinct timing programs for LAPACK routines in each data type, one
for the linear equation routines and one for the eigensystem routines. The timing program
for the linear equation routines is also used to time the BLAS. We encourage you to con-
duct these timing experiments in REAL and COMPLEX or in DOUBLE PRECISION and
COMPLEX*16; it is not necessary to send timing results in all four data types.

Two sets of input files are provided, a small set and a large set. The small data sets are
appropriate for a standard workstation or other non-vector machine. The large data sets
are appropriate for supercomputers, vector computers, and high-performance workstations.
We are mainly interested in results from the large data sets, and it is not necessary to run
both the large and small sets. The values of N in the large data sets are about five times
larger than those in the small data set, and the large data sets use additional values for
parameters such as the block size NB and the leading array dimension LDA. Small data
sets are indicated by lower case names, such as stime.in, and large data sets are indicated
by upper case names, such as STIME.in. Except as noted, the leading ‘s’ (or ‘S’) in the
input file name must be replaced by ‘d’, ‘c’, or ‘z’ (‘D’, ‘C’, or ‘Z’) for the other data types.

We encourage you to obtain timing results with the large data sets, as this allows us to
compare different machines. If this would take too much time, suggestions for paring back
the large data sets are given in the instructions below. We also encourage you to experiment
with these timing programs and send us any interesting results, such as results for larger
problems or for a wider range of block sizes. The main programs are dimensioned for the
large data sets, so the parameters in the main program may have to be reduced in order
to run the small data sets on a small machine, or increased to run experiments with larger
problems.

The minimum time each subroutine will be timed is set to 0.0 in the large data files
and to 0.05 in the small data files, and on many machines this value should be increased.
If the timing interval is not long enough, the time for the subroutine after subtracting the
overhead may be very small or zero, resulting in megaflop rates that are very large or zero.
(To avoid division by zero, the megaflop rate is set to zero if the time is less than or equal to
zero.) The minimum time that should be used depends on the machine and the resolution
of the clock.

For more information on the timing programs and how to modify the input files, see
Section 8.

If you do not wish to run each of the timings individually, you can go to LAPACK, edit
the definition timing in the file Makefile to specify the data types desired, and type make

timing. This will compile and run the timings for the linear equation routines and the
eigensystem routines (see Sections 6.7.1 and 6.7.3).

If you are installing LAPACK on a Silicon Graphics machine, you must modify the
definition of timing to be

17

timing:

(cd TIMING; $(MAKE) -f Makefile.sgi)

If you encounter failures in any phase of the timing process, please feel free to contact
the authors as directed in Section 6.8.

Please note that the BLAS timing runs will still need to be run as instructed in 6.7.2.

6.7.1 Timing the Linear Equations Routines

The linear equation timing program is found in LAPACK/TIMING/LIN and the input files
are in LAPACK/TIMING. Three input files are provided in each data type for timing the
linear equation routines, one for square matrices, one for band matrices, and one for rect-
angular matrices. The small data sets for the REAL version are stime.in, sband.in, and
stime2.in, respectively, and the large data sets are STIME.in, SBAND.in, and STIME2.in.

a) To make the linear equation timing programs, go to LAPACK/TIMING/LIN and type
make followed by the data types desired, as in the examples in Section 5.3. The
executable files are called xlintims, xlintimc, xlintimd, and xlintimz and are
created in LAPACK/TIMING.

b) Go to LAPACK/TIMING and make any necessary modifications to the input files. You
may need to set the minimum time a subroutine will be timed to a positive value, or to
restrict the size of the tests if you are using a computer with performance in between
that of a workstation and that of a supercomputer. The computational requirements
can be cut in half by using only one value of LDA. If it is necessary to also reduce the
matrix sizes or the values of the blocksize, corresponding changes should be made to
the BLAS input files (see Section 6.7.2).

c) Run the programs for each data type you are using. For the REAL version, the
commands for the small data sets are

xlintims < stime.in > stime.out

xlintims < sband.in > sband.out

xlintims < stime2.in > stime2.out

or the commands for the large data sets are

xlintims < STIME.in > STIME.out

xlintims < SBAND.in > SBAND.out

xlintims < STIME2.in > STIME2.out

Similar commands should be used for the other data types.

18

6.7.2 Timing the BLAS

The linear equation timing program is also used to time the BLAS. Three input files
are provided in each data type for timing the Level 2 and 3 BLAS. These input files time
the BLAS using the matrix shapes encountered in the LAPACK routines, and we will use
the results to analyze the performance of the LAPACK routines. For the REAL version,
the small data files are sblasa.in, sblasb.in, and sblasc.in and the large data files
are SBLASA.in, SBLASB.in, and SBLASC.in. There are three sets of inputs because there
are three parameters in the Level 3 BLAS, M, N, and K, and in most applications one of
these parameters is small (on the order of the blocksize) while the other two are large (on
the order of the matrix size). In sblasa.in, M and N are large but K is small, while in
sblasb.in the small parameter is M, and in sblasc.in the small parameter is N. The
Level 2 BLAS are timed only in the first data set, where K is also used as the bandwidth
for the banded routines.

a) Go to LAPACK/TIMING and make any necessary modifications to the input files. You
may need to set the minimum time a subroutine will be timed to a positive value. If
you modified the values of N or NB in Section 6.7.1, set M, N, and K accordingly. The
large parameters among M, N, and K should be the same as the matrix sizes used in
timing the linear equation routines, and the small parameter should be the same as
the blocksizes used in timing the linear equation routines. If necessary, the large data
set can be simplified by using only one value of LDA.

b) Run the programs for each data type you are using. For the REAL version, the
commands for the small data sets are

xlintims < sblasa.in > sblasa.out

xlintims < sblasb.in > sblasb.out

xlintims < sblasc.in > sblasc.out

or the commands for the large data sets are

xlintims < SBLASA.in > SBLASA.out

xlintims < SBLASB.in > SBLASB.out

xlintims < SBLASC.in > SBLASC.out

Similar commands should be used for the other data types.

6.7.3 Timing the Eigensystem Routines

The eigensystem timing program is found in LAPACK/TIMING/EIG and the input files are
in LAPACK/TIMING. Four input files are provided in each data type for timing the eigensys-
tem routines, one for the generalized nonsymmetric eigenvalue problem, one for the non-
symmetric eigenvalue problem, one for the symmetric and generalized symmetric eigenvalue
problem, and one for the singular value decomposition. For the REAL version, the small
data sets are called sgeptim.in, sneptim.in, sseptim.in, and ssvdtim.in, respectively.

19

and the large data sets are called SGEPTIM.in, SNEPTIM.in, SSEPTIM.in, and SSVDTIM.in.
Each of the four input files reads a different set of parameters, and the format of the input
is indicated by a 3-character code on the first line.

The timing program for eigenvalue/singular value routines accumulates the operation
count as the routines are executing using special instrumented versions of the LAPACK
routines. The first step in compiling the timing program is therefore to make a library of
the instrumented routines.

a) To make a library of the instrumented LAPACK routines, first go to
LAPACK/TIMING/EIG/EIGSRC and type make followed by the data types desired, as
in the examples of Section 5.3. The library of instrumented code is created in
LAPACK/TIMING/EIG/eigsrc PLAT.a, where PLAT is the user-defined architecture suf-
fix specified in the file LAPACK/make.inc.

b) To make the eigensystem timing programs, go to LAPACK/TIMING/EIG and type make

followed by the data types desired, as in the examples of Section 5.3. The executable
files are called xeigtims, xeigtimc, xeigtimd, and xeigtimz and are created in
LAPACK/TIMING.

c) Go to LAPACK/TIMING and make any necessary modifications to the input files. You
may need to set the minimum time a subroutine will be timed to a positive value, or to
restrict the number of tests if you are using a computer with performance in between
that of a workstation and that of a supercomputer. Instead of decreasing the matrix
dimensions to reduce the time, it would be better to reduce the number of matrix
types to be timed, since the performance varies more with the matrix size than with
the type. For example, for the nonsymmetric eigenvalue routines, you could use only
one matrix of type 4 instead of four matrices of types 1, 3, 4, and 6. See Section 8 for
further details.

d) Run the programs for each data type you are using. For the REAL version, the
commands for the small data sets are

xeigtims < sgeptim.in > sgeptim.out

xeigtims < sneptim.in > sneptim.out

xeigtims < sseptim.in > sseptim.out

xeigtims < ssvdtim.in > ssvdtim.out

or the commands for the large data sets are

xeigtims < SGEPTIM.in > SGEPTIM.out

xeigtims < SNEPTIM.in > SNEPTIM.out

xeigtims < SSEPTIM.in > SSEPTIM.out

xeigtims < SSVDTIM.in > SSVDTIM.out

Similar commands should be used for the other data types.

20

6.8 Send the Results to Tennessee

Congratulations! You have now finished installing, testing, and timing LAPACK. If
you encountered failures in any phase of the testing or timing process, please consult our
release notes file on netlib (send email to netlib@ornl.gov and in the message type ”send
release notes from lapack”). This file contains machine-dependent installation clues which
hopefully will alleviate your difficulties or at least let you know that other users have
had similar difficulties on that machine. If there is not an entry for your machine or the
suggestions do not fix your problem, please feel free to contact the authors at

lapack@cs.utk.edu.

Tell us the type of machine on which the tests were run, the version of the operating
system, the compiler and compiler options that were used, and details of the BLAS library
or libraries that you used. You should also include a copy of the output file in which the
failure occurs.

We would like to keep our release notes file as up-to-date as possible. Therefore, if you
do not see an entry for your machine, please contact us with your testing results.

Comments and suggestions are also welcome.
We encourage you to make the LAPACK library available to your users and provide

us with feedback from their experiences. This release of LAPACK is not guaranteed to be
compatible with any previous test release.

21

7 More About Testing

There are two distinct test programs for LAPACK routines in each data type, one for
the linear equation routines and one for the eigensystem routines. Each program has its
own style of input, and the eigensystem test program accepts 17 different sets of input,
although four of these may be concatenated into one data set, for a total of 14 input files.
The following sections describe the different input formats and testing styles.

The main test procedure for the REAL linear equation routines is in
LAPACK/TESTING/LIN/schkaa.f in the Unix version and is the first program unit in
SLINTSTF in the non-Unix version. The main test procedure for the REAL eigenvalue
routines is in LAPACK/TESTING/EIG/schkee.f in the Unix version and is the first program
unit in SEIGTSTF in the non-Unix version.

7.1 The Linear Equation Test Program

The test program for the linear equation routines is driven by a data file from which the
following parameters may be varied:

• M, the matrix row dimension

• N, the matrix column dimension

• NRHS, the number of right hand sides

• NB, the blocksize for the blocked routines

• NX, the crossover point, the point in a block algorithm at which we switch to an
unblocked algorithm

For symmetric or Hermitian matrices, the values of N are used for the matrix dimension.
The number and size of the input values are limited by certain program maximums

which are defined in PARAMETER statements in the main test programs. For the linear
equation test program, these are:

Parameter Description Value

NMAX Maximum value of M or N for rectangular matrices 132
MAXIN Maximum number of values of M, N, NB, or NX 12
MAXRHS Maximum value of NRHS 10

The input file also specifies a set of LAPACK path names and the test matrix types to
be used in testing the routines in each path. Path names are 3 characters long; the first
character indicates the data type, and the next two characters identify a matrix type or
problem type. The test paths for the linear equation test program are as follows:

{S, C, D, Z} GE General matrices (LU factorization)
{S, C, D, Z} GB General band matrices
{S, C, D, Z} GT General tridiagonal
{S, C, D, Z} PO Positive definite matrices (Cholesky factorization)

22

{S, C, D, Z} PP Positive definite packed
{S, C, D, Z} PB Positive definite band
{S, C, D, Z} PT Positive definite tridiagonal
{C, Z} HE Hermitian indefinite matrices
{C, Z} HP Hermitian indefinite packed
{S, C, D, Z} SY Symmetric indefinite matrices
{S, C, D, Z} SP Symmetric indefinite packed
{S, C, D, Z} TR Triangular matrices
{S, C, D, Z} TP Triangular packed
{S, C, D, Z} TB Triangular band
{S, C, D, Z} QR QR decomposition
{S, C, D, Z} RQ RQ decomposition
{S, C, D, Z} LQ LQ decomposition
{S, C, D, Z} QL QL decomposition
{S, C, D, Z} QP QR decomposition with column pivoting
{S, C, D, Z} TZ Trapezoidal matrix (RQ factorization)
{S, C, D, Z} LS Least Squares driver routines
{S, C, D, Z} EQ Equilibration routines

The xQR, xRQ, xLQ, and xQL test paths also test the routines for generating or multiplying
by an orthogonal or unitary matrix expressed as a sequence of elementary Householder
transformations.

7.1.1 Tests for General and Symmetric Matrices

For each LAPACK test path specified in the input file, the test program generates test
matrices, calls the LAPACK routines in that path, and computes a number of test ratios to
verify that each operation has performed correctly. The test matrices used in the test paths
for general and symmetric matrices are shown in Table 1. Both the computational routines
and the driver routines are tested with the same set of matrix types. In this context, ε is
the machine epsilon and κ is the condition number of the matrix A. Matrix types with one
or more columns set to zero (or rows and columns, if the matrix is symmetric) are used to
test the error return codes. For band matrices, all combinations of the values 0, 1, n − 1,
(3n− 1)/4, and (n− 1)/4 are used for KL and KU in the GB path, and for KD in the PB
path. For the tridiagonal test paths xGT and xPT, types 1-6 use matrices of predetermined
condition number, while types 7-12 use random tridiagonal matrices.

For the LAPACK test paths shown in Table 1, each test matrix is subjected to the
following tests:

• Factor the matrix using xxxTRF, and compute the ratio

||LU −A||/(n||A||ε)

This form is for the paths xGE, xGB, and xGT. For the paths xPO, xPP, or xPB,
replace LU by LLT or UTU ; for xPT, replace LU by LDLT or UTDU , where D is
diagonal; and for the paths xSY, xSP, xHE, or xHP, replace LU by LDLT or UDUT ,
where D is diagonal with 1-by-1 and 2-by-2 diagonal blocks.

23

Test matrix type GE GB GT PO, PP PB PT SY, SP, HE, HP

Diagonal 1 1 1 1 1
Upper triangular 2
Lower triangular 3
Random, κ = 2 4 1 2 2 1 2 2
Random, κ =

√
0.1/ε 8 5 3 6 5 3 7

Random, κ = 0.1/ε 9 6 4 7 6 4 8
First column zero 5 2 8 3 2 8 3
Last column zero 6 3 9 4 3 9 4
Middle column zero 5 4 10 5
Last n/2 columns zero 7 4 10 6
Scaled near underflow 10 7 5, 11 8 7 5, 11 9
Scaled near overflow 11 8 6, 12 9 8 6, 12 10
Random, unspecified κ 7 7

Block diagonal 11†

†– complex symmetric test paths only

Table 1: Test matrices for general and symmetric linear systems

• Invert the matrix A using xxxTRI, and compute the ratio

||I −AA−1||/(n||A|| ||A−1||ε)

For tridiagonal and banded matrices, inversion routines are not available because the
inverse would be dense.

• Solve the system Ax = b using xxxTRS, and compute the ratios

||b−Ax||/(||A|| ||x||ε)
||x− x∗||/(||x∗||κε)

where x∗ is the exact solution and κ is the condition number of A.

• Use iterative refinement (xxxRFS) to improve the solution, and compute the ratios

||x− x∗||/(||x∗||κε)
(backward error) /ε

||x− x∗||/(||x∗|| (error bound))

• Compute the reciprocal condition number RCOND using xxxCON, and compare to
the value RCONDC which was computed as 1/(ANORM * AINVNM) where AIN-
VNM is the explicitly computed norm of A−1. The larger of the ratios

RCOND/RCONDC and RCONDC/RCOND

is returned. Since the same value of ANORM is used in both cases, this test measures
the accuracy of the estimate computed for A−1.

24

The solve and iterative refinement steps are also tested with A replaced by AT or AH where
applicable. The test ratios computed for the general and symmetric test paths are listed in
Table 2. Here we use ||LU − A|| to describe the difference in the recomputed matrix, even
though it is actually ||LLT −A|| or some other form for other paths.

GE, PO, PP, SY, SP GB, GT, PB, PT
Test ratio routines drivers routines drivers

||LU −A||/(n||A||ε) 1 1 1 1
||I −AA−1||/(n||A|| ||A−1||ε) 2
||b−Ax||/(||A|| ||x||ε) 3 2 2 2
||x− x∗||/(||x∗||κε) 4 3
||x− x∗||/(||x∗||κε), refined 5 3 4 3
(backward error)/ε 6 4 5 4
||x− x∗||/(||x∗||(error bound)) 7 5 6 5
RCOND ∗ κ 8 6 7 6

Table 2: Tests performed for general and symmetric linear systems

7.1.2 Tests for Triangular Matrices

The triangular test paths, xTR, xTP, and xTB, include a number of pathological test
matrices for testing the auxiliary routines xLATRS, xLATPS, and xLATBS, which are
robust triangular solves used in condition estimation. The triangular test matrices are
summarized in Table 3. To generate unit triangular matrices of predetermined condition
number, we choose a special unit triangular matrix and use plane rotations to fill in the
zeros without destroying the ones on the diagonal. For the xTB path, all combinations of
the values 0, 1, n − 1, (3n − 1)/4, and (n − 1)/4 are used for the number of offdiagonals
KD, so the diagonal type is not necessary.

Types 11-18 for the xTR and xTP paths, and types 10-17 for xTB, are used only to test
the scaling options in xLATRS, xLATPS, and xLATBS. These subroutines solve a scaled
triangular system Ax = sb or ATx = sb, where s is allowed to underflow to 0 in order to
prevent overflow in x. A growth factor is computed using the norms of the columns of A,
and if the solution can not overflow, the Level 2 BLAS routine is called. Types 11 and 18
test the scaling of b when b is initially large, types 12-13 and 15-16 test scaling when the
diagonal of A is small or zero, and type 17 tests the scaling if overflow occurs when adding
multiples of the columns to the right hand side. In type 14, no scaling is done, but the
growth factor is too large to call the equivalent BLAS routine.

The tests performed for the triangular routines are similar to those for the general and
symmetric routines, including tests of the inverse, solve, iterative refinement, and condition
estimation routines. One additional test ratio is computed for the robust triangular solves:

||sb−Ax||/(||A|| ||x|| ε)

Table 4 shows the test ratios computed for the triangular test paths.

25

Test matrix type TR, TP TB

Diagonal 1
Random, κ = 2 2 1
Random, κ =

√
0.1/ε 3 2

Random, κ = 0.1/ε 4 3
Scaled near underflow 5 4
Scaled near overflow 6 5
Identity 7 6
Unit triangular, κ = 2 8 7
Unit triangular, κ =

√
0.1/ε 9 8

Unit triangular, κ = 0.1/ε 10 9
Matrix elements are O(1), large right hand side 11 10
First diagonal causes overflow, offdiagonal column norms < 1 12 11
First diagonal causes overflow, offdiagonal column norms > 1 13 12
Growth factor underflows, solution does not overflow 14 13
Small diagonal causes gradual overflow 15 14
One zero diagonal element 16 15
Large offdiagonals cause overflow when adding a column 17 16
Unit triangular with large right hand side 18 17

Table 3: Test matrices for triangular linear systems

Test ratio TR, TP TB

||I −AA−1||/(n||A|| ||A−1||ε) 1
||b−Ax||/(||A|| ||x||ε) 2 1
||x− x∗||/(||x∗||κε) 3 2
||x− x∗||/(||x∗||κε), refined 4 3
(backward error)/ε 5 4
||x− x∗||/(||x∗||(error bound)) 6 5
RCOND ∗ κ 7 6
||sb−Ax||/||A|| ||x|| ε) 8 7

Table 4: Tests performed for triangular linear systems

26

7.1.3 Tests for the Orthogonal Factorization Routines

The orthogonal factorization routines are contained in the test paths xQR, xRQ, xLQ,
xQL, xQP, and xTZ. The first four of these test the QR, RQ, LQ, and QL factorizations
without pivoting. The subroutines to generate or multiply by the orthogonal matrix from
the factorization are also tested in these paths. There is not a separate test path for the
orthogonal transformation routines, since the important thing when generating an orthog-
onal matrix is not whether or not it is, in fact, orthogonal, but whether or not it is the
orthogonal matrix we wanted. The xQP test path is used for QR with pivoting, and xTZ
tests the reduction of a trapezoidal matrix by an RQ factorization.

The test paths xQR, xRQ, xLQ, and xQL all use the same set of test matrices and
compute similar test ratios, so we will only describe the xQR path. Also, we will refer
to the subroutines by their single precision real names, SGEQRF, SGEQRS, SORGQR,
and SORMQR. In the complex case, the orthogonal matrices are unitary, so the names
beginning with SOR- are changed to CUN-. Each of the orthogonal factorizations can
operate on m-by-n matrices, where m > n, m = n, or m < n.

Eight test matrices are used for SQR and the other orthogonal factorization test paths.
All are generated with a predetermined condition number (by default, κ = 2.).

1. Diagonal 5. Random, κ =
√

0.1/ε
2. Upper triangular 6. Random, κ = 0.1/ε
3. Lower triangular 7. Scaled near underflow
4. Random, κ = 2. 8. Scaled near overflow

The tests for the SQR path are as follows:

• Compute the QR factorization using SGEQRF, generate the orthogonal matrix Q
from the Householder vectors using SORGQR, and compute the ratio

1. ||A−QR||/(m||A||ε)

• Test the orthogonality of the computed matrix Q by computing the ratio

2. ||I −QHQ||/(mε)

• Generate a random matrix C and multiply it by Q or QH using SORMQR with
UPLO = ‘L’, and compare the result to the product of C and Q (or QH) using the
explicit matrix Q generated by SORGQR. The different options for SORMQR are
tested by computing the 4 ratios

3. ||QC −QC||/(m||C||ε)
4. ||CQ− CQ||/(m||C||ε)
5. ||QHC −QHC||/(m||C||ε)
6. ||CQH − CQH ||/(m||C||ε)

where the first product is computed using SORMQR and the second using the explicit
matrix Q.

27

• Compute the least-squares solution to a system of equations Ax = b using SGEQRS,
and compute the ratio

7. ||b−Ax||/(||A|| ||x||ε)

In the SQP test path, we test the QR factorization with column pivoting (SGEQPF),
which decomposes a matrix A into a product of a permutation matrix P , an orthogonal
matrix Q, and an upper triangular matrix R such that AP = QR. We generate three types
of matrices A with singular values s as follows:

• all singular values are zero,

• all singular values are 1, except for σmin(m,n) = 1/ε, and

• the singular values are 1, r, r2, . . . , rmin(m,n)−1 = 1/ε.

The following tests are performed:

• Compute the QR factorization with column pivoting using SGEQPF, compute the
singular values s̃ of R using SGEBD2 and SBDSQR, and compute the ratio

||s̃− s||/(m||s||ε)

• Generate the orthogonal matrix Q from the Householder vectors using SORMQR, and
compute the ratio

||AP −QR||/(m||A||ε)

• Test the orthogonality of the computed matrix Q by computing the ratio

||I −QHQ||/(mε)

In the STZ path, we test the trapezoidal reduction (STZRQF), which decomposes an
m-by-n (m < n) upper trapezoidal matrix R (i.e. rij = 0 if i > j) into a product of a strictly
upper triangular matrix T (i.e. tij = 0 if i > j or j > m) and an orthogonal matrix Z such
that R = TZ. We generate matrices with the following three singular value distributions s:

• all singular values are zero,

• all singular values are 1, except for σmin(m,n) = 1/ε, and

• the singular values are 1, r, r2, . . . , rmin(m,n)−1 = 1/ε.

To obtain an upper trapezoidal matrix with the specified singular value distribution, we gen-
erate a dense matrix using SLATMS and reduce it to upper triangular form using SGEQR2.
The following tests are performed:

• Compute the trapezoidal reduction STZRQF, compute the singular values s̃ of T using
SGEBD2 and SBDSQR, and compute the ratio

||s̃− s||/(m||s||ε)

28

• Apply the orthogonal matrix Z to T from the right using SLATZM, and compute the
ratio

||R− TZ||/(m||R||ε)

• Form ZTZ using SLATZM, and compute the ratio

||I − ZTZ||/(mε)

7.1.4 Tests for the Least Squares Driver Routines

In the SLS path, driver routines are tested for computing solutions to over- and under-
determined, possibly rank-deficient systems of linear equations AX = B (A is m-by-n). For
each test matrix type, we generate three matrices: One which is scaled near underflow, a
matrix with moderate norm, and one which is scaled near overflow.

The SGELS driver computes the least-squares solutions (whenm ≥ n) and the minimum-
norm solution (when m < n) for an m-by-n matrix A of full rank. To test SGELS, we
generate a diagonally dominant matrix A, and for C = A and C = AH , we

• generate a consistent right-hand side B such thatX is in the range space of C, compute
a matrix X using SGELS, and compute the ratio

||AX −B||/(max(m,n)||A||||X||ε)

• If C has more rows than columns (i.e. we are solving a least-squares problem), form
R = AX − B, and check whether R is orthogonal to the column space of A by
computing

||RHC||/(max(m,n, nrhs)||A||||B||ε)

• If C has more columns than rows (i.e. we are solving an overdetermined system), check
whether the solution X is in the row space of C by scaling both X and C to have
norm one, and forming the QR factorization of D = [A,X] if C = AH , and the LQ
factorization of D = [AH , X]H if C = A. Letting E = D(n : n+nrhs, n+1, n+nrhs)
in the first case, and E = D(m + 1 : m + nrhs,m + 1 : m + nrhs) in the latter, we
compute

max |dij |/(max(m,n, nrhs)ε)

The SGELSX and SGELSS drivers solve a possibly rank-deficient system AX = B using
a complete orthogonal factorization (SGELSX) or singular value decomposition (SGELSS),
respectively. We generate matricesA that have rank r = min(m,n) or rank r = 3 min(m,n)/4
and are scaled to be near underflow, of moderate norm, or near overflow. We also generate
the null matrix (which has rank r = 0). Given such a matrix, we then generate a right-hand
side B which is in the range space of A.

In the process of determining X, SGELSX computes a complete orthogonal factor-
ization AP = QTZ, whereas SGELSS computes the singular value decomposition A =
Udiag(σ)V T .

29

• If s are the true singular values of A, and s̃ are the singular values of T , we compute

||s− s̃||/(||s||ε)

for SGELSX, and
||s− σ||/(||s||ε)

for SGELSS.

• Compute the ratio
||AX −B||/(max(m,n)||A||||X||ε)

• If m > r, form R = AX −B, and check whether R is orthogonal to the column space
of A by computing

||RHA||/(max(m,n, nrhs)||A||||B||ε)

• If n > r, check if X is in the row space of A by forming the LQ factorization of
D = [AH , X]H . Letting E = D(m+ 1 : m+ nrhs,m+ 1 : m+ nrhs), we return

max |dij |/(max(m,n, nrhs)ε)

7.1.5 Tests for the Equilibration Routines

The equilibration routines are xGEEQU, xGBEQU, xPOEQU, xPPEQU and xPBEQU.
These routines perform diagonal scaling on various kinds of matrices to reduce their condi-
tion number prior to linear equation solving. All of them attempt to somehow equalize the
norms of the rows and/or columns of the input matrix by diagonal scaling. This is tested
by generating a few matrices for which the answer is known exactly, and comparing the
output with the correct answer. There are no testing parameters for the user to set.

Equilibration is also an option to the driver routines for the test paths xGE, xGB, xPO,
xPP, and xPB, so it is tested in context there.

7.1.6 Input File for Testing the Linear Equation Routines

From the test program’s input file, one can control the size of the test matrices, the
block size and crossover point for the blocked routines, the paths to be tested, and the
matrix types used in testing. We have set the options in the input files to run through all of
the test paths. An annotated example of an input file for the REAL test program is shown
below.

Data file for testing REAL LAPACK linear eqn. routines

7 Number of values of M

0 1 2 3 5 10 16 Values of M (row dimension)

7 Number of values of N

0 1 2 3 5 10 16 Values of N (column dimension)

1 Number of values of NRHS

2 Values of NRHS (number of right hand sides)

5 Number of values of NB

30

1 3 3 3 20 Values of NB (the blocksize)

1 0 5 9 1 Values of NX (crossover point)

20.0 Threshold value of test ratio

T Put T to test the LAPACK routines

T Put T to test the driver routines

T Put T to test the error exits

SGE 11 List types on next line if 0 < NTYPES < 11

SGB 8 List types on next line if 0 < NTYPES < 8

SGT 12 List types on next line if 0 < NTYPES < 12

SPO 9 List types on next line if 0 < NTYPES < 9

SPP 9 List types on next line if 0 < NTYPES < 9

SPB 8 List types on next line if 0 < NTYPES < 8

SPT 12 List types on next line if 0 < NTYPES < 12

SSY 10 List types on next line if 0 < NTYPES < 10

SSP 10 List types on next line if 0 < NTYPES < 10

STR 18 List types on next line if 0 < NTYPES < 18

STP 18 List types on next line if 0 < NTYPES < 18

STB 17 List types on next line if 0 < NTYPES < 17

SQR 8 List types on next line if 0 < NTYPES < 8

SRQ 8 List types on next line if 0 < NTYPES < 8

SLQ 8 List types on next line if 0 < NTYPES < 8

SQL 8 List types on next line if 0 < NTYPES < 8

SQP 6 List types on next line if 0 < NTYPES < 6

STZ 3 List types on next line if 0 < NTYPES < 3

SLS 6 List types on next line if 0 < NTYPES < 6

SEQ

The first 11 lines of the input file are read using list-directed input and are used to
specify the values of M, N, NB, and THRESH (the threshold value). Lines 12-14 specify if
the LAPACK routines, the driver routines, or the error exits are to be tested. The remaining
lines occur in sets of 1 or 2 and allow the user to specify the matrix types. Each line contains
a 3-character path name in columns 1-3, followed by the number of test matrix types. If
the number of matrix types is omitted, as in the above example for SEQ, or if a character
is encountered before an integer, all the possible matrix types are tested. If the number of
matrix types is at least 1 but is less than the maximum number of possible types, a second
line will be read to get the numbers of the matrix types to be used. For example, the input
line

SGE 11

requests all of the matrix types for path SGE, while

SGE 3

4 5 6

requests only matrices of type 4, 5, and 6.

31

When the tests are run, each test ratio that is greater than or equal to the threshold
value causes a line of information to be printed to the output file. The first such line is
preceded by a header that lists the matrix types used and the tests performed for the current
path. A sample line for a test from the SGE path that did not pass when the threshold was
set to 1.0 is

M = 4, N = 4, NB = 1, type 2, test(13) = 1.14270

To get this information for every test, set the threshold to zero. After all the unsuccessful
tests have been listed, a summary line is printed of the form

SGE: 11 out of 1960 tests failed to pass the threshold

If all the tests pass the threshold, only one line is printed for each path:

All tests for SGE passed the threshold (1960 tests run)

7.2 Testing the Eigenproblem Balancing and Backward Transformation
Routines

The balancing routine, xGEBAL, is tested. xGEBAL balances a matrix and isolates
some of its eigenvalues. The backward transformation routine to be tested is xGEBAK.
xGEBAK back transforms the computed right or left eigenvectors if the original matrix was
preprocessed by balance subroutine xGEBAL.

No parameters can be varied for either of the routines tested; the data files contain
precomputed test problems along with their precomputed solutions. The reason for this
approach is threefold. First, there is no simple residual test ratio which can test correctness
of a condition estimator. Second, no comparable code in another library exists to compare
solutions. Third, the condition numbers we compute can themselves be quite ill-conditioned,
so that we need the precomputed solution to verify that the computed result is within
acceptable bounds.

The test program xeigtsts reads in the data from the data files sbal.in and sbak.in

respectively (for the REAL code). If there are no errors, a single message saying that all
the routines pass the tests will be printed. If any routine fails its tests, an error message is
printed with the name of the failed routine along with the number of failures, the number
of the example with the worst failure, and the test ratio of the worst failure.

7.3 Testing the Nonsymmetric Eigenvalue Routines

The test routine for the LAPACK nonsymmetric eigenvalue routines has the following
parameters which may be varied:

• the order N of the test matrix A

• the type of the test matrix A

• three numerical parameters: the blocksize NB, the number of shifts NS for the mul-
tishift QR method, and the (sub)matrix size MAXB below or equal to which an
unblocked, EISPACK-style method will be used

32

The test program thus consists of a triply-nested loop, the outer one over triples
(NB,NS,MAXB), the next over N, and the inner one over matrix types. On each iteration
of the innermost loop, a matrix A is generated and used to test the eigenvalue routines.

The number and size of the input values are limited by certain program maximums
which are defined in PARAMETER statements in the main test program:

Parameter Description Value

NMAX Maximum value for N, NB, NS, and MAXB 132
MAXIN Maximum number of values of the parameters 20

For the nonsymmetric eigenvalue input file, MAXIN is both the maximum number of values
of N and the maximum number of 3-tuples (NB, NS, MAXB). Similar restrictions exist for
the other input files for the eigenvalue test program.

7.3.1 The Nonsymmetric Eigenvalue Drivers

The driver routines for the nonsymmetric eigenvalue problem are

xGEEV eigenvalue/eigenvector driver,

xGEEVX expert version of xGEEV (includes condition estimation),

xGEES Schur form driver, and

xGEESX expert version of xGEES (includes condition estimation).

For these subroutines, some tests are done by generating random matrices of a dimen-
sion and type chosen by the user, and computing error bounds similar to those used for
the nonsymmetric eigenvalue computational routines. Other tests use a file of precom-
puted matrices and condition numbers, identical to that used for testing the nonsymmetric
eigenvalue/vector condition estimation routines.

The parameters that can be varied in the random matrix tests are:

• the order N of the matrix A

• the type of test matrix A

• five numerical parameters: NB (the block size), NBMIN (minimum block size), NX
(minimum dimension for blocking), NS (number of shifts in xHSEQR), and NBCOL
(minimum column dimension for blocking).

7.3.2 Test Matrices for the Nonsymmetric Eigenvalue Routines

Twenty-one different types of test matrices may be generated for the nonsymmetric
eigenvalue routines. Table 5 shows the types available, along with the numbers used to
refer to the matrix types. Except as noted, all matrices have O(1) entries.

Matrix types identified as “Zero”, “Identity”, “Diagonal”, and “Random entries” should
be self-explanatory. The other matrix types have the following meanings:

33

Eigenvalue Distribution
Type Arithmetic Geometric Clustered Random Other

Zero 1

Identity 2

(Jordan Block)T 3

Diagonal 4, 7†, 8‡ 5 6

UTU−1 9 10 11 12

XTX−1 13 14 15 16, 17†, 18‡

Random entries 19, 20†, 21‡

†– matrix entries are O(
√

overflow)

‡– matrix entries are O(
√

underflow)

Table 5: Test matrices for the nonsymmetric eigenvalue problem

(Jordan Block)T : Matrix with ones on the diagonal and the first subdiagonal, and zeros
elsewhere

UTU−1: Schur-form matrix T with O(1) entries conjugated by a unitary (or real orthogo-
nal) matrix U

XTX−1: Schur-form matrix T with O(1) entries conjugated by an ill-conditioned matrix
X

For eigenvalue distributions other than “Other”, the eigenvalues lie between ε (the
machine precision) and 1 in absolute value. The eigenvalue distributions have the following
meanings:

Arithmetic: Difference between adjacent eigenvalues is a constant

Geometric: Ratio of adjacent eigenvalues is a constant

Clustered: One eigenvalue is 1 and the rest are ε in absolute value

Random: Eigenvalues are logarithmically distributed

7.3.3 Test Matrices for the Nonsymmetric Eigenvalue Drivers

All four drivers are tested with up to 21 types of random matrices. These are nearly
the same as the types of matrices used to test the nonsymmetric eigenvalue computational
routines, and are given in Table 3. The only differences are that matrix types 7 and 17 are
scaled by a number close to the underflow threshold (rather than its square root), types
8 and 18 are scaled by a number close to the overflow threshold, and types 20 and 21
have certain rows and columns zeroed out. The reason for these changes is to activate the
automatic scaling features in the driver, and to test the balancing routine.

In addition, the condition estimation features of the expert drivers xGEEVX and xGEESX
are tested by the same precomputed sets of test problems used to test their constituent pieces
xTRSNA and xTRSEN.

34

7.3.4 Tests Performed on the Nonsymmetric Eigenvalue Routines

Finding the eigenvalues and eigenvectors of a nonsymmetric matrix A is done in the
following stages:

1. A is decomposed as UHU∗, where U is unitary, H is upper Hessenberg, and U∗ is the
conjugate transpose of U .

2. H is decomposed as ZTZ∗, where Z is unitary and T is in Schur form; this also gives
the eigenvalues λi, which may be considered to form a diagonal matrix Λ.

3. The left and right eigenvector matrices L and R of the Schur matrix T are computed.

4. Inverse iteration is used to obtain the left and right eigenvector matrices Y and X of
the matrix H.

To check these calculations, the following test ratios are computed:

r1 =
‖A− UHU∗‖

nε ‖A‖
r2 =

‖I − UU∗‖
nε

r3 =
‖H − ZTZ∗‖

nε ‖H‖
r4 =

‖I − ZZ∗‖
nε

r5 =
‖A− (UZ)T (UZ)∗‖

nε ‖A‖
r6 =

‖I − (UZ)(UZ)∗‖
nε

r7 =
‖T1 − T0‖
ε ‖T‖

r8 =
‖Λ1 − Λ0‖
ε ‖Λ‖

r9 =
‖TR−RΛ‖
ε ‖T‖ ‖R‖

r10 =
‖LT − ΛL‖
ε ‖T‖ ‖L‖

r11 =
‖HX −XΛ‖
nε ‖H‖ ‖X‖

r12 =
‖Y H − ΛY ‖
nε ‖H‖ ‖Y ‖

where the subscript 1 indicates that the eigenvalues and eigenvectors were computed at the
same time, and 0 that they were computed in separate steps. (All norms are ‖.‖1.) The
scalings in the test ratios assure that the ratios will be O(1), independent of ‖A‖ and ε,
and nearly independent of n.

When the test program is run, these test ratios will be compared with a user-specified
threshold THRESH, and for each test ratio that exceeds THRESH, a message is printed
specifying the test matrix, the ratio that failed, and its value. A sample message is

Matrix order= 25, type=11, seed=2548,1429,1713,1411, result 8 is 11.33

In this example, the test matrix was of order n = 25 and of type 11 from Table 5, “seed” is
the initial 4-integer seed of the random number generator used to generate A, and “result”
specifies that test ratio r8 failed to pass the threshold, and its value was 11.33.

35

7.3.5 Tests Performed on the Nonsymmetric Eigenvalue Drivers

The four drivers have slightly different tests applied to them.
xGEEV takes the input matrix A and computes a matrix of its right eigenvectors V R,

a matrix of its left eigenvectors V L, and a (block) diagonal matrix W of eigenvalues. If W
is real it may have 2 by 2 diagonal blocks corresponding to complex conjugate eigenvalues.
The test ratios computed are:

r1 = ‖A·V R−V R·W‖
nε‖A‖ r2 = ‖A′·V L−V L·W‖

nε‖A‖
r3 = |‖V Ri‖−1|

ε r4 = |‖V Li‖−1|
ε

r5 = (W (full) = W (partial)) r6 = (V R(full) = V R(partial))
r7 = (V L(full) = V L(partial))

r5, r6 and r7 check whether W or V R or V L is computed identically independent of
whether other quantities are computed or not. r3 and r4 also check that the component of
V R or V L of largest absolute value is real.

These test ratios are compared to the input parameter THRESH. If a ratio exceeds
THRESH, a message is printed specifying the test matrix, the ratio that failed and its
value, just like the tests performed on the nonsymmetric eigenvalue problem computational
routines.

In addition to the above tests, xGEEVX is tested by computing the test ratios r8 through
r11. r8 tests whether the output quantities SCALE, ILO, IHI, and ABNRM are identical
independent of which other output quantities are computed. r9 tests whether the output
quantity RCONDV is independent of the other outputs. r10 and r11 are only applied to the
matrices in the precomputed examples:

r10 = max |RCONDV−RCDV IN |cond(RCONDV) r11 = max |RCONDE−RCDEIN |cond(RCONDE)

RCONDV (RCONDE) is the array of output reciprocal condition numbers of eigenvec-
tors (eigenvalues), RCDVIN (RCDEIN) is the array of precomputed reciprocal condition
numbers, and cond(RCONDV) (cond(RCONDE)) is the condition number of RCONDV
(RCONDE).

xGEES takes the input matrix A and computes its Schur decomposition A = V S ·T ·V S′
where V S is orthogonal and T is (quasi) upper triangular, optionally sorts the eigenvalues
on the diagonal of T , and computes a vector of eigenvalues W . The following test ratios
are computed without sorting eigenvalues in T , and compared to THRESH:

r1 = (T in Schur form?) r2 = ‖A−V S·T ·V S′‖
nε‖A‖

r3 = ‖I−V S·V S′‖
nε r4 = (W agrees with diagonal of T)

r5 = (T (partial) = T (full)) r6 = (W (partial) = W (full))

r7 through r12 are the same test ratios but with sorting the eigenvalues . r13 indicates
whether the sorting was done successfully.

In addition to the above tests, xGEESX is tested via ratios r14 through r17. r14 (r15)
tests if RCONDE (RCONDV) is the same no matter what other quantities are computed.
r16 and r17 are only applied to the matrices in the precomputed examples:

36

r16 = max |RCONDE−RCDEIN |cond(RCONDE) r17 = max |RCONDV−RCDV IN |cond(RCONDV)

RCONDV (RCONDE) is the output reciprocal condition number of the selected invari-
ant subspace (eigenvalue cluster), RCDVIN (RCDEIN) is the precomputed reciprocal condi-
tion number, and cond(RCONDV) (cond(RCONDE)) is the condition number of RCONDV
(RCONDE).

7.3.6 Input File for Testing the Nonsymmetric Eigenvalue Routines

An annotated example of an input file for testing the nonsymmetric eigenvalue routines
is shown below.

NEP: Data file for testing Nonsymmetric Eigenvalue Problem routines

7 Number of values of N

0 1 2 3 5 10 16 Values of N (dimension)

5 Number of values of NB, NS, and MAXB

1 3 3 3 20 Values of NB (blocksize)

2 2 2 2 2 Values of NBMIN (minimum blocksize)

1 0 5 9 1 Values of NX (crossover point)

2 4 2 4 6 Values of NS (no. of shifts)

20 20 6 10 10 Values of MAXB (min. blocksize)

20.0 Threshold value

T Put T to test the error exits

1 Code to interpret the seed

NEP 21

The first line of the input file must contain the characters NEP in columns 1–3. Lines
2–11 are read using list-directed input and specify the following values:

line 2: The number of values of N
line 3: The values of N, the matrix dimension
line 4: The number of values of the parameters NB, NBMIN, NX, NS, and MAXB
line 5: The values of NB, the blocksize
line 6: The values of NBMIN, the minimum blocksize
line 7: The values of NX, the crossover point
line 8: The values of NS, the number of shifts
line 9: The values of MAXB, the minimum blocksize

line 10: The threshold value for the test ratios
line 11: An integer code to interpret the random number seed

= 0: Set the seed to a default value before each run
= 1: Initialize the seed to a default value only before the first run
= 2: Like 1, but use the seed values on the next line

line 12: If line 9 was 2, four integer values for the random number seed

37

The remaining lines occur in sets of 1 or 2 and allow the user to specify the matrix types.
Each line contains a 3-character identification in columns 1–3, which must be either NEP

or SHS (CHS in complex, DHS in double precision, and ZHS in complex*16), and the number
of matrix types must be the first nonblank item in columns 4–80. If the number of matrix
types is at least 1 but is less than the maximum number of possible types, a second line
will be read to get the numbers of the matrix types to be used. For example,

NEP 21

requests all of the matrix types for the nonsymmetric eigenvalue problem, while

NEP 4

9 10 11 12

requests only matrices of type 9, 10, 11, and 12.

7.3.7 Input File for Testing the Nonsymmetric Eigenvalue Drivers

There is a single input file to test all four drivers. The input data for each path (test-
ing xGEEV, xGEES, xGEEVX and xGEESX) is preceded by a single line identifying the
path (SEV, SES, SVX and SSX, respectively, when x=S, and CEV, CES, CVX and CSX,
respectively, when x=C). We discuss each set of input data in turn.

An annotated example of input data for testing SGEEV is shown below (testing CGEEV
is identical except CEV replaces SEV):

SEV Data file for the Real Nonsymmetric Eigenvalue Driver

6 Number of matrix dimensions

0 1 2 3 5 10 Matrix dimensions

3 3 1 4 1 Parameters NB, NBMIN, NX, NS, NBCOL

20.0 Threshold for test ratios

T Put T to test the error exits

2 Read another line with random number generator seed

2518 3899 995 397 Seed for random number generator

SEV 21 Use all matrix types

The first line must contain the characters SEV in columns 1-3. The remaining lines are
read using list-directed input and specify the following values:

38

line 2: The number of values of matrix dimension N
line 3: The values of N, the matrix dimension
line 4: The values of the parameters NB, NBMIN, NX, NS and NBCOL
line 5: The threshold value THRESH for the test ratios
line 6: T to test the error exits
line 7: An integer code to interpret the random number seed

=0: Set the seed to a default value before each run
=1: Initialize the seed to a default value only before the first run
=2: Like 1, but use the seed values on the next line

line 8: If line 7 was 2, four integer values for the random number seed
line 9: Contains ‘SEV’ in columns 1-3, followed by the number of matrix types

(an integer from 0 to 21)
line 9: (and following) if the number of matrix types is at least one and less than

21, a list of integers between 1 and 21 indicating which matrix types are to
be tested.

The input data for testing xGEES has the same format as for xGEEV, except SES
replaces SEV when testing SGEES, and CES replaces CEV when testing CGEES.

The input data for testing xGEEVX consists of two parts. The first part is identical to
that for xGEEV (using SVX instead of SEV and CVX instead of CEV). The second consists
of precomputed data for testing the eigenvalue/vector condition estimation routines. Each
matrix is stored on 1+2*N lines, where N is its dimension (1+N+N**2 lines for complex
data). The first line contains the dimension, a single integer (for complex data, a second
integer ISRT indicating how the data is sorted is also provided). The next N lines contain
the matrix, one row per line (N**2 lines for complex data, one item per row). The last N
lines correspond to each eigenvalue. Each of these last N lines contains 4 real values: the
real part of the eigenvalues, the imaginary part of the eigenvalue, the reciprocal condition
number of the eigenvalues, and the reciprocal condition number of the vector eigenvector.
The end of data is indicated by dimension N=0. Even if no data is to be tested, there must
be at least one line containing N=0.

The input data for testing xGEESX also consists of two parts. The first part is identical
to that for xGEES (using SSX instead of SES and CSX instead of CES). The second consists
of precomputed data for testing the eigenvalue/vector condition estimation routines. Each
matrix is stored on 3+N lines, where N is its dimension (3+N**2 lines for complex data).
The first line contains the dimension N and the dimension M of an invariant subspace (for
complex data, a third integer ISRT indicating how the data is sorted is also provided). The
second line contains M integers, identifying the eigenvalues in the invariant subspace (by
their position in a list of eigenvalues ordered by increasing real part (or imaginary part,
depending on ISRT for complex data)). The next N lines contains the matrix (N**2 lines
for complex data). The last line contains the reciprocal condition number for the average
of the selected eigenvalues, and the reciprocal condition number for the corresponding right
invariant subspace. The end of data is indicated by a line containing N=0 and M=0. Even
if no data is to be tested, there must be at least one line containing N=0 and M=0.

39

7.4 Testing the Generalized Nonsymmetric Eigenvalue Routines

The test routine for the LAPACK generalized nonsymmetric eigenvalue routines has the
following parameters which may be varied:

• the order N of the pair of test matrices A, B

• the type of the pair of test matrices A, B

The test program thus consists of a doubly-nested loop, the outer one over N and the inner
one over matrix types. On each iteration of the innermost loop, a pair of matrices A,B is
generated and used to test the eigenvalue routines.

7.4.1 The Generalized Nonsymmetric Eigenvalue Drivers

The driver routines for the generalized nonsymmetric eigenvalue problem are

xGEGS factors A and B into generalized Schur form and computes the generalized eigen-
values

xGEGV computes the generalized eigenvalues and the left and right generalized eigenvec-
tors

7.4.2 Test Matrices for the Generalized Nonsymmetric Eigenvalue Routines

Twenty-six different types of test matrix pairs may be generated for the generalized
nonsymmetric eigenvalue routines. Tables 6 and 7 show the types available, along with the
numbers used to refer to the matrix types. Except as noted, all matrices have O(1) entries.

Matrix B:

0 I J t (I 0
0 K) D1 D3

Matrix A: ×1 ×ω × 1
ω ×1 ×ω × 1

ω

0 1 3

I 2 4 8

I × ω 12

I × 1
ω 11

J t 5

(K 0
0 I) 6

D1 7

D1 × ω 14 10

D1 × 1
ω 9 13

D2 15

Table 6: Sparse test matrices for the generalized nonsymmetric eigenvalue problem

The following symbols and abbreviations are used:

40

Magnitude of A, B

‖A‖ ≈ 1, ‖A‖ ≈ 1
ω , ‖A‖ ≈ ω, ‖A‖ ≈ 1

ω , ‖A‖ ≈ ω,Distribution of
Eigenvalues ‖B‖ ≈ 1 ‖B‖ ≈ ω ‖B‖ ≈ ω ‖B‖ ≈ 1

ω ‖B‖ ≈ 1
ω

All Ones 16

(Same as type 15) 17

Arithmetic 19 22 24 25 23

Geometric 20

Clustered 18

Random 21

Random Entries 26

Table 7: Dense test matrices for the generalized nonsymmetric eigenvalue problem

0: The zero matrix.

I: The identity matrix.

ω: Generally, the underflow threshhold times the order of the matrix divided by the machine
precision. In other words, this is a very small number, useful for testing the sensitivity
to underflow and division by small numbers. Its reciprocal tests for overflow problems.

J t: Transposed Jordan block, i.e., matrix with ones on the first subdiagonal and zeros
elsewhere. (Note that the diagonal is zero.)

K: A (k + 1) × (k + 1) transposed Jordan block which is a diagonal block within a (2k +

1) × (2k + 1) matrix. Thus,
(
K 0
0 I

)
has all zero entries except for the last k diagonal

entries and the first k entries on the first subdiagonal. (Note that the matrices
(
K 0
0 I

)
and

(
I 0
0 K

)
have odd order; if an even order matrix is needed, a zero row and column

are added at the end.)

D1: A diagonal matrix with the entries 0, 1, 2, . . . , n − 1 on the diagonal, where n is the
order of the matrix.

D2: A diagonal matrix with the entries 0, 0, 1, 2, . . . , n− 3, 0 on the diagonal, where n is
the order of the matrix.

D3: A diagonal matrix with the entries 0, n− 3, n− 4, . . . , 1, 0, 0 on the diagonal, where
n is the order of the matrix.

Except for matrices with random entries, all the matrix pairs include at least one infinite,
one zero, and one singular eigenvalue. For arithmetic, geometric, and clustered eigenvalue
distributions, the eigenvalues lie between ε (the machine precision) and 1 in absolute value.
The eigenvalue distributions have the following meanings:

Arithmetic: Difference between adjacent eigenvalues is a constant.

41

Geometric: Ratio of adjacent eigenvalues is a constant.

Clustered: One eigenvalue is 1 and the rest are ε in absolute value.

Random: Eigenvalues are logarithmically distributed.

Random entries: Matrix entries are uniformly distributed random numbers.

7.4.3 Test Matrices for the Generalized Nonsymmetric Eigenvalue Drivers

The same twenty-six different types of test matrix pairs may be generated for the gen-
eralized nonsymmetric eigenvalue drivers. Tables 6 and 7 show the types available, along
with the numbers used to refer to the matrix types. Except as noted, all matrices have
O(1) entries.

7.4.4 Tests Performed on the Generalized Nonsymmetric Eigenvalue Routines

Finding the eigenvalues and eigenvectors of a pair of nonsymmetric matrices A, B is
done in the following stages:

1. A is decomposed as UHV ∗ and B as UTV ∗, where U and V are unitary, H is upper
Hessenberg, T is upper triangular, and U∗ is the conjugate transpose of U .

2. H is decomposed as QSZ∗ and T as QPZ∗, where Q and Z are unitary, P is upper
triangular with non-negative real diagonal entries and S is in Schur form; this also gives
the generalized eigenvalues λi, which are expressed as pairs (αi, βi), where λi = αi/βi.

3. The left and right generalized eigenvectors li and ri for the pair S, P are computed,
and from them the back-transformed eigenvectors l̂i and r̂i for the matrix pair H,T .
The eigenvectors are normalized so that their largest element has absolute value 13.
(Note that eigenvectors corresponding to singular eigenvalues, i.e., eigenvalues for
which α = β = 0, are not well defined, these are not tested in the eigenvector tests
described below.)

3For the purpose of normalization, the “absolute value” of a complex number z = x + iy is computed as
|x|+ |y|.

42

To check these calculations, the following test ratios are computed:

r1 =
‖A− UHV ∗‖

nε ‖A‖
r2 =

‖B − UTV ∗‖
nε ‖B‖

r3 =
‖I − UU∗‖

nε
r4 =

‖I − V V ∗‖
nε

r5 =
‖H −QSZ∗‖

nε ‖H‖
r6 =

‖T −QPZ∗‖
nε ‖T‖

r7 =
‖I −QQ∗‖

nε
r8 =

‖I − ZZ∗‖
nε

r9 = max
i

∥∥∥(βiS − αiP)T li
∥∥∥

εmax (‖βiS‖ , ‖αiP‖)
r10 = max

i

∥∥∥(βiH − αiT)T l̂i
∥∥∥

εmax (‖βiH‖ , ‖αiT‖)

r11 = max
i

(‖(βiS − αiP)ri‖
εmax (‖βiS‖ , ‖αiP‖)

r12 = max
i

(‖(βiH − αiT)r̂i‖
εmax (‖βiH‖ , ‖αiT‖)

All norms are ‖.‖1. The scalings in the test ratios assure that the ratios will be O(1),
independent of ‖A‖ and ε, and nearly independent of n.

When the test program is run, these test ratios will be compared with a user-specified
threshold THRESH, and for each test ratio that exceeds THRESH, a message is printed
specifying the test matrix, the ratio that failed, and its value. A sample message is

Matrix order= 25, type=18, seed=2548,1429,1713,1411, result 8 is 11.33

In this example, the test matrix was of order n = 25 and of type 18 from Table 7, “seed” is
the initial 4-integer seed of the random number generator used to generate A and B, and
“result” specifies that test ratio r8 failed to pass the threshold, and its value was 11.33.

The normalization of the eigenvectors will also be checked. If the absolute value of the
largest entry in an eigenvector is not within ε × THRESH of 1, then a message is printed
specifying the error. A sample message is

SCHK51: Right Eigenvectors from STGEVC(JOB=B) incorrectly normalized.

Error/precision=0.103E+05, n= 25, type= 18, seed=2548,1429,1713,1411.

7.4.5 Tests Performed on the Generalized Nonsymmetric Eigenvalue Drivers

The two driver routines have slightly different tests applied to them. For SGEGS the
following tests are computed:

r1 =

∥∥∥A−QSZT ∥∥∥
‖A‖nε

r2 =

∥∥∥B −QTZT ∥∥∥
‖B‖nε

r3 =

∥∥∥I −QQT ∥∥∥
nε

r4 =

∥∥∥I − ZZT ∥∥∥
nε

43

r5 = max
j
D(j) =


|α(j)−S(j,j)|

max(|α(j)|,|S(j,j)|) + |β(j)−T (j,j)|
max(|β(j)|,|T (j,j)|) if α(j) is real

| det(sS−wT)|
εmax(s‖S‖,|w|‖T‖)‖sS−wT‖ if α(j) is complex,

where S and T are the 2×2 diagonal blocks of S and T corresponding to the jth eigenvalue.
For SGEGV the following tests are computed:

r6 = max
left eigenvalue/-vector pairs (β/α, l)

|(βA− αB)T l|
εmax(|βA|, |αB|)

r7 = max
right eigenvalue/-vector pairs (β/α, r)

|(βA− αB)r|
εmax(|βA|, |αB|)

7.4.6 Input File for Testing the Generalized Nonsymmetric Eigenvalue Rou-
tines and Drivers

An annotated example of an input file for testing the generalized nonsymmetric eigen-
value routines is shown below.

SGG: Data file for testing Nonsymmetric Eigenvalue Problem routines

7 Number of values of N

0 1 2 3 5 10 16 Values of N (dimension)

20.0 Threshold value

T Put T to test the LAPACK routines

T Put T to test the driver routines

T Put T to test the error exits

1 Code to interpret the seed

SGG 26

The first line of the input file must contain the characters SGG in columns 1–3. Lines
2–14 are read using list-directed input and specify the following values:

line 2: The number of values of N
line 3: The values of N, the matrix dimension
line 4: The threshold value for the test ratios
line 5: TSTCHK, flag to test LAPACK routines
line 6: TSTDRV, flag to test driver routines
line 7: TSTERR, flag to test error exits from LAPACK and driver routines
line 8: An integer code to interpret the random number seed

= 0: Set the seed to a default value before each run
= 1: Initialize the seed to a default value only before the first run
= 2: Like 1, but use the seed values on the next line

line 9: If line 14 was 2, four integer values for the random number seed

The remaining lines are used to specify the matrix types for one or more sets of tests, as in
the nonsymmetric case. The valid 3-character codes are SGG (CGG in complex, DGG in double
precision, and ZGG in complex*16).

44

7.5 Testing the Nonsymmetric Eigenvalue Condition Estimation Rou-
tines

The main routines tested are xTREXC, xTRSYL, xTRSNA and xTRSEN. xTREXC
reorders eigenvalues on the diagonal of a matrix in Schur form, xTRSYL solves the Sylvester
equation AX+XB = C for X given A, B and C, xTRSNA computes condition numbers for
individual eigenvalues and right eigenvectors, and xTRSEN computes condition numbers
for the average of a cluster of eigenvalues, as well as their corresponding right invariant
subspace. Several auxiliary routines xLAEQU, xLAEXC, xLALN2, xLAQTR, and xLASY2
are also tested; these are only used with real (x=S or x=D) data.

No parameters can be varied; the data files contain precomputed test problems along
with their precomputed solutions. The reason for this approach is threefold. First, there is
no simple residual test ratio which can test correctness of a condition estimator. Second, no
comparable code in another library exists to compare solutions. Third, the condition num-
bers we compute can themselves be quite ill-conditioned, so that we need the precomputed
solution to verify that the computed result is within acceptable bounds.

The test program xeigtsts reads in the data from the data file sec.in (for the REAL
code). If there are no errors, a single message saying that all the routines pass the tests will
be printed. If any routine fails its tests, an error message is printed with the name of the
failed routine along with the number of failures, the number of the example with the worst
failure, and the test ratio of the worst failure.

For more details on eigencondition estimation, see LAPACK Working Note 13 [4].

7.6 Testing the Symmetric Eigenvalue Routines

The test routine for the LAPACK symmetric eigenvalue routines has the following pa-
rameters which may be varied:

• the order N of the test matrix A

• the type of the test matrix A

• the blocksize NB

The testing program thus consists of a triply-nested loop, the outer one over NB, the next
over N, and the inner one over matrix types. On each iteration of the innermost loop, a
matrix A is generated and used to test the eigenvalue routines.

However, there is one exception. The test routine for the LAPACK banded symmet-
ric eigenvalue routines has the following parameters which may be varied:

• the order N of the test matrix A

• the type of the test matrix A

The testing program thus consists of a doubly-nested loop, the outer one over N, and
the inner one over matrix types. On each iteration of the innermost loop, a matrix A is
generated and used to test the eigenvalue routines.

45

7.6.1 The Symmetric Eigenvalue Drivers

The driver routines for the symmetric eigenvalue problem are

xSTEV eigenvalue/eigenvector driver for symmetric tridiagonal matrix,

xSTEVD divide and conquer driver for symmetric tridiagonal matrix,

xSTEVX selected eigenvalue/eigenvectors for symmetric tridiagonal matrix,

xSYEV eigenvalue/eigenvector driver for symmetrix matrix,

xSYEVD divide and conquer driver for symmetric matrix,

xSYEVX selected eigenvalue/eigenvectors for symmetric matrix,

xSPEV eigenvalue/eigenvector driver for symmetric matrix in packed storage,

xSPEVD divide and conquer driver for symmetric matrix in packed storage,

xSPEVX selected eigenvalue/eigenvectors for symmetric matrix in packed storage,

xSBEV eigenvalue/eigenvector driver for symmetric band matrix,

xSBEVD divide and conquer driver for symmetric band matrix,

xSBEVX selected eigenvalue/eigenvectors for symmetric band matrix.

7.6.2 Test Matrices for the Symmetric Eigenvalue Routines

Except for the banded matrices, twenty-one different types of test matrices may be
generated for the symmetric eigenvalue routines. Table 8 shows the types available, along
with the numbers used to refer to the matrix types. Except as noted, all matrices have
O(1) entries. The expression UDU−1 means a real diagonal matrix D with O(1) entries
conjugated by a unitary (or real orthogonal) matrix U . The eigenvalue distributions have
the same meanings as in the nonsymmetric case (see Section 7.3.2).

For banded matrices, fifteen different types of test matrices may be generated. These
fifteen test matrices are the same as the first fifteen test matrices in Table 8.

7.6.3 Test Matrices for the Symmetric Eigenvalue Drivers

Eighteen different types of test matrices may be generated for the symmetric eigenvalue
drivers. The first 15 test matrices are the same as the types of matrices used to test the
symmetric eigenvalue computational routines, and are given in Table 8. Table 9 shows the
types available, along with the numbers used to refer to the matrix types. Except as noted,
all matrices have O(1) entries. The expression UDU−1 means a real diagonal matrix D
with O(1) entries conjugated by a unitary (or real orthogonal) matrix U . The eigenvalue
distributions have the same meanings as in the nonsymmetric case (see Section 5.2.1).

46

Eigenvalue Distribution
Type Arithmetic Geometric Clustered Other

Zero 1

Identity 2

Diagonal 3 4, 6†, 7‡ 5

UDU−1 8, 11†, 12‡, 9, 17∗ 10, 18∗

16∗, 19?, 20•

Symmetric w/Random entries 13, 14†, 15‡

Diag. Dominant 21

†– matrix entries are O(
√

overflow)

‡– matrix entries are O(
√

underflow)

∗ – diagonal entries are positive
? – matrix entries are O(

√
overflow) and diagonal entries are positive

• – matrix entries are O(
√

underflow) and diagonal entries are positive

Table 8: Test matrices for the symmetric eigenvalue problem

Eigenvalue Distribution
Type Arithmetic Geometric Clustered Other

Zero 1

Identity 2

Diagonal 3 4, 6†, 7‡ 5

UDU−1 8, 11†, 12‡ 9 10

Symmetric w/Random entries 13, 14†, 15‡

Band 16, 17†, 18‡

†– matrix entries are O(
√

overflow)

‡– matrix entries are O(
√

underflow)

Table 9: Test matrices for the symmetric eigenvalue drivers

7.6.4 Tests Performed on the Symmetric Eigenvalue Routines

Finding the eigenvalues and eigenvectors of a symmetric matrix A is done in the following
stages:

1. A is decomposed as USU∗, where U is unitary, S is real symmetric tridiagonal, and
U∗ is the conjugate transpose of U . U is represented as a product of Householder
transformations, whose vectors are stored in the first n-1 columns of V , and whose
scale factors are in TAU .

2. S is decomposed as ZD1Z∗, where Z is real orthogonal and D1 is a real diagonal
matrix of eigenvalues. D2 is the matrix of eigenvalues computed when Z is not
computed.

3. The “PWK” method is used to compute D3, the matrix of eigenvalues, using a square-
root-free method which does not compute Z.

47

4. S is decomposed as Z4 D4 Z4∗, for a symmetric positive definite tridiagonal matrix.
D5 is the matrix of eigenvalues computed when Z is not computed.

5. Selected eigenvalues (WA1, WA2, and WA3) are computed and denote eigenvalues
computed to high absolute accuracy, with different range options. WR will denote
eigenvalues computed to high relative accuracy.

6. Given the eigenvalues, the eigenvectors of S are computed in Y .

7. S is factored as Z D1 Z∗.

To check these calculations, the following test ratios are computed (where banded ma-
trices only compute test ratios 1-4):

r1 =
‖A− V SV ∗‖

nε ‖A‖
computed by SSY TRD(UPLO =′ U ′) or SSBTRD(UPLO =′ U ′)

r2 =
‖I − UV ∗‖

nε
test of SORGTR(UPLO =′ U ′)

r3 =
‖A− V SV ∗‖

nε ‖A‖
computed by SSY TRD(UPLO =′ L′) or SSBTRD(UPLO =′ L′)

r4 =
‖I − UV ∗‖

nε
test of SORGTR(UPLO =′ L′)

Tests 5-8 are the same as tests 1-4 but for SSPTRD and SOPGTR.

r9 =
‖S − ZD1Z∗‖
nulp ‖S‖

r10 =
‖I − ZZ∗‖
nulp

r11 =
‖D1−D2‖
ulp ‖D1‖

r12 =
‖D1−D3‖
ulp ‖D1‖

r13 =

{
0 if eigenvalues of S are within THRESH of those in D1.
2 ∗ THRESH otherwise

For S positive definite,

r14 =
‖S − Z4D4Z4∗‖

nulp ‖S‖

48

r15 =
‖I − Z4Z4∗‖

nulp

r16 =
‖D4−D5‖

100ulp ‖D4‖

When S is also diagonally dominant by a factor γ < 1,

r17 = max
i

‖D4(i)−WR(i)‖
‖D4(i)‖ω

,

where ω = 2(2n− 1)ulp
1 + 8 ∗ γ2

(1− γ)4

r18 =
‖WA1−D3‖
ulp ‖D3‖

r19 =
maxi(minj(‖WA2(i)−WA3(j)‖)) + maxi(minj(‖WA3(i)−WA2(j)‖)))

ulp ‖D3‖

r20 =
‖S − Y WA1Y ∗‖

nulp ‖S‖

r21 =
‖I − Y Y ∗‖

nulp

r22 =
‖S − Z DZ∗‖
‖S‖ nulp

for SSTEDC(’I’)

r23 =
‖I − Z Z∗‖

nulp

for SSTEDC(’I’)

r24 =
‖S − Z DZ∗‖
‖S‖ nulp

for SSTEDC(’V’)

r25 =
‖I − Z Z∗‖

nulp

for SSTEDC(’V’)

r26 =
‖D1−D2‖
‖D1‖ ulp

for SSTEDC(’V’) and SSTEDC(’N’)

where the subscript 1 indicates that the eigenvalues and eigenvectors were computed at
the same time, and 0 that they were computed in separate steps. (All norms are ‖.‖1.) The
scalings in the test ratios assure that the ratios will be O(1) (typically less than 10 or 100),
independent of ‖A‖ and ε, and nearly independent of n.

As in the nonsymmetric case, the test ratios for each test matrix are compared to a
user-specified threshold THRESH, and a message is printed for each test that exceeds this

49

threshold.

7.6.5 Tests Performed on the Symmetric Eigenvalue Drivers

For each driver routine, the following tests will be performed:

r1 =
‖A− ZDZ∗‖
nulp ‖A‖

r2 =
‖I − ZZ∗‖
nulp

r3 =
‖D1−D2‖
ulp ‖D1‖

where Z is the matrix of eigenvectors returned when the eigenvector option is given, D1 and
D2 are the eigenvalues returned with and without the eigenvector option, and ulp represents
xLAMCH(’P’).

7.6.6 Input File for Testing the Symmetric Eigenvalue Routines and Drivers

An annotated example of an input file for testing the symmetric eigenvalue routines and
drivers is shown below.

SEP: Data file for testing Symmetric Eigenvalue Problem routines

7 Number of values of N

0 1 2 3 5 10 16 Values of N (dimension)

5 Number of values of NB, NBMIN, and NX

1 3 3 3 20 Values of NB (blocksize)

2 2 2 2 2 Values of NBMIN (minimum blocksize)

1 0 5 9 1 Values of NX (crossover point)

20.0 Threshold value

T Put T to test the LAPACK routines

T Put T to test the driver routines

T Put T to test the error exits

1 Code to interpret the seed

SEP 15

The first line of the input file must contain the characters SEP in columns 1–3. Lines
2–12 are read using list-directed input and specify the following values:

50

line 2: The number of values of N
line 3: The values of N, the matrix dimension
line 4: The number of values of the parameters NB, NBMIN, NX
line 5: The values of NB, the blocksize
line 6: The values of NBMIN, the minimum blocksize
line 7: The values of NX, the crossover point
line 8: The threshold value for the test ratios
line 9: TSTCHK, flag to test LAPACK routines

line 10: TSTDRV, flag to test driver routines
line 11: TSTERR, flag to test error exits from LAPACK and driver routines
line 12: An integer code to interpret the random number seed

= 0: Set the seed to a default value before each run
= 1: Initialize the seed to a default value only before the first run
= 2: Like 1, but use the seed values on the next line

line 13: If line 12 was 2, four integer values for the random number seed

The remaining lines are used to specify the matrix types for one or more sets of tests, as in
the nonsymmetric case. The valid 3-character codes are SEP or SST (CST in complex, DST
in double precision, and ZST in complex*16).

7.6.7 Input File for Testing the Banded Symmetric Eigenvalue Routines and
Drivers

An annotated example of an input file for testing the symmetric eigenvalue routines and
drivers is shown below.

SSB: Data file for testing Symmetric Eigenvalue Problem routines

2 Number of values of N

5 20 Values of N (dimension)

5 Number of values of K

0 1 2 5 16 Values of K (band width)

20.0 Threshold value

T Put T to test the error exits

1 Code to interpret the seed

SSB 15

The first line of the input file must contain the characters SEP in columns 1–3. Lines
2–12 are read using list-directed input and specify the following values:

51

line 2: The number of values of N
line 3: The values of N, the matrix dimension
line 4: The number of values of K
line 5: The values of K
line 6: The threshold value for the test ratios
line 7: TSTERR, flag to test error exits from LAPACK and driver routines
line 8: An integer code to interpret the random number seed

= 0: Set the seed to a default value before each run
= 1: Initialize the seed to a default value only before the first run
= 2: Like 1, but use the seed values on the next line

line 9: If line 12 was 2, four integer values for the random number seed

The remaining lines are used to specify the matrix types for one or more sets of tests.
The valid 3-character code is SSB (CSB in complex, DSB in double precision, and ZSB in
complex*16).

7.7 Testing the Generalized Symmetric Eigenvalue Routines and Drivers

The test routine for the LAPACK generalized symmetric eigenvalue routines and drivers
has the following parameters which may be varied:

• the order N of the test matrix A

• the type of the test matrix A

• the blocksize NB

The testing program thus consists of a triply-nested loop, the outer one over NB, the next
over N, and the inner one over matrix types. On each iteration of the innermost loop, a
matrix A is generated and used to test the eigenvalue routines.

7.7.1 The Generalized Symmetric Eigenvalue Drivers

The driver routines for the generalized symmetric eigenvalue problem are

SSYGV eigenvalue/vector driver for symmetric matrices A and B, where B is also positive
definite, eigenproblem,

CHEGV eigenvalue/vector driver for hermitian matrices A and B, where B is also positive
definite, eigenproblem,

SSPGV eigenvalue/vector driver for symmetric packed matrices A and B, where B is also
positive definite, eigenproblem,

CHPGV eigenvalue/vector driver for hermitian packed matrices A and B, where B is also
positive definite,

SSBGV eigenvalue/vector driver for symmetric and banded matrices A and B, where B is
also positive definite,

52

CHBGV eigenvalue/vector driver for Hermitian and banded matrices A and B, where B
is also positive definite.

7.7.2 Test Matrices for the Generalized Symmetric Eigenvalue Routines and
Drivers

Twenty-one different types of test matrices may be generated for generalized symmetric
eigenvalue routines and they are given in Table 10. These test matrices are very similar to
the test matrices in Table 9 for testing the symmetric eigenvalue drivers.

Eigenvalue Distribution
Type Arithmetic Geometric Clustered Other

Zero 1

Identity 2

Diagonal 3 4, 6†, 7‡ 5

UDU−1 8, 11†, 12‡ 9 10
16•, 17?, 18�

19∗, 20◦, 21�

Symmetric w/Random entries 13, 14†, 15‡

†– matrix entries are O(
√

overflow)

‡– matrix entries are O(
√

underflow)

• – Banded with KA = 1 and KB = 1
? – Banded with KA = 2 and KB = 1
� – Banded with KA = 2 and KB = 2
∗ – Banded with KA = 3 and KB = 1
◦ – Banded with KA = 3 and KB = 2
� – Banded with KA = 3 and KB = 3

Table 10: Test matrices for the symmetric eigenvalue drivers

7.7.3 Tests Performed on the Generalized Symmetric Eigenvalue Routines and
Drivers

Finding the eigenvalues and eigenvectors of symmetric matrices A and B, where B is also
positive definite, follows the same stages as the symmetric eigenvalue problem except that
the problem is first reduced from generalized to standard form using xSYGST.

To check these calculations, the following test ratios are computed:

r1 =
‖AZ −B Z D‖
‖A‖ ‖Z‖ nulp
calling SSYGV with ITYPE=1 and UPLO=’U’

r2 =
‖AZ −B Z D‖
‖A‖ ‖Z‖ nulp
calling SSPGV with ITYPE=1 and UPLO=’U’

r3 =
‖AZ −B Z D‖
‖A‖ ‖Z‖ nulp

53

calling SSBGV with ITYPE=1 and UPLO=’U’

r4 =
‖AZ −B Z D‖
‖A‖ ‖Z‖ nulp
calling SSYGV with ITYPE=1 and UPLO=’L’

r5 =
‖AZ −B Z D‖
‖A‖ ‖Z‖ nulp
calling SSPGV with ITYPE=1 and UPLO=’L’

r6 =
‖AZ −B Z D‖
‖A‖ ‖Z‖ nulp
calling SSBGV with ITYPE=1 and UPLO=’L’

r7 =
‖AB Z − Z D‖
‖A‖ ‖Z‖ nulp
calling SSYGV with ITYPE=2 and UPLO=’U’

r8 =
‖AB Z − Z D‖
‖A‖ ‖Z‖ nulp
calling SSPGV with ITYPE=2 and UPLO=’U’

r9 =
‖AB Z − Z D‖
‖A‖ ‖Z‖ nulp
calling SSYGV with ITYPE=2 and UPLO=’L’

r10 =
‖AB Z − Z D‖
‖A‖ ‖Z‖ nulp
calling SSPGV with ITYPE=2 and UPLO=’L’

r11 =
‖BAZ − Z D‖
‖A‖ ‖Z‖ nulp
calling SSYGV with ITYPE=3 and UPLO=’U’

r12 =
‖BAZ − Z D‖
‖A‖ ‖Z‖ nulp
calling SSPGV with ITYPE=3 and UPLO=’U’

r13 =
‖BAZ − Z D‖
‖A‖ ‖Z‖ nulp
calling SSYGV with ITYPE=3 and UPLO=’L’

r14 =
‖BAZ − Z D‖
‖A‖ ‖Z‖ nulp
calling SSPGV with ITYPE=3 and UPLO=’L’

7.7.4 Input File for Testing the Generalized Symmetric Eigenvalue Routines
and Drivers

An annotated example of an input file for testing the generalized symmetric eigenvalue
routines and drivers is shown below.

SEP: Data file for testing Symmetric Eigenvalue Problem routines

7 Number of values of N

0 1 2 3 5 10 16 Values of N (dimension)

54

3 Number of values of NB, NBMIN, NX

1 3 20 Values of NB (blocksize)

2 2 2 Values of NBMIN (minimum blocksize)

1 1 1 Values of NX (crossover point)

20.0 Threshold value

T Put T to test the LAPACK routines

T Put T to test the driver routines

T Put T to test the error exits

1 Code to interpret the seed

SSG 21

The first line of the input file must contain the characters SEP in columns 1–3. Lines
2–12 are read using list-directed input and specify the following values:

line 2: The number of values of N
line 3: The values of N, the matrix dimension
line 4: The number of values of the parameters NB, NBMIN, NX
line 5: The values of NB, the blocksize
line 6: The values of NBMIN, the minimum blocksize
line 7: The values of NX, the crossover point
line 8: The threshold value for the test ratios
line 9: TSTCHK, flag to test LAPACK routines

line 10: TSTDRV, flag to test driver routines
line 11: TSTERR, flag to test error exits from LAPACK and driver routines
line 12: An integer code to interpret the random number seed

= 0: Set the seed to a default value before each run
= 1: Initialize the seed to a default value only before the first run
= 2: Like 1, but use the seed values on the next line

line 13: If line 12 was 2, four integer values for the random number seed

The remaining lines are used to specify the matrix types for one or more sets of tests, as
in the symmetric case. The valid 3-character code is SSG (CSG in complex, DSG in double
precision, and ZSG in complex*16).

7.8 Testing the Singular Value Decomposition Routines

The test routine for the LAPACK singular value decomposition (SVD) routines has the
following parameters which may be varied:

• the number of rows M and columns N of the test matrix A

• the type of the test matrix A

• the blocksize NB

The test program thus consists of a triply-nested loop, the outer one over NB, the next over
pairs (M,N), and the inner one over matrix types. On each iteration of the innermost loop,
a matrix A is generated and used to test the SVD routines.

55

7.8.1 The Singular Value Decomposition Driver

The driver routine for the singular value decomposition is

xGESVD singular value decomposition of A

7.8.2 Test Matrices for the Singular Value Decomposition Routines

Sixteen different types of test matrices may be generated for the singular value decom-
position routines. Table 11 shows the types available, along with the numbers used to refer
to the matrix types. Except as noted, all matrix types other than the random bidiagonal
matrices have O(1) entries.

Singular Value Distribution
Type Arithmetic Geometric Clustered Other

Zero 1

Identity 2

Diagonal 3, 6†, 7‡ 4 5

UDV 8, 11†, 12‡ 9 10

Random entries 13, 14†, 15‡

Random bidiagonal 16

†– matrix entries are O(
√

overflow)

‡– matrix entries are O(
√

underflow)

Table 11: Test matrices for the singular value decomposition

Matrix types identified as “Zero”, “Diagonal”, and “Random entries” should be self-
explanatory. The other matrix types have the following meanings:

Identity: A min(M,N)-by-min(M,N) identity matrix with zero rows or columns added to
the bottom or right to make it M-by-N

UDV : Real M-by-N diagonal matrix D with O(1) entries multiplied by unitary (or real
orthogonal) matrices on the left and right

Random bidiagonal: Upper bidiagonal matrix whose entries are randomly chosen from a
logarithmic distribution on [ε2, ε−2]

The QR algorithm used in xBDSQR should compute all singular values, even small ones, to
good relative accuracy, even of matrices with entries varying over many orders of magnitude,
and the random bidiagonal matrix is intended to test this. Thus, unlike the other matrix
types, the random bidiagonal matrix is neither O(1), nor an O(1) matrix scaled to some
other magnitude.

The singular value distributions are analogous to the eigenvalue distributions in the
nonsymmetric eigenvalue problem (see Section 6.2.1).

56

7.8.3 Test Matrices for the Banded Singular Value Decomposition Routines

Fifteen different types of test matrices may be generated for the banded singular value
decomposition routines. These test matrices are the same as the first fifteen test matrices
in Table 11.

7.8.4 Test Matrices for the Singular Value Decomposition Driver

Five different types of test matrices may be generated for the singular value decomposition
driver. Table 12 shows the types available, along with the numbers used to refer to the
matrix types. Except as noted, all matrices have O(1) entries.

Eigenvalue Distribution
Type Arithmetic Geometric Clustered Random Other

Zero 1

Identity 2

UDV 3, 4†, 5‡

†– matrix entries are multiplied by the underflow-threshold/ε
†– matrix entries are multiplied by the overflow-threshold * ε

Table 12: Test matrices for the singular value decomposition driver

7.8.5 Tests Performed on the Singular Value Decomposition Routines

Finding the singular values and singular vectors of a dense, m-by-n matrix A is done in
the following stages:

1. A is decomposed as QBP ∗, where Q and P are unitary and B is real bidiagonal.

2. B is decomposed as UΣV , where U and V are real orthogonal and Σ is a positive real
diagonal matrix of singular values. This is done three times to compute

(a) B = UΣ1V
∗, where Σ1 is the diagonal matrix of singular values and the columns

of the matrices U and V are the left and right singular vectors, respectively, of
B.

(b) Same as above, but the singular values are stored in Σ2 and the singular vectors
are not computed.

(c) A = (UQ)S(V P)∗, the SVD of the original matrix A.

For each pair of matrix dimensions (m,n) and each selected matrix type, an m-by-n
matrix A and an m-by-nrhs matrix X are generated. The problem dimensions are as follows

A m-by-n
Q m-by-ñ (but m-by-m if nrhs > 0)
P ñ-by-n
B ñ-by-ñ
U , V ñ-by-ñ
S1, S2 diagonal, order ñ
X m-by-nrhs

57

where ñ = min(m,n).
To check these calculations, the following test ratios are computed:

r1 =
‖A−QBP ∗‖

ñε ‖A‖
r2 =

‖I −Q∗Q‖
mε

r3 =
‖I − P ∗P‖

nε
r4 =

‖B − UΣV ∗‖
ñε ‖B‖

r5 =
‖Y − UZ‖

max(ñ, k)ε ‖Y ‖
, where Y = Q∗X and Z = U∗Y.

r6 =
‖I − U∗U‖

ñε
r7 =

‖I − V V ∗‖
ñε

r8 =


0 if S1 contains ñ nonnegative values in decreasing order.

1

ε
otherwise

r9 =


0 if eigenvalues of B are within THRESH of those in S1.

2 ∗ THRESH otherwise

r10 =
‖S1− S2‖
ε ‖S1‖

r11 =
‖A− (QU)Σ(PV)∗‖

ñε ‖A‖

r12 =
‖X − (QU)Z‖

max(m, k)ε ‖X‖
r13 =

‖I − (QU)∗(QU)‖
mε

r14 =
‖I − (V P)(V P)∗‖

nε

where the subscript 1 indicates that U and V were computed at the same time as Σ, and
0 that they were not. (All norms are ‖.‖1.) The scalings in the test ratios assure that the
ratios will be O(1) (typically less than 10 or 100), independent of ‖A‖ and ε, and nearly
independent of m or n.

7.8.6 Tests Performed on the Banded Singular Value Decomposition Routines

Testing the reduction of a general m-by-n band matrix A to bidiagonal form is done in
the following stages:

1. A is factored as QBP ∗, where Q and P are orthogonal and B is upper bidiagonal.

2. A given matrix C is overwritten with Q∗C.

58

For each pair of matrix dimensions (m,n) and each selected matrix type, an m-by-n
matrix A and an m-by-nrhs matrix C are generated. The problem dimensions are as follows

A m-by-n
Q m-by-ñ (but m-by-m if nrhs > 0)
P ñ-by-n
B ñ-by-ñ
C m-by-nrhs

where ñ = min(m,n).
To check these calculations, the following test ratios are computed:

r1 =
‖A−QBP ∗‖

‖A‖ max(m,n)ulp
r2 =

‖I −Q∗Q‖
mulp

r3 =
‖I − P ∗P‖
nulp

r4 =
‖Y −Q∗C‖

‖Y ‖ max(m,nrhs)ulp
, where Y = Q∗C.

7.8.7 Tests Performed on the Singular Value Decomposition Driver

For the driver routine, the following tests are computed:

r1 =
‖A− Udiag(S)V T‖
‖A‖max(M,N)ε

r2 =

∥∥∥I − UTU∥∥∥
Mε

r3 =

∥∥∥I − V T (V T)T
∥∥∥

Nε

r4 =

{
0 if S contains MNMIN nonnegative values in decreasing order.
1
ε otherwise

r5 =
‖U − Up‖
Mε

, where Up is a partially computed U .

r6 =
‖V T − V Tp‖

Nε
, where V Tp is a partially computed V T .

r7 =
‖S − Sp‖

MNMINε ‖S‖
, where Sp is the vector of singular values from the partial SVD

7.8.8 Input File for Testing the Singular Value Decomposition Routines

An annotated example of an input file for testing the singular value decomposition
routines and driver routine is shown below.

SVD: Data file for testing Singular Value Decomposition routines

20 Number of values of M

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 10 10 16 16 Values of M

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 10 16 10 16 Values of N

59

5 Number of parameter values

1 3 3 3 20 Values of NB (blocksize)

2 2 2 2 2 Values of NBMIN (minimum blocksize)

1 0 5 9 1 Values of NX (crossover point)

2 0 2 2 2 Values of NRHS

35.0 Threshold value

T Put T to test the LAPACK routines

T Put T to test the driver routines

T Put T to test the error exits

1 Code to interpret the seed

SVD 16

The first line of the input file must contain the characters SVD in columns 1–3. Lines
2–14 are read using list-directed input and specify the following values:

line 2: The number of values of M and N
line 3: The values of M, the matrix row dimension
line 4: The values of N, the matrix column dimension
line 5: The number of values of the parameters NB, NBMIN, NX, NRHS
line 6: The values of NB, the blocksize
line 7: The values of NBMIN, the minimum blocksize
line 8: The values of NX, the crossover point
line 9: The values of NRHS, the number of right hand sides

line 10: The threshold value for the test ratios
line 11: TSTCHK, the flag to test LAPACK routines
line 12: TSTDRV, the flag to test driver routines
line 13: TSTERR, the flag to test error exits from the LAPACK and driver routines
line 14: An integer code to interpret the random number seed.

= 0: Set the seed to a default value before each run
= 1: Initialize the seed to a default value only before the first run
= 2: Like 1, but use the seed values on the next line

line 15: If line 14 was 2, four integer values for the random number seed

The remaining lines are used to specify the matrix types for one or more sets of tests, as in
the nonsymmetric case. The valid 3-character codes are SVD or SBD (CBD in complex, DBD
in double precision, and ZBD in complex*16).

7.8.9 Input File for Testing the Banded Singular Value Decomposition Rou-
tines

An annotated example of an input file for testing the banded singular value decompo-
sition routines is shown below.

SBB: Data file for testing banded Singular Value Decomposition routines

20 Number of values of M

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 10 10 16 16 Values of M

60

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 10 16 10 16 Values of N

5 Number of values of K

0 1 2 3 16 Values of K (band width)

2 Number of values of NRHS

1 2 Values of NRHS

20.0 Threshold value

F Put T to test the error exits

1 Code to interpret the seed

SBB 15

The first line of the input file must contain the characters SBB in columns 1–3. Lines
2–12 are read using list-directed input and specify the following values:

line 2: The number of values of M and N
line 3: The values of M, the matrix row dimension
line 4: The values of N, the matrix column dimension
line 5: The number of values of K
line 6: The values of K, the bandwidth
line 7: The number of values of NRHS
line 8: The values of NRHS, the number of right hand sides
line 9: The threshold value for the test ratios

line 10: TSTERR, the flag to test error exits
line 11: An integer code to interpret the random number seed.

= 0: Set the seed to a default value before each run
= 1: Initialize the seed to a default value only before the first run
= 2: Like 1, but use the seed values on the next line

line 12: If line 14 was 2, four integer values for the random number seed

The remaining lines are used to specify the matrix types for the set of tests. The valid
3-character code is SBB (CBB in complex, DBB in double precision, and ZBB in complex*16).

7.9 Testing the Generalized Singular Value Decomposition Driver

The driver routine for the generalized singular value decomposition is

xGGSVD computes the generalized singular value decomposition of matrices A and B

The test routine for this driver has the following parameters which may be varied:

• the number of rows M of the test matrix A

• the number of rows P of the test matrix B

• the number of columns N of the test matrices A and B

• the number of matrix types to be tested

61

The test program thus consists of a doubly-nested loop, the outer one over ordered triples
(M,P,N), and the inner one over matrix types. On each iteration of the innermost loop,
matrices A and B are generated and used to test the GSVD routines.

Please note that the block size NB is not an input parameter since at the present time
no blocked version of GSVD exists.

7.9.1 Test Matrices for the Generalized Singular Value Decomposition Driver

Eight different test matrix combinations are used for the GSV test paths. All are
generated with a predetermined condition number. The following test matrices are used:

NTYPES Matrix A Matrix B ||A|| ||B|| κ(A) κ(B)

1 Diagonal Upper triangular 10 1000 100 10
2 Upper triangular Upper triangular 10 1000 100 10
3 Lower triangular Upper triangular 10 1000 100 10
4 Random dense Random dense 10 1000 100 10
5 Random dense Random dense 10 1000

√
0.1/ε

√
0.1/ε

6 Random dense Random dense 10 1000 0.1/ε 0.1/ε
7 Random dense Random dense 10 1000

√
0.1/ε 0.1/ε

8 Random dense Random dense 10 1000 0.1/ε
√

0.1/ε

7.9.2 Tests Performed on the Generalized Singular Value Decomposition Driver

For each set of matrix dimensions (M, N, P) and each selected matrix type, an m-by-n
matrix A and a p-by-n matrix B are generated. The problem dimensions are as follows:

A m-by-n
B p-by-n
Q n-by-n
U m-by-m
V p-by-p

The tests for the GSV path are as follows:

• Compute the Generalized Singular Value Decomposition using xGGSVD, and compute
the test ratios

1. ||UHAQ−D1R||/(max(m,n) ||A||ulp)
2. ||V HBQ−D2R||/(max(p, n) ||B||ulp)
3. ||I − UHU ||/(mulp)

4. ||I − V HV ||/(p ulp)
5. ||I −QHQ||/(nulp)

where D1 and D2 are “diagonal” matrices, and form the generalized singular pairs of the
matrices A and B, and ulp represents xLAMCH(’P’).

62

7.9.3 Input File for Testing the Generalized Singular Value Decomposition
Driver

An annotated example of an input file for testing the generalized singular value decom-
position driver routine is shown below.

GSV: Data file for testing Generalized SVD routines

8 Number of values of M, P, N

0 5 9 10 20 12 12 40 Values of M (row dimension)

4 0 12 14 10 10 20 15 Values of P (row dimension)

3 10 15 12 8 20 8 20 Values of N (column dimension)

40.0 Threshold value of test ratio.

T Put T to test the error exits

1 Code to interpret the seed

GSV 8 List matrix types on next line if 0 < NTYPES < 8

The first line of the input file must contain the characters GSV in columns 1-3. Lines
2-9 are read using list-directed input and specify the following values:

line 2: The number of values M, P, and N
line 3: Values of M (row dimension)
line 4: Values of P (row dimension)
line 5: Values of N (column dimension)
line 6: THRESH, the threshold value for the test ratios
line 7: TSTERR, flag to test the error exits
line 8: An integer code to interpret the random number seed.

= 0: Set the seed to a default value before each run
= 1: Initialize the seed to a default value only before the first run
= 2: Like 1, but use the seed values on the next line

line 9 : If line 8 was 2, four integer values for the random number seed
Otherwise, the path GSV followed by the number of matrix types NTYPES

line 10: If NTYPES < 8, then specifies matrix types to be tested.

7.10 Testing the Generalized QR and RQ Factorization Routines

The test routine for the GQR and GRQ factorization routines has the following param-
eters which may be varied:

• the values of M of the test matrix A

• the values of P of the test matrix B

• the number of columns or rows N of the test matrices A and B

• the number of matrix types to be tested

The test program thus consists of a doubly-nested loop, the outer one over ordered triples
(M,P,N), and the inner one over matrix types. On each iteration of the innermost loop,
matrices A and B are generated and used to test the GQR and GRQ routines.

63

Please note that the block size NB is not an input test parameter since the GQR and
GRQ factorizations are implemented by calling the QR and RQ factorizations which have
been tested for the parameter block size NB.

7.10.1 Test Matrices for the Generalized QR and RQ Factorization Routines

Eight different test matrix combinations are used for the GQR and GRQ test paths. All
are generated with a predetermined condition number. For the GQR path, the following
test matrices are used:

NTYPES Matrix A Matrix B ||A|| ||B|| κ(A) κ(B)

1 Diagonal Lower triangular 10 1000 100 10
2 Lower triangular Diagonal 10 1000 100 10
3 Lower triangular Upper triangular 10 1000 100 10
4 Random dense Random dense 10 1000 100 10
5 Random dense Random dense 10 1000

√
0.1/ε

√
0.1/ε

6 Random dense Random dense 10 1000 0.1/ε 0.1/ε

7 Random dense Random dense † ‡ √
0.1/ε 0.1/ε

8 Random dense Random dense ‡ † 0.1/ε
√

0.1/ε

†– near underflow threshold
‡– near overflow threshold

For the GRQ path, the following test matrices are used:

NTYPES Matrix A Matrix B ||A|| ||B|| κ(A) κ(B)

1 Diagonal Upper triangular 10 1000 100 10
2 Upper triangular Upper triangular 10 1000 100 10
3 Lower triangular Upper triangular 10 1000 100 10
4 Random dense Random dense 10 1000 100 10
5 Random dense Random dense 10 1000

√
0.1/ε

√
0.1/ε

6 Random dense Random dense 10 1000 0.1/ε 0.1/ε

7 Random dense Random dense † ‡ √
0.1/ε 0.1/ε

8 Random dense Random dense ‡ † 0.1/ε
√

0.1/ε

†– near underflow threshold
‡– near overflow threshold

7.10.2 Tests Performed on the Generalized QR and RQ Factorization Routines

For the GQR test path, and each set of matrix dimensions (M, N, P) and each selected
matrix type, an n-by-m matrix A and an n-by-p matrix B are generated. The problem
dimensions are as follows:

A n-by-m
B n-by-p
Q n-by-n
Z p-by-p

64

The tests for the GQR path are as follows:

• Compute the Generalized QR factorization using xGGQRF, generate the orthogonal
matrix Q from the Householder vectors using xORGQR, generate the matrix Z using
xORGRQ, and compute the test ratios

1. ||R−QHA||/(max(m,n) ||A||ulp)
2. ||TZ −QHB||/(max(p, n) ||B||ulp)
3. ||I −QHQ||/(mulp)

4. ||I − ZHZ||/(p ulp)

where ulp represents xLAMCH(’P’).
For the GRQ test path, and each set of matrix dimensions (M, N, P) and each selected

matrix type, an m-by-n matrix A and a p-by-n matrix B are generated. The problem
dimensions are as follows:

A m-by-n
B p-by-n
Q n-by-n
Z p-by-p

The tests for the GRQ path are as follows:

• Compute the Generalized RQ factorization using xGGRQF, generate the orthogonal
matrix Q from the Householder vectors using xORGRQ, generate the matrix Z from
the Householder vectors using xORGQR, and compute the test ratios

1. ||R−AQH ||/(max(m,n) ||A||ulp)
2. ||TQ− ZHB||/(max(p, n) ||A||ulp)
3. ||I −QHQ||/(nulp)
4. ||I − ZHZ||/(p ulp)

where ulp represents xLAMCH(’P’).

7.10.3 Input File for Testing the Generalized QR and RQ Factorization Rou-
tines

An annotated example of an input file for testing the generalized QR and RQ factoriza-
tion routines is shown below.

GQR: Data file for testing Generalized QR and RQ routines

3 Number of values of M, P and N

0 3 10 Values of M

0 5 20 Values of P

0 3 30 Values of N

20.0 Threshold value of test ratio.

T Put T to test the error exits

1 Code to interpret the seed

GQR 8 List matrix types on next line if 0 < NTYPES < 8

65

The first line of the input file must contain the characters GQR or GRQ in columns 1-3.
Lines 2-9 are read using list-directed input and specify the following values:

line 2: The number of values of M, P and N
line 3: The values of M
line 4: The values of P
line 5: The values of N
line 6: The threshold value for the test ratios
line 7: TSTERR, flag to test the error exits
line 8: An integer code to interpret the random number seed.

= 0: Set the seed to a default value before each run
= 1: Initialize the seed to a default value only before the first run
= 2: Like 1, but use the seed values on the next line

line 9 : If line 8 was 2, four integer values for the random number seed
Otherwise, the path GQR or GRQ followed by the number of matrix types NTYPES

line 10: If NTYPES < 8, then specifies matrix types to be tested.

7.11 Testing the Generalized Linear Regression Model Driver

The driver routine for the generalized linear regression model is

xGGGLM solves generalized linear regression model problem using the generalized QR
factorization

The test routine for this driver has the following parameters which may be varied:

• the number of rows M of the test matrix A

• the number of rows P of the test matrix B

• the number of columns N of the test matrices A and B

• the number of matrix types to be tested

The test program thus consists of a doubly-nested loop, the outer one over ordered triples
(M,P,N), and the inner one over matrix types. On each iteration of the innermost loop,
matrices A and B are generated and used to test the GLM driver routine.

Please note that the block size NB is not an input test parameter since the GLM problem
is solved by calling GQR factorization. The GQR is implemented by calling the QR and
RQ factorizations which have been tested for the parameter block size NB.

7.11.1 Test Matrices for the Generalized Linear Regression Model Driver

Eight different test matrix combinations are used for the GLM test path. All are gen-
erated with a predetermined condition number. The following test matrices are used:

Please note that the current version of the GLM driver only addresses well-conditioned
problems (like xGELS does). Therefore, we do not test the code with ill-conditioned ma-
trices.

66

NTYPES Matrix A Matrix B ||A|| ||B|| κ(A) κ(B)

1 Diagonal Lower triangular 10 1000 100 10
2 Lower triangular Diagonal 10 1000 100 10
3 Lower triangular Upper triangular 10 1000 100 10
4 Random dense Random dense 10 1000 100 10
5 Random dense Random dense 10 1000 100 10
6 Random dense Random dense 10 1000 100 10
7 Random dense Random dense 10 1000 100 10
8 Random dense Random dense 10 1000 100 10

7.11.2 Tests Performed on the Generalized Linear Regression Model Driver

For each set of matrix dimensions (M, N, P) and each selected matrix type, an n-by-m
matrix A and an n-by-p matrix B are generated.

The test for the GLM path is as follows:

• Solve the Generalized Linear Regression Model problem using xGGGLM, and compute
the test ratio

1. ||d−Ax−Bu||/((||A||+ ||B||) (||x||+ ||u||) ε)

where d is the left hand side vector of length n, u is the solution vector of length p, and x
is the solution vector of length m.

7.11.3 Input File for Testing the Generalized Linear Regression Model Driver

An annotated example of an input file for testing the generalized linear regression model
driver is shown below.

GLM: Data file for testing Generalized Linear Regression Model routines

6 Number of values of NN

0 5 8 15 20 40 Values of M (row dimension),

9 0 15 12 15 30 Values of P (row dimension),

5 5 10 25 30 50 Values of N (column dimension) M <= N <= M+P

20.10 Threshold value of test ratio.

T Put T to test the error exits

1 Code to interpret the seed

GLM 8 List matrix types on next line if 0 < NTYPES < 8

The first line of the input file must contain the characters GLM in columns 1-3. Lines
2-9 are read using list-directed input and specify the following values:

67

line 2: The number of values M, P, and N
line 3: Values of M (row dimension)
line 4: Values of P (row dimension)
line 5: Values of N (column dimension), note M ≤ N ≤ M+P
line 6: THRESH, the threshold value for the test ratios
line 7: TSTERR, flag to test the error exits
line 8: An integer code to interpret the random number seed.

= 0: Set the seed to a default value before each run
= 1: Initialize the seed to a default value only before the first run
= 2: Like 1, but use the seed values on the next line

line 9 : If line 8 was 2, four integer values for the random number seed
Otherwise, the path GLM followed by the number of matrix types NTYPES

line 10: If NTYPES < 8, then specifies matrix types to be tested.

7.12 Testing the Constrained Linear Least Squares Driver

The driver routine for the constrained linear least squares problem is

xGGLSE solves the constrained linear least squares problem using the generalized RQ
factorization

The test routine for this driver has the following parameters which may be varied:

• the number of rows M of the test matrix A

• the number of rows P of the test matrix B

• the number of columns N of the test matrices A and B

• the number of matrix types to be tested

The test program thus consists of a doubly-nested loop, the outer one over ordered triples
(M,P,N), and the inner one over matrix types. On each iteration of the innermost loop,
matrices A and B are generated and used to test the LSE driver routine.

Please note that the block size NB is not an input test parameter since the LSE problem
is solved by calling GRQ factorization. The GQR is implemented by calling the QR and
RQ factorizations which have been tested for the parameter block size NB.

7.12.1 Test Matrices for the Constrained Linear Least Squares Driver

Eight different test matrix combinations are used for the LSE test path. All are gener-
ated with a predetermined condition number. The following test matrices are used:

Please note that the current version of the LSE driver only addresses well-conditioned
problems (like xGELS does). Therefore, we do not test the code with ill-conditioned ma-
trices.

68

NTYPES Matrix A Matrix B ||A|| ||B|| κ(A) κ(B)

1 Diagonal Upper triangular 10 1000 100 10
2 Upper triangular Upper triangular 10 1000 100 10
3 Lower triangular Upper triangular 10 1000 100 10
4 Random dense Random dense 10 1000 100 10
5 Random dense Random dense 10 1000 100 10
6 Random dense Random dense 10 1000 100 10
7 Random dense Random dense 10 1000 100 10
8 Random dense Random dense 10 1000 100 10

7.12.2 Tests Performed on the Constrained Linear Least Squares Driver

For each set of matrix dimensions (M, N, P) and each selected matrix type, an m-by-n
matrix A and an p-by-n matrix B are generated.

The tests for the LSE path are as follows:

• Solve the Constrained Linear Least Squares problem using xGGLSE, and compute
the test ratio

1. ||Ax− c||/(||A|| ||x|| ε)
2. ||Bx− d||/(||B|| ||x|| ε)

where x is the solution vector of length n, c is the right hand side vector of the least squares
part of length m, and d is the right hand side vector for the constrained equation of length
p.

7.12.3 Input File for Testing the Constrained Linear Least Squares Driver

An annotated example of an input file for testing the constrained linear least squares
driver is shown below.

LSE: Data file for testing Constrained Linear Least Squares routines

6 Number of values of NN

6 0 5 8 10 30 Values of M

0 5 5 5 8 20 Values of P

5 5 6 8 12 45 Values of N, note P <= N <= P+M

20.1 Threshold value of test ratio.

T Put T to test the error exits

1 Code to interpret the seed

LSE 8 List matrix types on next line if 0 < NTYPES < 8

The first line of the input file must contain the characters LSE in columns 1-3. Lines
2-9 are read using list-directed input and specify the following values:

69

line 2: The number of values M, P, and N
line 3: Values of M
line 4: Values of P
line 5: Values of N, note P ≤ N ≤ P+M
line 6: THRESH, the threshold value for the test ratios
line 7: TSTERR, flag to test the error exits
line 8: An integer code to interpret the random number seed.

= 0: Set the seed to a default value before each run
= 1: Initialize the seed to a default value only before the first run
= 2: Like 1, but use the seed values on the next line

line 9 : If line 8 was 2, four integer values for the random number seed
Otherwise, the path LSE followed by the number of matrix types NTYPES

line 10: If NTYPES < 8, then specifies matrix types to be tested.

70

8 More About Timing

There are two distinct timing programs for LAPACK routines in each data type, one for the
linear equations routines and one for the eigensystem routines. The linear equation timing
program also times the Level 2 and 3 BLAS, and the reductions to bidiagonal, tridiagonal,
or Hessenberg form for eigenvalue computations. Results from the linear equation timing
program are given in megaflops, and the operation counts are computed from a formula
(see Appendix C). Results from the eigensystem timing program are given in execution
times, operation counts, and megaflops, where the operation counts are calculated during
execution using special versions of the LAPACK routines which have been instrumented to
count operations. Each program has its own style of input, and the eigensystem timing pro-
gram accepts four different sets of parameters, for the generalized nonsymmetric eigenvalue
problem, the nonsymmetric eigenvalue problem, the symmetric and generalized symmetric
eigenvalue problem, and the singular value decomposition. The following sections describe
the different input formats and timing parameters.

Both timing programs, but the linear equation timing program in particular, are in-
tended to be used to collect data to determine optimal values for the block routines. All of
the block factorization, inversion, reduction, and orthogonal transformation routines in LA-
PACK are included in the linear equation timing program. Currently, the block parameters
NB and NX, as well as others, are passed to the block routines by the environment inquiry
function ILAENV, which in turn receives these values through a common block set in the
timing program. Future implementations of ILAENV may be tuned to a specific machine
so that users of LAPACK will not have to set the block size. For a brief introduction to
ILAENV and guidelines on setting some of the parameters, see the LAPACK Users’ Guide
[1].

The main timing procedure for the REAL linear equation routines is found in
LAPACK/TIMING/LIN/stimaa.f in the Unix version and is the first program unit in SLIN-
TIMF in the non-Unix version. The main timing procedure for the REAL eigenvalue rou-
tines is found in LAPACK/TIMING/EIG/stimee.f in the Unix version and is the first program
unit in SEIGTIMF in the non-Unix version.

8.1 The Linear Equation Timing Program

The timing program for the linear equation routines is driven by a data file from which
the following parameters may be varied:

• M, the matrix row dimension

• N, the matrix column dimension, or the half-bandwidth for the band routines

• K, the number of right-hand sides for the linear solvers, or the third dimension for
the Level 3 BLAS

• NB, the block size for the blocked routines, or INCX for the Level 2 BLAS

• NX, the crossover point, the point in a block algorithm at which we switch to an
unblocked algorithm

71

• LDA, the leading dimension of the dense and banded matrices.

For banded matrices, the values of M are used for the matrix row and column dimensions,
and for symmetric or Hermitian matrices that are not banded, the values of N are used for
the matrix dimension.

The number and size of the input values are limited by certain program maximums
which are defined in PARAMETER statements in the main timing program:

Parameter Description Value

NMAX Maximum value of M, N, K, and NB for dense matrices 512
LDAMAX Maximum value of LDA 532
NMAXB Maximum value of M for banded matrices 5000
MAXIN Maximum number of values of M, N, K, or NB 12
MXNLDA Maximum number of values of LDA 4

The parameter LDAMAX should be at least NMAX. For the xGB path, we must have
(LDA +K)M ≤ 3(LDAMAX)(NMAX), where LDA ≥ 3K + 1, which restricts the value of
K. These limits allow K to be as big as 200 for M = 1000. For the xPB and xTB paths,
the condition is (2K + 1)M ≤ 3(NMAX)(LDAMAX).

The input file also specifies a set of LAPACK routine names or LAPACK path names
to be timed. The path names are similar to those used for the test program, and include
the following standard paths:

{S, C, D, Z} GE General matrices (LU factorization)
{S, C, D, Z} GB General banded matrices
{S, C, D, Z} PO Positive definite matrices (Cholesky factorization)
{S, C, D, Z} PP Positive definite packed
{S, C, D, Z} PB Positive definite banded
{S, C, D, Z} SY Symmetric indefinite matrices (Bunch-Kaufman factorization)
{S, C, D, Z} SP Symmetric indefinite packed
{C, Z} HE Hermitian indefinite matrices (Bunch-Kaufman factorization)
{C, Z} HP Hermitian indefinite packed
{S, C, D, Z} TR Triangular matrices
{S, C, D, Z} TP Triangular packed matrices
{S, C, D, Z} TB Triangular band
{S, C, D, Z} QR QR decomposition
{S, C, D, Z} RQ RQ decomposition
{S, C, D, Z} LQ LQ decomposition
{S, C, D, Z} QL QL decomposition
{S, C, D, Z} QP QR decomposition with column pivoting
{S, C, D, Z} HR Reduction to Hessenberg form
{S, C, D, Z} TD Reduction to real tridiagonal form
{S, C, D, Z} BR Reduction to bidiagonal form

For timing the Level 2 and 3 BLAS, two extra paths are provided:

{S, C, D, Z} B2 Level 2 BLAS
{S, C, D, Z} B3 Level 3 BLAS

72

The paths xGT, xPT, xHR and xTD include timing of the equivalent LINPACK solvers or
EISPACK reductions for comparison.

The timing programs have their own matrix generator that supplies random Toeplitz
matrices (constant along a diagonal) for many of the timing paths. Toeplitz matrices are
used because they can be generated more quickly than dense matrices, and the call to the
matrix generator is inside the timing loop. The LAPACK test matrix generator is used to
generate matrices of known condition for the xQR, xRQ, xLQ, xQL, xQP, xHR, xTD, and
xBR paths.

The user specifies a minimum time for which each routine should run and the computa-
tion is repeated if necessary until this time is used. In order to prevent inflated performance
due to a matrix remaining in the cache from one iteration to the next, the paths that use
random Toeplitz matrices regenerate the matrix before each call to the LAPACK routine
in the timing loop. The time for generating the matrix at each iteration is subtracted from
the total time.

An annotated example of an input file for timing the REAL linear equation routines
that operate on dense square matrices is shown below. The first line of input is printed as
the first line of output and can be used to identify different sets of results.

LAPACK timing, REAL square matrices

5 Number of values of M

10 20 40 60 80 Values of M (row dimension)

5 Number of values of N

10 20 40 60 80 Values of N (column dimension)

2 Number of values of K

20 80 Values of K

2 Number of values of NB

1 8 Values of NB (blocksize)

0 8 Values of NX (crossover point)

1 Number of values of LDA

81 Values of LDA (leading dimension)

0.05 Minimum time in seconds

SGE T T T

SPO T T T

SPP T T T

SSY T T T

SSP T T T

STR T T

STP T T

SQR T T T

SLQ T T T

SQL T T T

SRQ T T T

SQP T

SHR T T T T

STD T T T T

73

SBR T T T

The first 13 lines of the input file are read using list-directed input and are used to specify
the values of M, N, K, NB, NX, LDA, and TIMMIN (the minimum time). By default,
xGEMV and xGEMM are called to sample the BLAS performance on square matrices of
order N, but this option can be controlled by entering one of the following on line 14:

BAND Time xGBMV (instead of xGEMV) using matrices of order M and
bandwidth K, and time xGEMM using matrices of order K.

NONE Do not do the sample timing of xGEMV and xGEMM.

The timing paths or routine names which follow may be specified in any order.
When timing the band routines it is more interesting to use one large value of the matrix

size and vary the bandwidth. An annotated example of an input file for timing the REAL
linear equation routines that operate on banded matrices is shown below.

LAPACK timing, REAL band matrices

1 Number of values of M

200 Values of M (row dimension)

5 Number of values of K

10 20 30 40 50 Values of K (bandwidth)

4 Number of values of NRHS

1 2 16 100 Values of NRHS (the number of right-hand sides)

2 Number of values of NB

1 8 Values of NB (blocksize)

0 8 Values of NX (crossover point)

1 Number of values of LDA

152 Values of LDA (leading dimension)

0.05 Minimum time in seconds

BAND Time sample banded BLAS

SGB

SPB

STB

Here M specifies the matrix size and K specifies the bandwidth for the test paths SGB,
SPB, and STB. Note that we request timing of the sample BLAS for banded matrices by
specifying “BAND” on line 13.

We also provide a separate input file for timing the orthogonal factorization and reduc-
tion routines that operate on rectangular matrices. For these routines, the values of M and
N are specified in ordered pairs (M,N). An annotated example of an input file for timing
the REAL linear equation routines that operate on dense rectangular matrices is shown
below. The input file is read in the same way as the one for dense square matrices.

LAPACK timing, REAL rectangular matrices

7 Number of values of M

74

20 40 20 40 80 40 80 Values of M (row dimension)

7 Number of values of N

20 20 40 40 40 80 80 Values of N (column dimension)

4 Number of values of K

1 2 16 100 Values of K

2 Number of values of NB

1 8 Values of NB (blocksize)

0 8 Values of NX (crossover point)

1 Number of values of LDA

81 Values of LDA (leading dimension)

0.05 Minimum time in seconds

none

SQR T T T

SLQ T T T

SQL T T T

SRQ T T T

SQP T

SBR T T F

8.2 Timing the Level 2 and 3 BLAS

Timing of the Level 2 and 3 BLAS routines may be requested from one of the linear
equation input files, or by using a special BLAS format provided for compatibility with
previous releases of LAPACK. The BLAS input format is the same as the linear equation
input format, except that values of NX are not read in. The BLAS input format is requested
by specifying ‘BLAS’ on the first line of the file.

Three input files are provided for timing the BLAS with the matrix shapes encountered
in the LAPACK routines. In each of these files, one of the parameters M, N, and K for the
Level 3 BLAS is on the order of the blocksize while the other two are on the order of the
matrix size. The first of these input files also times the Level 2 BLAS, and we include the
single precision real version of this data file here for reference:

BLAS timing, REAL data, K small

5 Number of values of M

10 20 40 60 80 Values of M

5 Number of values of N

10 20 40 60 80 Values of N

2 Number of values of K

2 16 Values of K

1 Number of values of INCX

1 Values of INCX

1 Number of values of LDA

81 Values of LDA

0.05 Minimum time in seconds

none Do not time the sample BLAS

SB2

75

SB3

Since the Fortran BLAS do not contain any sub-blocking, the block size NB is not required
and its value is replaced by that of INCX, the increment between successive elements of
a vector in the Level 2 BLAS. Note that we have specified “none” on line 13 to suppress
timing of the sample BLAS, which are redundant in this case.

8.3 Timing the Nonsymmetric Eigenproblem

A separate input file drives the timing codes for the nonsymmetric eigenproblem. The
input file specifies

• N, the matrix size

• four-tuples of parameter values (NB, NS, MAXB, LDA) specifying the block size NB,
the number of shifts NS, the matrix size MAXB less than which an unblocked routine
is used, and the leading dimension LDA

• the test matrix types

• the routines or sequences of routines from LAPACK or EISPACK to be timed

The parameters NS and MAXB apply only to the QR iteration routine xHSEQR, and NB
is used only by the block algorithms. A goal of this timing code is to determine the values
of NB, NS and MAXB which maximize the speed of the codes.

The number and size of the input values are limited by certain program maximums
which are defined in PARAMETER statements in the main timing program:

Parameter Description Value

MAXN Maximum value for N, NB, NS, or MAXB 400
LDAMAX Maximum value for LDA 420
MAXIN Maximum number of values of N 12
MAXPRM Maximum number of parameter sets 10

(NB, NS, MAXB, LDA)

The computations that may be timed for the REAL version are

1. SGEHRD (LAPACK reduction to upper Hessenberg form)

2. SHSEQR(E) (LAPACK computation of eigenvalues only of a Hessenberg matrix)

3. SHSEQR(S) (LAPACK computation of the Schur form of a Hessenberg matrix)

4. SHSEQR(V) (LAPACK computation of the Schur form and Schur vectors of a Hes-
senberg matrix)

5. STREVC(L) (LAPACK computation of the the left eigenvectors of a matrix in Schur
form)

6. STREVC(R) (LAPACK computation of the the right eigenvectors of a matrix in Schur
form)

76

7. SHSEIN(L) (LAPACK computation of the the left eigenvectors of an upper Hessen-
berg matrix using inverse iteration)

8. SHSEIN(R) (LAPACK computation of the the right eigenvectors of an upper Hessen-
berg matrix using inverse iteration)

9. ORTHES (EISPACK reduction to upper Hessenberg form, to be compared to SGEHRD)

10. HQR (EISPACK computation of eigenvalues only of a Hessenberg matrix, to be com-
pared to SHSEQR(E))

11. HQR2 (EISPACK computation of eigenvalues and eigenvectors of a Hessenberg ma-
trix, to be compared to SHSEQR(V) plus STREVC(R))

12. INVIT (EISPACK computation of the right eigenvectors of an upper Hessenberg ma-
trix using inverse iteration, to be compared to SHSEIN(R)).

Eight different matrix types are provided for timing the nonsymmetric eigenvalue rou-
tines. A variety of matrix types is allowed because the number of iterations to compute the
eigenvalues, and hence the timing, can depend on the type of matrix whose eigendecompo-
sition is desired. The matrices used for timing are of the form XTX−1 where X is either
orthogonal (for types 1–4) or random with condition number 1/

√
ε (for types 5–8), where ε

is the machine roundoff error. The matrix T is upper triangular with random O(1) entries
in the strict upper triangle and has on its diagonal

• evenly spaced entries from 1 down to ε with random signs (matrix types 1 and 5)

• geometrically spaced entries from 1 down to ε with random signs (matrix types 2 and
6)

• “clustered” entries 1, ε, . . . , ε with random signs (matrix types 3 and 7), or

• real or complex conjugate paired eigenvalues randomly chosen from the interval (ε, 1)
(matrix types 4 or 8).

An annotated example of an input file for timing the REAL nonsymmetric eigenproblem
routines is shown below.

NEP: Data file for timing Nonsymmetric Eigenvalue Problem routines

4 Number of values of N

10 20 30 40 Values of N (dimension)

4 Number of values of parameters

1 1 1 1 Values of NB (blocksize)

2 4 6 2 Values of NS (number of shifts)

12 12 12 50 Values of MAXB (multishift crossover pt)

81 81 81 81 Values of LDA (leading dimension)

0.05 Minimum time in seconds

4 Number of matrix types

1 3 4 6

SHS T T T T T T T T T T T T

77

The first line of the input file must contain the characters NEP in columns 1-3. Lines
2-10 are read using list-directed input and specify the following values:

line 2: The number of values of N
line 3: The values of N, the matrix dimension
line 4: The number of values of the parameters NB, NS, MAXB, and LDA
line 5: The values of NB, the blocksize
line 6: The values of NS, the number of shifts
line 7: The values of MAXB, the maximum blocksize
line 8: The values of LDA, the leading dimension
line 9: The minimum time in seconds that a routine will be timed

line 10: NTYPES, the number of matrix types to be used

If 0 < NTYPES < 8, then line 11 specifies NTYPES integer values which are the
numbers of the matrix types to be used. The remaining lines specify a path name and
the specific computations to be timed. For the nonsymmetric eigenvalue problem, the path
names for the four data types are SHS, DHS, CHS, and ZHS. A line to request all the routines
in the REAL path has the form

SHS T T T T T T T T T T T T

where the first 3 characters specify the path name, and up to 12 nonblank characters may
appear in columns 4–80. If the kth such character is ‘T’ or ‘t’, the kth routine will be timed.
If at least one but fewer than 12 nonblank characters are specified, the remaining routines
will not be timed. If columns 4–80 are blank, all the routines will be timed, so the input
line

SHS

is equivalent to the line above.
The output is in the form of a table which shows the absolute times in seconds, floating

point operation counts, and megaflop rates for each routine over all relevant input parame-
ters. For the blocked routines, the table has one line for each different value of NB, and for
the SHSEQR routine, one line for each different combination of NS and MAXB as well.

8.4 Timing the Generalized Nonsymmetric Eigenproblem

A separate input file drives the timing codes for the generalized nonsymmetric eigen-
problem. The input file specifies

• N, the matrix size,

• LDA, the leading dimension,

• the test matrix types,

• the routines or sequences of routines from LAPACK or EISPACK to be timed.

78

The number and size of the input values are limited by certain program maximums
which are defined in PARAMETER statements in the main timing program:

Parameter Description Value

MAXN Maximum value for N 400
LDAMAX Maximum value for LDA 420
MAXIN Maximum number of values of N 12
MAXPRM Maximum number of values of LDA 10

LDA

The computations that may be timed for the REAL version are

1. SGGHRD(N) (LAPACK reduction to generalized upper Hessenberg form, without
computing U or V , including a call to SGEQRF and SORMQR to reduce B to upper
triangular form.)

2. SGGHRD(Q) (LAPACK reduction to generalized upper Hessenberg form, computing
U but not V , including a call to SGEQRF, SORGQR, and SORMQR to reduce B to
upper triangular form.)

3. SGGHRD(Z) (LAPACK reduction to generalized upper Hessenberg form, computing
V but not U , including a call to SGEQRF and SORMQR to reduce B to upper
triangular form.)

4. SGGHRD(Q,Z) (LAPACK reduction to generalized upper Hessenberg form, comput-
ing U and V , including a call to SGEQRF, SORGQR, and SORMQR to reduce B to
upper triangular form.)

5. SHGEQZ(E) (LAPACK computation of generalized eigenvalues only of a pair of ma-
trices in generalized Hessenberg form)

6. SHGEQZ(S) (LAPACK computation of generalized Schur form of a pair of matrices
in generalized Hessenberg form)

7. SHGEQZ(Q) (LAPACK computation of generalized Schur form of a pair of matrices
in generalized Hessenberg form and Q)

8. SHGEQZ(Z) (LAPACK computation of generalized Schur form of a pair of matrices
in generalized Hessenberg form and Z)

9. SHGEQZ(Q,Z) (LAPACK computation of generalized Schur form of a pair of matrices
in generalized Hessenberg form and Q and Z)

10. STGEVC(L,A) (LAPACK computation of the the left generalized eigenvectors of a
matrix pair in generalized Schur form)

11. STGEVC(L,B) (LAPACK computation of the the left generalized eigenvectors of a
matrix pair in generalized Schur form, back transformed by Q)

79

12. STGEVC(R,A) (LAPACK computation of the the right generalized eigenvectors of a
matrix pair in generalized Schur form)

13. STGEVC(R,B) (LAPACK computation of the the right generalized eigenvectors of a
matrix pair in generalized Schur form, back transformed by Z)

14. QZHES(F) (EISPACK reduction to generalized upper Hessenberg form, with MATZ
=.FALSE., so V is not computed.)

15. QZHES(T) (EISPACK reduction to generalized upper Hessenberg form, with MATZ
=.TRUE., so V is computed.)

16. QZIT(F) (QZIT followed by QZVAL with MATZ=.FALSE.: EISPACK computation
of generalized eigenvalues only of a pair of matrices in generalized Hessenberg form)

17. QZIT(T) (QZIT followed by QZVAL with MATZ=.TRUE.: EISPACK computation
of generalized Schur form of a pair of matrices in generalized Hessenberg form and Z)

18. QZVEC (EISPACK computation of the the right generalized eigenvectors of a matrix
pair in generalized Schur form, back transformed by Z)

Note that SGGHRD is timed along with the QR routines that reduce B to upper-triangular
form; this is to allow a fair comparison with the EISPACK routine QZHES.

Four different matrix types are provided for timing the generalized nonsymmetric eigen-
value routines. A variety of matrix types is allowed because the number of iterations to
compute the eigenvalues, and hence the timing, can depend on the type of matrix whose
eigendecomposition is desired. The matrices used for timing have at least one zero, one
infinite, and one singular (α = β = 0) generalized eigenvalue. The remaining eigenvalues
are sometimes real and sometimes complex, distributed in magnitude as follows:

• “clustered” entries 1, ε, . . . , ε with random signs;

• evenly spaced entries from 1 down to ε with random signs;

• geometrically spaced entries from 1 down to ε with random signs;

• eigenvalues randomly chosen from the interval (ε, 1).

8.4.1 Input File for Timing the Generalized Nonsymmetric Eigenproblem

An annotated example of an input file for timing the REAL generalized nonsymmetric
eigenproblem routines is shown below.

GEP: Data file for timing Generalized Nonsymmetric Eigenvalue Problem

4 Number of values of N

50 100 150 200 Values of N (dimension)

4 Number of parameter values

1 10 1 10 Values of NB (blocksize -- used by SGEQRF, etc.)

80

201 201 200 200 Values of LDA (leading dimension)

0.0 Minimum time in seconds

5 Number of matrix types

SHG T T T T T T T T T T T T T T T T T T

The first line of the input file must contain the characters GEP in columns 1–3. Lines
2–12 are read using list-directed input and specify the following values:

line 2: The number of values of N
line 3: The values of N, the matrix dimension
line 4: Number of values of the parameters
line 5: The values for NB, the blocksize
line 6: The values for the leading dimension LDA
line 7: The minimum time (in seconds) that a subroutine will be

timed. If TIMMIN is zero, each routine should be timed only
once.

line 8: NTYPES, the number of matrix types to be used

If NTYPES >= 4, all the types are used. If 0< NTYPES < 4, then line 9 specifies NTYPES
integer values, which are the numbers of the matrix types to be used. The remaining lines
specify a path name and the specific routines to be timed. For the generalized nonsymmetric
eigenvalue problem, the path names for the four data types are SHG, CHG, DHG, and ZHG. A
line to request all the routines in the REAL path has the form

SHG T T T T T T T T T T T T T T T T T T

where the first 3 characters specify the path name, and up to MAXTYP nonblank characters
may appear in columns 4-80. If the kth such character is ’T’ or ’t’, the kth routine will be
timed. If at least one but fewer than 18 nonblank characters are specified, the remaining
routines will not be timed. If columns 4-80 are blank, all the routines will be timed, so the
input line

SHG

is equivalent to the line above.
The output is in the form of a table which shows the absolute times in seconds, floating

point operation counts, and megaflop rates for each routine over all relevant input parame-
ters. For the timings of SGGHRD plus appropriate QR routines, the table has one line for
each different combination of LDA and NB. For other routines, the table has one line for
each distinct value of LDA.

8.5 Timing the Symmetric and Generalized Symmetric Eigenproblem

A separate input file drives the timing codes for the symmetric eigenproblem. The input
file specifies

• N, the matrix size

81

• pairs of parameter values (NB, LDA) specifying the block size NB and the leading
dimension LDA

• the test matrix types

• the routines or sequences of routines from LAPACK or EISPACK to be timed.

A goal of this timing code is to determine the values of NB which maximize the speed of
the block algorithms.

The number and size of the input values are limited by certain program maximums
which are defined in PARAMETER statements in the main timing program:

Parameter Description Value

MAXN Maximum value for N or NB 400
LDAMAX Maximum value for LDA 420
MAXIN Maximum number of values of N 12
MAXPRM Maximum number of pairs of values (NB, LDA) 10

The computations that may be timed depend on whether the data is real or complex.
For the REAL version the possible computations are

1. SSYTRD (LAPACK reduction to symmetric tridiagonal form)

2. SSTEQR(N) (LAPACK computation of eigenvalues only of a symmetric tridiagonal
matrix)

3. SSTEQR(V) (LAPACK computation of the eigenvalues and eigenvectors of a sym-
metric tridiagonal matrix)

4. SSTERF (LAPACK computation of the eigenvalues only of a symmetric tridiagonal
matrix using a square-root free algorithm)

5. SPTEQR(COMPZ=’N’) (LAPACK computation of the eigenvalues of a symmetric
positive definite tridiagonal matrix)

6. SPTEQR(COMPZ=’V’) (LAPACK computation of the eigenvalues and eigenvectors
of a symmetric positive definite tridiagonal matrix)

7. SSTEBZ(RANGE=’I’) (LAPACK computation of the eigenvalues in a specified inter-
val for a symmetric tridiagonal matrix)

8. SSTEBZ(RANGE=’V’) (LAPACK computation of the eigenvalues in a half-open in-
terval for a symmetric tridiagonal matrix)

9. SSTEIN (LAPACK computation of the eigenvectors of a symmetric tridiagonal matrix
corresponding to specified eigenvalues using inverse iteration)

10. SSTEDC(COMPQ=’N’)

11. SSTEDC(COMPQ=’I’)

82

12. SSTEDC(COMPQ=’V’)

13. TRED1 (EISPACK reduction to symmetric tridiagonal form, to be compared to
SSYTRD)

14. IMTQL1 (EISPACK computation of eigenvalues only of a symmetric tridiagonal ma-
trix, to be compared to SSTEQR(N))

15. IMTQL2 (EISPACK computation of eigenvalues and eigenvectors of a symmetric tridi-
agonal matrix, to be compared to SSTEQR(V))

16. TQLRAT (EISPACK computation of eigenvalues only of a symmetric tridiagonal
matrix, to be compared to SSTERF).

17. TRIDIB (EISPACK computation of the eigenvalues of)(compare with SSTEBZ –
RANGE=’I’)

18. BISECT (EISPACK computation of the eigenvalues of)(compare with SSTEBZ –
RANGE=’V’)

19. TINVIT (EISPACK computation of the eigenvectors of a triangular matrix using
inverse iteration) (compare with SSTEIN)

For complex matrices the possible computations are

1. CHETRD (LAPACK reduction of a complex Hermitian matrix to real symmetric
tridiagonal form)

2. CSTEQR(N) (LAPACK computation of eigenvalues only of a symmetric tridiagonal
matrix)

3. CUNGTR+CSTEQR(V) (LAPACK computation of the eigenvalues and eigenvectors
of a symmetric diagonal matrix)

4. CPTEQR(VECT=’N’) (LAPACK computation of the eigenvalues only of a symmetric
positive definite tridiagonal matrix)

5. CUNGTR+CPTEQR(VECT=’V’) (LAPACK computation of the eigenvalues and
eigenvectors of a symmetric positive definite tridiagonal matrix)

6. SSTEBZ+CSTEIN+CUNMTR (LAPACK computation of the eigenvalues and eigen-
vectors of a symmetric tridiagonal matrix)

7. CSTEDC(COMPQ=’I’)+CUNMTR

8. HTRIDI (EISPACK reduction to symmetric tridiagonal form, to be compared to
CHETRD)

9. IMTQL1 (EISPACK computation of eigenvalues only of a symmetric tridiagonal ma-
trix, to be compared to CSTEQR(V))

83

10. IMTQL2+HTRIBK (EISPACK computation of eigenvalues and eigenvectors of a com-
plex Hermitian matrix given the reduction to real symmetric tridiagonal form, to be
compared to CUNGTR+CSTEQR).

Four different matrix types are provided for timing the symmetric eigenvalue routines.
The matrices used for timing are of the form XDX−1, where X is orthogonal and D is
diagonal with entries

• evenly spaced entries from 1 down to ε with random signs (matrix type 1),

• geometrically spaced entries from 1 down to ε with random signs (matrix type 2),

• “clustered” entries 1, ε, . . . , ε with random signs (matrix type 3), or

• eigenvalues randomly chosen from the interval (ε, 1) (matrix type 4).

An annotated example of an input file for timing the REAL symmetric eigenproblem
routines is shown below.

SEP: Data file for timing Symmetric Eigenvalue Problem routines

5 Number of values of N

10 20 40 60 80 Values of N (dimension)

2 Number of values of parameters

1 16 Values of NB (blocksize)

81 81 Values of LDA (leading dimension)

0.05 Minimum time in seconds

4 Number of matrix types

SST T T T T T T T T T T T T

The first line of the input file must contain the characters SEP in columns 1-3. Lines 2-8
are read using list-directed input and specify the following values:

line 2: The number of values of N
line 3: The values of N, the matrix dimension
line 4: The number of values of the parameters NB and LDA
line 5: The values of NB, the blocksize
line 6: The values of LDA, the leading dimension
line 7: The minimum time in seconds that a routine will be timed
line 8: NTYPES, the number of matrix types to be used

If 0 < NTYPES < 4, then line 9 specifies NTYPES integer values which are the numbers
of the matrix types to be used. The remaining lines specify a path name and the specific
computations to be timed. For the symmetric eigenvalue problem, the path names for the
four data types are SST, DST, CST, and ZST. The (optional) characters after the path name
indicate the computations to be timed, as in the input file for the nonsymmetric eigenvalue
problem.

84

8.6 Timing the Singular Value Decomposition

A separate input file drives the timing codes for the Singular Value Decomposition
(SVD). The input file specifies

• pairs of parameter values (M, N) specifying the matrix row dimension M and the
matrix column dimension N

• pairs of parameter values (NB, LDA) specifying the block size NB and the leading
dimension LDA

• the test matrix types

• the routines or sequences of routines from LAPACK or LINPACK to be timed.

A goal of this timing code is to determine the values of NB which maximize the speed of
the block algorithms.

The number and size of the input values are limited by certain program maximums
which are defined in PARAMETER statements in the main timing program:

Parameter Description Value

MAXN Maximum value for M, N, or NB 400
LDAMAX Maximum value for LDA 420
MAXIN Maximum number of pairs of values (M, N) 12
MAXPRM Maximum number of pairs of values (NB, LDA) 10

The computations that may be timed for the REAL version are

1. SGEBRD (LAPACK reduction to bidiagonal form)

2. SBDSQR (LAPACK computation of singular values only of a bidiagonal matrix)

3. SBDSQR(L) (LAPACK computation of the singular values and left singular vectors
of a bidiagonal matrix)

4. SBDSQR(R) (LAPACK computation of the singular values and right singular vectors
of a bidiagonal matrix)

5. SBDSQR(B) (LAPACK computation of the singular values and right and left singular
vectors of a bidiagonal matrix)

6. SBDSQR(V) (LAPACK computation of the singular values and multiply square ma-
trix of dimension min(M,N) by transpose of left singular vectors)

7. LAPSVD (LAPACK singular values only of a dense matrix, using SGEBRD and
SBDSQR)

8. LAPSVD(l) (LAPACK singular values and min(M,N) left singular vectors of a dense
matrix, using SGEBRD, SORGBR and SBDSQR(L))

9. LAPSVD(L) (LAPACK singular values and M left singular vectors of a dense matrix,
using SGEBRD, SORGBR and SBDSQR(L))

85

10. LAPSVD(R) (LAPACK singular values and N right singular vectors of a dense matrix,
using SGEBRD, SORGBR and SBDSQR(R))

11. LAPSVD(B) (LAPACK singular values, min(M,N) left singular vectors, and N right
singular vectors of a dense matrix, using SGEBRD, SORGBR and SBDSQR(B))

12. LINSVD (LINPACK singular values only of a dense matrix using SSVDC, to be
compared to LAPSVD)

13. LINSVD(l) (LINPACK singular values and min(M,N) left singular vectors of a dense
matrix using SSVDC, to be compared to LAPSVD(l))

14. LINSVD(L) (LINPACK singular values and M left singular vectors of a dense matrix
using SSVDC, to be compared to LAPSVD(L))

15. LINSVD(R) (LINPACK singular values and N right singular vectors of a dense matrix
using SSVDC, to be compared to LAPSVD(R))

16. LINSVD(B) (LINPACK singular values, min(M,N) left singular vectors and N right
singular vectors of a dense matrix using SSVDC, to be compared to LAPSVD(B)).

Five different matrix types are provided for timing the singular value decomposition
routines. Matrix types 1–3 are of the form UDV , where U and V are orthogonal or unitary,
and D is diagonal with entries

• evenly spaced entries from 1 down to ε with random signs (matrix type 1),

• geometrically spaced entries from 1 down to ε with random signs (matrix type 2), or

• “clustered” entries 1, ε, . . . , ε with random signs (matrix type 3).

Matrix type 4 has in each entry a random number drawn from [−1, 1]. Matrix type 5 is
a nearly bidiagonal matrix, where the upper bidiagonal entries are exp(−2r log ε) and the
nonbidiagonal entries are rε, where r is a uniform random number drawn from [0, 1] (a
different r for each entry).

An annotated example of an input file for timing the REAL singular value decomposition
routines is shown below.

SVD: Data file for timing Singular Value Decomposition routines

7 Number of values of M and N

10 10 20 20 20 40 40 Values of M (row dimension)

10 20 10 20 40 20 40 Values of N (column dimension)

1 Number of values of parameters

1 Values of NB (blocksize)

81 Values of LDA (leading dimension)

0.05 Minimum time in seconds

4 Number of matrix types

1 2 3 4

SBD T T T T T T T T T T T T T T T T

86

The first line of the input file must contain the characters SVD in columns 1-3. Lines 2-9
are read using list-directed input and specify the following values:

line 2: The number of values of M and N
line 3: The values of M, the matrix row dimension
line 3: The values of N, the matrix column dimension
line 4: The number of values of the parameters NB and LDA
line 5: The values of NB, the blocksize
line 6: The values of LDA, the leading dimension
line 7: The minimum time in seconds that a routine will be timed
line 8: NTYPES, the number of matrix types to be used

If 0 < NTYPES < 5, then line 9 specifies NTYPES integer values which are the numbers
of the matrix types to be used. The remaining lines specify a path name and the specific
computations to be timed. For the SVD, the path names for the four data types are SBD,
DBD, CBD, and ZBD. The (optional) characters after the path name indicate the computations
to be timed, as in the input file for the nonsymmetric eigenvalue problem.

8.7 Timing the Generalized Singular Value Decomposition

At the present time, no timing program for GSVD is provided. The main reason for
this omission is because the GSVD subroutine is essentially BLAS 1 sequential code in the
current implementation.

8.8 Timing the Generalized QR and RQ Factorizations

At the present time, no timing program for the GQR and GRQ factorizations is provided.
The main reason for this omission is because these codes rely heavily on the QR and RQ
factorizations which already have existing timing code.

8.9 Timing the Generalized Linear Regression Model Problem

At the present time, no timing program for GLM is provided. The main reason for
this omission is because the major floating point operations of this code is in the GQR
factorization. The GQR factorization relies heavily on the QR and RQ factorizations which
already have existing timing code.

8.10 Timing the Constrained Linear Least Squares Problem

At the present time, no timing program for LSE is provided. The main reason for
this omission is because the major floating point operations of this code is in the GRQ
factorization. The GRQ factorization relies heavily on the QR and RQ factorizations which
already have existing timing code.

87

Acknowledgments

Zhaojun Bai of the University of Kentucky, Jim Demmel of the University of California-
Berkeley, Sven Hammarling of NAG Ltd., and Alan McKenney of the Courant Institute of
Mathematical Sciences, New York University, also contributed to this report.

88

Appendix A

LAPACK Routines

In this appendix, we review the subroutine naming scheme for LAPACK as proposed in [3]
and indicate by means of a table which subroutines are included in this release. We also
list the driver routines.

Each subroutine name in LAPACK is a coded specification of the computation done by
the subroutine. All names consist of six characters in the form TXXYYY. The first letter,
T, indicates the matrix data type as follows:

S REAL
D DOUBLE PRECISION
C COMPLEX
Z COMPLEX*16 (if available)

The next two letters, XX, indicate the type of matrix. Most of these two-letter codes
apply to both real and complex routines; a few apply specifically to one or the other, as
indicated below:

BD bidiagonal
DI diagonal
GB general band
GE general (i.e. unsymmetric, in some cases rectangular)
GG general matrices, generalized problem (i.e. a pair of general matrices)
GT general tridiagonal
HB (complex) Hermitian band
HE (complex) Hermitian
HG upper Hessenberg matrix, generalized problem (i.e., a Hessenberg and a

triangular matrix)
HP (complex) Hermitian, packed storage
HS upper Hessenberg
OP (real) orthogonal, packed storage
OR (real) orthogonal
PB symmetric or Hermitian positive definite band
PO symmetric or Hermitian positive definite
PP symmetric or Hermitian positive definite, packed storage

89

PT symmetric or Hermitian positive definite tridiagonal
SB (real) symmetric band
SP symmetric, packed storage
ST symmetric tridiagonal
SY symmetric
TB triangular band
TG triangular matrices, generalized problem (i.e., a pair of triangular matrices)
TP triangular, packed storage
TR triangular (or in some cases quasi-triangular)
TZ trapezoidal
UN (complex) unitary
UP (complex) unitary, packed storage

The last three characters, YYY, indicate the computation done by a particular subrou-
tine. Included in this release are subroutines to perform the following computations:

BAK back transformation of eigenvectors after balancing
BAL permute and/or balance to isolate eigenvalues
BRD reduce to bidiagonal form by orthogonal transformations
CON estimate condition number
EBZ compute selected eigenvalues by bisection
EDC compute eigenvectors using divide and conquer
EIN compute selected eigenvectors by inverse iteration
EQR compute eigenvalues and/or the Schur form using the QR algorithm
EQU equilibrate a matrix to reduce its condition number
EQZ compute generalized eigenvalues and/or generalized Schur form by QZ method
ERF compute eigenvectors using the Pal-Walker-Kahan variant of the QL or QR

algorithm
EVC compute eigenvectors from Schur factorization
EXC swap adjacent diagonal blocks in a quasi-upper triangular matrix
GBR generate the orthogonal/unitary matrix from xGEBRD
GHR generate the orthogonal/unitary matrix from xGEHRD
GLQ generate the orthogonal/unitary matrix from xGELQF
GQL generate the orthogonal/unitary matrix from xGEQLF
GQR generate the orthogonal/unitary matrix from xGEQRF
GRQ generate the orthogonal/unitary matrix from xGERQF
GST reduce a symmetric-definite generalized eigenvalue problem to standard form
GTR generate the orthogonal/unitary matrix from xxxTRD
HRD reduce to upper Hessenberg form by orthogonal transformations
LQF compute an LQ factorization without pivoting
MBR multiply by the orthogonal/unitary matrix from xGEBRD
MHR multiply by the orthogonal/unitary matrix from xGEHRD
MLQ multiply by the orthogonal/unitary matrix from xGELQF
MQL multiply by the orthogonal/unitary matrix from xGEQLF
MQR multiply by the orthogonal/unitary matrix from xGEQRF

90

MRQ multiply by the orthogonal/unitary matrix from xGERQF
MTR multiply by the orthogonal/unitary matrix from xxxTRD
QLF compute a QL factorization without pivoting
QPF compute a QR factorization with column pivoting
QRF compute a QR factorization without pivoting
RFS refine initial solution returned by TRS routines
RQF compute an RQ factorization without pivoting
SEN compute a basis and/or reciprocal condition number (sensitivity) of an

invariant subspace
SJA obtain singular values, and optionally vectors, using Jacobi’s method
SNA estimate reciprocal condition numbers of eigenvalue/-vector pairs
SQR compute singular values and/or singular vectors using the QR algorithm
SVP preprocessing for GSVD
SYL solve the Sylvester matrix equation
TRD reduce a symmetric matrix to real symmetric tridiagonal form
TRF compute a triangular factorization (LU, Cholesky, etc.)
TRI compute inverse (based on triangular factorization)
TRS solve systems of linear equations (based on triangular factorization)

Given these definitions, the following table indicates the LAPACK subroutines for the
solution of systems of linear equations:

HE HP UN
GE GG GB GT PO PP PB PT SY SP TR TP TB OR

TRF × × × × × × × × ×
TRS × × × × × × × × × × × ×
RFS × × × × × × × × × × × ×
TRI × × × × × × ×
CON × × × × × × × × × × × ×
EQU × × × × ×
QPF ×
QRF† × ×
GQR† ×
MQR† ×
†– also RQ, QL, and LQ

The following table indicates the LAPACK subroutines for finding eigenvalues and eigen-
vectors or singular values and singular vectors:

91

HE HP HB
GE GB GG HS HG TR TG SY SP SB ST PT BD

HRD × ×
TRD × × ×
BRD × ×
EQR × × ×
EQZ ×
EIN × ×
EVC × ×
EBZ ×
ERF ×
SQR ×
SEN ×
SJA ×
SNA ×
SVP ×
SYL ×
EXC ×
BAL × ×
BAK × ×
GST × × ×

Orthogonal/unitary transformation routines have also been provided for the reductions
that use elementary transformations.

UN UP
OR OP

GHR ×
GTR × ×
GBR ×
MHR ×
MTR × ×
MBR ×

In addition, a number of driver routines are provided with this release. The naming
convention for the driver routines is the same as for the LAPACK routines, but the last
3 characters YYY have the following meanings (note an ‘X’ in the last character position
indicates a more expert driver):

SV factor the matrix and solve a system of equations
SVX equilibrate, factor, solve, compute error bounds and do iterative refinement, and

estimate the condition number
GLM solves the generalized linear regression model
LS solve over- or underdetermined linear system using orthogonal factorizations
LSE solves the constrained linear least squares problem
LSX compute a minimum-norm solution using a complete orthogonal factorization

(using QR with column pivoting)
LSS solve least squares problem using the SVD
EV compute all eigenvalues and/or eigenvectors

92

EVD compute all eigenvalues and/or eigenvectors; if eigenvectors are
desired, it uses a divide and conquer algorithm.

EVX compute selected eigenvalues and eigenvectors
ES compute all eigenvalues, Schur form, and/or Schur vectors
ESX compute all eigenvalues, Schur form, and/or Schur vectors and the conditioning

of selected eigenvalues or eigenvectors
GV compute generalized eigenvalues and/or generalized eigenvectors
GS compute generalized eigenvalues, Schur form, and/or Schur vectors
SVD compute the SVD and/or singular vectors

The driver routines provided in LAPACK are indicated by the following table:

HE HP HB
GE GG GB GT PO PP PB PT SY SP SB ST

SV × × × × × × × × ×
SVX × × × × × × × × ×
GLM ×
LS ×
LSE ×
LSX ×
LSS ×
EV × × × × ×
EVD × × × ×
EVX × × × × ×
ES ×
ESX ×
GV × × × ×
GS ×
SVD × ×

93

Appendix B

LAPACK Auxiliary Routines

This appendix lists all of the auxiliary routines (except for the BLAS) that are called from
the LAPACK routines. These routines are found in the directory LAPACK/SRC. Routines
specified with an underscore as the first character are available in all four data types (S, D,
C, and Z), except those marked (real), for which the first character may be ‘S’ or ‘D’, and
those marked (complex), for which the first character may be ‘C’ or ‘Z’.

Special subroutines:

XERBLA Error handler for the BLAS and LAPACK routines

Special functions:

ILAENV INTEGER Return block size and other parameters
LSAME LOGICAL Return .TRUE. if two characters are the same

regardless of case
LSAMEN LOGICAL Return .TRUE. if two character strings are the

same regardless of case
SLAMCH REAL Return single precision machine parameters
DLAMCH DOUBLE PRECISION Return double precision machine parameters

Functions for computing norms:

LANGB General band matrix
LANGE General matrix
LANGT General tridiagonal matrix
LANHB (complex) Hermitian band matrix
LANHE (complex) Hermitian matrix
LANHP (complex) Hermitian packed matrix
LANHS Upper Hessenberg matrix
LANHT (complex) Hermitian tridiagonal matrix
LANSB Symmetric band matrix
LANSP Symmetric packed matrix
LANST (real) Symmetric tridiagonal matrix
LANSY Symmetric matrix

94

LANTB Triangular band matrix
LANTP Triangular packed matrix
LANTR Trapezoidal matrix

Extensions to the Level 1 and 2 BLAS:

CROT Apply a plane rotation to a pair of complex vectors, where the cos is real
and the sin is complex

CSROT Apply a real plane rotation to a pair of complex vectors
ZDROT Double precision version of CSROT
SYMV (complex) Symmetric matrix times vector
SPMV (complex) Symmetric packed matrix times vector
SYR (complex) Symmetric rank-1 update
SPR (complex) Symmetric rank-1 update of a packed matrix

ICMAX1 Find the index of element whose real part has max. abs. value
IZMAX1 Find the index of element whose real part has max. abs. value
SCSUM1 Sum absolute values of a complex vector
DZSUM1 Double precision version of SCSUM1
RSCL (real) Scale a vector by the reciprocal of a constant

CSRSCL Scale a complex vector by the reciprocal of a real constant
ZDRSCL Double precision version of CSRSCL

Level 2 BLAS versions of the block routines:

GBTF2 compute the LU factorization of a general band matrix
GEBD2 reduce a general matrix to bidiagonal form
GEHD2 reduce a square matrix to upper Hessenberg form
GELQ2 compute an LQ factorization without pivoting
GEQL2 compute a QL factorization without pivoting
GEQR2 compute a QR factorization without pivoting
GERQ2 compute an RQ factorization without pivoting
GETF2 compute the LU factorization of a general matrix
HEGS2 (complex) reduce a Hermitian-definite generalized eigenvalue problem to

standard form
HETD2 (complex) reduce a Hermitian matrix to real tridiagonal form
HETF2 (complex) compute diagonal pivoting factorization of a Hermitian matrix
ORG2L (real) generate the orthogonal matrix from xGEQLF
ORG2R (real) generate the orthogonal matrix from xGEQRF
ORGL2 (real) generate the orthogonal matrix from xGEQLF
ORGR2 (real) generate the orthogonal matrix from xGERQF
ORM2L (real) multiply by the orthogonal matrix from xGEQLF
ORM2R (real) multiply by the orthogonal matrix from xGEQRF
ORML2 (real) multiply by the orthogonal matrix from xGELQF
ORMR2 (real) multiply by the orthogonal matrix from xGERQF
PBTF2 compute the Cholesky factorization of a positive definite band matrix
POTF2 compute the Cholesky factorization of a positive definite matrix
SYGS2 (real) reduce a symmetric-definite generalized eigenvalue problem to

95

standard form
SYTD2 (real) reduce a symmetric matrix to tridiagonal form
SYTF2 compute the diagonal pivoting factorization of a symmetric matrix
TRTI2 compute the inverse of a triangular matrix
UNG2L (complex) generate the unitary matrix from xGEQLF
UNG2R (complex) generate the unitary matrix from xGEQRF
UNGL2 (complex) generate the unitary matrix from xGEQLF
UNGR2 (complex) generate the unitary matrix from xGERQF
UNM2L (complex) multiply by the unitary matrix from xGEQLF
UNM2R (complex) multiply by the unitary matrix from xGEQRF
UNML2 (complex) multiply by the unitary matrix from xGELQF
UNMR2 (complex) multiply by the unitary matrix from xGERQF

Other LAPACK auxiliary routines:

LABAD (real) returns square root of underflow and overflow if exponent range is large
LABRD reduce NB rows or columns of a matrix to upper or lower bidiagonal form
LACGV (complex) conjugates a complex vector of length n
LACRM (complex) matrix multiply C = A ∗B, where A is complex, B is real,

and C is complex.
LACRT (complex) applies a plane rotation to two complex vectors
LACON estimate the norm of a matrix for use in condition estimation
LACPY copy a matrix to another matrix
LADIV perform complex division in real arithmetic
LAE2 (real) compute eigenvalues of a 2-by-2 real symmetric matrix
LAEBZ compute and use the count of eigenvalues of a symmetric

tridiagonal matrix
LAED0 Used by xSTEDC.
LAED1 (real) Used by xSTEDC.
LAED2 (real) Used by xSTEDC.
LAED3 (real) Used by xSTEDC.
LAED4 (real) Used by xSTEDC.
LAED5 (real) Used by xSTEDC.
LAED6 (real) Used by xSTEDC.
LAED7 Used by xSTEDC.
LAED8 Used by xSTEDC.
LAED9 (real) Used by xSTEDC.
LAEDA Used by xSTEDC.
LAEIN Use inverse iteration to find a specified right and/or left eigenvector of an

upper Hessenberg matrix
LAEQZ unblocked single-/double-shift version of QZ method
LAESY (complex) Compute eigenvalues and eigenvectors of a complex symmetric

2-by-2 matrix
LAEV2 Compute eigenvalues and eigenvectors of a 2-by-2 real symmetric or complex

Hermitian matrix
LAEXC swap adjacent diagonal blocks in a quasi-upper triangular matrix

96

LAG2 compute the eigenvalues of a 2-by-2 generalized
eigenvalue problem with scaling to avoid over-/underflow

LAGS2 computes 2-by-2 orthogonal matrices
LAGTF (real) factorizes the matrix (T − λI)
LAGTM matrix-vector product where the matrix is tridiagonal
LAGTS solves a system of equations (T − λI)x = y where

T is a tridiagonal matrix
LAHEF (complex) compute part of the diagonal pivoting factorization of a Hermitian

matrix
LAHQR Find the Schur factorization of a Hessenberg matrix (modified version of

HQR from EISPACK)
LAHRD reduce NB columns of a general matrix to Hessenberg form
LAIC1 apply one step of incremental condition estimation
LALN2 (real) Solve a 1-by-1 or 2-by-2 linear system
LANV2 (real) computes the Schur factorization of a real 2-by-2 nonsymmetric matrix
LAPLL measures linear dependence of two vectors
LAPMT applies forward or backward permutations to the columns of a matrix
LAPY2 (real) Compute square root of X**2 + Y**2
LAPY3 (real) Compute square root of X**2 + Y**2 + Z**2
LAQGB equilibrate a general band matrix
LAQGE equilibrate a general matrix
LAQSB equilibrate a symmetric band matrix
LAQSP equilibrate a symmetric packed matrix
LAQSY equilibrate a symmetric matrix
LAQTR (real) solve a real quasi-triangular system
LAR2V apply real plane rotations from both sides to a sequence

of 2-by-2 real symmetric matrices
LARF apply (multiply by) an elementary reflector
LARFB apply (multiply by) a block reflector
LARFG generate an elementary reflector
LARFT form the triangular factor of a block reflector
LARFX unrolled version of xLARF
LARGV generate a vector of plane rotations
LARNV returns a vector of random numbers from a uniform or normal distribution
LARTG generate a plane rotation
LARTV apply a vector of plane rotations to a pair of vectors
LARUV (real) returns a vector of real random numbers from a uniform distribution
LAS2 (real) Compute singular values of a 2-by-2 triangular matrix
LASCL scale a matrix by CTO/CFROM
LASET initializes a matrix to BETA on the diagonal and ALPHA on

the off-diagonals
LASQ1 Used by SBDSQR.
LASQ2 Used by SBDSQR.
LASQ3 Used by SBDSQR.
LASQ4 Used by SBDSQR.

97

LASR Apply a sequence of plane rotations to a rectangular matrix
LASRT Sorts numbers in increasing or decreasing order using Quick Sort,

reverting to Insertion sort on arrays of size ≤ 20.
LASSQ Compute a scaled sum of squares of the elements of a vector
LASV2 (real) Compute singular values and singular vectors of a 2-by-2 triangular

matrix
LASWP Perform a series of row interchanges
LASY2 (real) solve for a matrix X that satisfies the equation

TL ∗X + ISGN ∗X ∗ TR = SCALE ∗B
LASYF compute part of the diagonal pivoting factorization of a symmetric matrix
LATBS solve a triangular band system with scaling to prevent overflow
LATPS solve a packed triangular system with scaling to prevent overflow
LATRD reduce NB rows and columns of a real symmetric or complex Hermitian

matrix to tridiagonal form
LATRS solve a triangular system with scaling to prevent overflow
LATZM apply a Householder matrix generated by xTZRQF to a matrix
LAUU2 Unblocked version of LAUUM
LAUUM Compute the product U*U’ or L’*L (blocked version)

98

Appendix C

Operation Counts for the BLAS
and LAPACK

In this appendix we reproduce in tabular form the formulas we have used to compute
operation counts for the BLAS and LAPACK routines. In single precision, the functions
SOPBL2, SOPBL3, SOPAUX, and SOPLA return the operation counts for the Level 2
BLAS, Level 3 BLAS, LAPACK auxiliary routines, and LAPACK routines, respectively.
All four functions are found in the directory LAPACK/TIMING/LIN.

In the tables below, we give operation counts for the single precision real dense and
banded routines (the counts for the symmetric packed routines are the same as for the dense
routines). Separate counts are given for multiplies (including divisions) and additions, and
the total is the sum of these expressions. For the complex analogues of these routines, each
multiplication would count as 6 operations and each addition as 2 operations, so the total
would be different. For the double precision routines, we use the same operation counts as
for the single precision real or complex routines.

Operation Counts for the Level 2 BLAS

The four parameters used in counting operations for the Level 2 BLAS are the matrix
dimensions m and n and the upper and lower bandwidths ku and kl for the band routines
(k if symmetric or triangular). An exact count also depends slightly on the values of the
scaling factors α and β, since some common special cases (such as α = 1 and β = 0) can
be treated separately.

The count for SGBMV from the Level 2 BLAS is as follows:

SGBMV multiplications: mn− (m− kl − 1)(m− kl)/2− (n− ku − 1)(n− ku)/2
additions: mn− (m− kl − 1)(m− kl)/2− (n− ku − 1)(n− ku)/2
total flops: 2mn− (m− kl − 1)(m− kl)− (n− ku − 1)(n− ku)

plus m multiplies if α 6= ±1 and another m multiplies if β 6= ±1 or 0. The other Level 2
BLAS operation counts are shown in Table 1.

99

Operation Counts for the Level 3 BLAS

Three parameters are used to count operations for the Level 3 BLAS: the matrix di-
mensions m, n, and k. In some cases we also must know whether the matrix is multiplied
on the left or right. An exact count depends slightly on the values of the scaling factors α
and β, but in Table 2 we assume these parameters are always ±1 or 0, since that is how
they are used in the LAPACK routines.

Operation Counts for the LAPACK Routines

The parameters used in counting operations for the LAPACK routines are the matrix
dimensions m and n, the upper and lower bandwidths ku and kl for the band routines (k
if symmetric or triangular), and NRHS, the number of right hand sides in the solution
phase. The operation counts for the LAPACK routines not listed here are not computed
by a formula. In particular, the operation counts for the eigenvalue routines are problem-
dependent and are computed during execution of the timing program.

Level 2 BLAS multiplications additions total flops

SGEMV 1,2 mn mn 2mn

SSYMV 3,4 n2 n2 2n2

SSBMV 3,4 n(2k + 1)− k(k + 1) n(2k + 1)− k(k + 1) n(4k + 2)− 2k(k + 1)

STRMV 3,4,5 n(n+ 1)/2 (n− 1)n/2 n2

STBMV 3,4,5 n(k + 1)− k(k + 1)/2 nk − k(k + 1)/2 n(2k + 1)− k(k + 1)

STRSV 5 n(n+ 1)/2 (n− 1)n/2 n2

STBSV 5 n(k + 1)− k(k + 1)/2 nk − k(k + 1)/2 n(2k + 1)− k(k + 1)

SGER 1 mn mn 2mn

SSYR 3 n(n+ 1)/2 n(n+ 1)/2 n(n+ 1)

SSYR2 3 n(n+ 1) n2 2n2 + n

1 – Plus m multiplies if α 6= ±1
2 – Plus m multiplies if β 6= ±1 or 0
3 – Plus n multiplies if α 6= ±1
4 – Plus n multiplies if β 6= ±1 or 0
5 – Less n multiplies if matrix is unit triangular

Table 1: Operation counts for the Level 2 BLAS

100

Level 3 BLAS multiplications additions total flops

SGEMM mkn mkn 2mkn

SSYMM (SIDE = ’L’) m2n m2n 2m2n
SSYMM (SIDE = ’R’) mn2 mn2 2mn2

SSYRK kn(n+ 1)/2 kn(n+ 1)/2 kn(n+ 1)

SSYR2K kn2 kn2 + n 2kn2 + n

STRMM (SIDE = ’L’) nm(m+ 1)/2 nm(m− 1)/2 nm2

STRMM (SIDE = ’R’) mn(n+ 1)/2 mn(n− 1)/2 mn2

STRSM (SIDE = ’L’) nm(m+ 1)/2 nm(m− 1)/2 nm2

STRSM (SIDE = ’R’) mn(n+ 1)/2 mn(n− 1)/2 mn2

Table 2: Operation counts for the Level 3 BLAS. (I think these all assume α = ±1 and
β = ±1 or 0; otherwise add smaller order term.)

LAPACK routines:

SGETRF multiplications: 1/2mn2 − 1/6n3 + 1/2mn− 1/2n2 + 2/3n
additions: 1/2mn2 − 1/6n3 − 1/2mn+ 1/6n
total flops: mn2 − 1/3n3 − 1/2n2 + 5/6n

(I think for m ≥ n; swap m and n for m < n)

SGETRI multiplications: 2/3n3 + 1/2n2 + 5/6n
additions: 2/3n3 − 3/2n2 + 5/6n
total flops: 4/3n3 − n2 + 5/3n

SGETRS multiplications: NRHS [n2]
additions: NRHS [n2 − n]
total flops: NRHS [2n2 − n]

SPOTRF multiplications: 1/6n3 + 1/2n2 + 1/3n
additions: 1/6n3 − 1/6n
total flops: 1/3n3 + 1/2n2 + 1/6n

SPOTRI multiplications: 1/3n3 + n2 + 2/3n
additions: 1/3n3 − 1/2n2 + 1/6n
total flops: 2/3n3 + 1/2n2 + 5/6n

101

SPOTRS multiplications: NRHS [n2 + n]
additions: NRHS [n2 − n]
total flops: NRHS [2n2]

SPBTRF multiplications: n(1/2k2 + 3/2k + 1)− 1/3k3 − k2 − 2/3k
additions: n(1/2k2 + 1/2k)− 1/3k3 − 1/2k2 − 1/6k
total flops: n(k2 + 2k + 1)− 2/3k3 − 3/2k2 − 5/6k

SPBTRS multiplications: NRHS [2nk + 2n− k2 − k]
additions: NRHS [2nk − k2 − k]
total flops: NRHS [4nk + 2n− 2k2 − 2k]

SSYTRF multiplications: 1/6n3 + 1/2n2 + 10/3n
additions: 1/6n3 − 1/6n
total flops: 1/3n3 + 1/2n2 + 19/6n

SSYTRI multiplications: 1/3n3 + 2/3n
additions: 1/3n3 − 1/3n
total flops: 2/3n3 + 1/3n

SSYTRS multiplications: NRHS [n2 + n]
additions: NRHS [n2 − n]
total flops: NRHS [2n2]

SGEQRF or SGEQLF (m ≥ n)
multiplications: mn2 − 1/3n3 +mn+ 1/2n2 + 23/6n
additions: mn2 − 1/3n3 + 1/2n2 + 5/6n
total flops: 2mn2 − 2/3n3 +mn+ n2 + 14/3n

SGEQRF or SGEQLF (m ≤ n)
multiplications: nm2 − 1/3m3 + 2nm− 1/2m2 + 23/6m
additions: nm2 − 1/3m3 + nm− 1/2m2 + 5/6m
total flops: 2nm2 − 2/3m3 + 3nm−m2 + 14/3m

(original had typo, 14/3n)

102

SGERQF or SGELQF (m ≥ n)
multiplications: mn2 − 1/3n3 +mn+ 1/2n2 + 29/6n
additions: mn2 − 1/3n3 +mn− 1/2n2 + 5/6n
total flops: 2mn2 − 2/3n3 + 2mn+ 17/3n

SGERQF or SGELQF (m ≤ n)
multiplications: nm2 − 1/3m3 + 2nm− 1/2m2 + 29/6m
additions: nm2 − 1/3m3 + 1/2m2 + 5/6m
total flops: 2nm2 − 2/3m3 + 2nm+ 17/3m

(original had typo, 17/3n)

SORGQR or SORGQL
multiplications: 2mnk − (m+ n)k2 + 2/3k3 + 2nk − k2 − 5/3k
additions: 2mnk − (m+ n)k2 + 2/3k3 + nk −mk + 1/3k
total flops: 4mnk − 2(m+ n)k2 + 4/3k3 + 3nk −mk − k2 − 4/3k

SORGLQ or SORGRQ
multiplications: 2mnk − (m+ n)k2 + 2/3k3 +mk + nk − k2 − 2/3k
additions: 2mnk − (m+ n)k2 + 2/3k3 +mk − nk + 1/3k
total flops: 4mnk − 2(m+ n)k2 + 4/3k3 + 2mk − k2 − 1/3k

SGEQRS multiplications: NRHS [2mn− 1/2n2 + 5/2n]
additions: NRHS [2mn− 1/2n2 + 1/2n]
total flops: NRHS [4mn− n2 + 3n]

SORMQR, SORMLQ, SORMQL or SORMRQ (SIDE = ’L’)
multiplications: 2nmk − nk2 + 2nk
additions: 2nmk − nk2 + nk
total flops: 4nmk − 2nk2 + 3nk

SORMQR, SORMLQ, SORMQL or SORMRQ (SIDE = ’R’)
multiplications: 2nmk −mk2 +mk + nk − 1/2k2 + 1/2k
additions: 2nmk −mk2 +mk
total flops: 4nmk − 2mk2 + 2mk + nk − 1/2k2 + 1/2k

103

STRTRI multiplications: 1/6n3 + 1/2n2 + 1/3n
additions: 1/6n3 − 1/2n2 + 1/3n
total flops: 1/3n3 + 2/3n

SGEHRD multiplications: 5/3n3 + 1/2n2 − 7/6n− 13
additions: 5/3n3 − n2 − 2/3n− 8
total flops: 10/3n3 − 1/2n2 − 11/6n− 21

SSYTRD multiplications: 2/3n3 + 5/2n2 − 1/6n− 15
additions: 2/3n3 + n2 − 8/3n− 4
total flops: 4/3n3 + 3n2 − 17/6n− 19

SGEBRD (m ≥ n)
multiplications: 2mn2 − 2/3n3 + 2n2 + 20/3n
additions: 2mn2 − 2/3n3 + n2 −mn+ 5/3n
total flops: 4mn2 − 4/3n3 + 3n2 −mn+ 25/3n

SGEBRD (m < n)
exchange m and n in above

104

Appendix D

Caveats

In this appendix we list a few of the machine-specific difficulties we have encountered in
our own experience with LAPACK. A more detailed list of machine-dependent problems,
bugs, and compiler errors encountered in the LAPACK installation process is maintained on
netlib. Send email to netlib@ornl.gov of the form: send release notes from lapack.

We assume the user has installed the machine-specific routines correctly and that the
Level 2 and 3 BLAS test programs have run successfully, so we do not list any warnings
associated with those routines.

LAPACK is written in Fortran 77. Prospective users with only a Fortran 66 compiler
will not be able to use this package.

We have included test programs for the Level 1 BLAS. Users should therefore beware
of a common problem in machine-specific implementations of xNRM2, the function to com-
pute the 2-norm of a vector. The Fortran version of xNRM2 avoids underflow or overflow
by scaling intermediate results, but some library versions of xNRM2 are not so careful
about scaling. If xNRM2 is implemented without scaling intermediate results, some of the
LAPACK test ratios may be unusually high, or a floating point exception may occur in the
problems scaled near underflow or overflow. The solution to these problems is to link the
Fortran version of xNRM2 with the test program.

The testing and timing programs (xCHKAA, xCHKEE, xTIMAA, and xTIMEE) allo-
cate large amounts of local variables. Therefore, it is vitally important that the user know
if his compiler allocates local variables statically or on the stack. It is not uncommon for
those compilers which place local variables on the stack to cause a stack overflow at runtime
in the testing or timing process. The user then has two options: increase your stack size,
or force all local variables to be allocated statically.

In the eigensystem timing program, calls are made to the LINPACK and EISPACK
equivalents of the LAPACK routines to allow a direct comparison of performance measures.
In some cases we have increased the minimum number of iterations in the LINPACK and
EISPACK routines to allow them to converge for our test problems, but even this may not
be enough. One goal of the LAPACK project is to improve the convergence properties of
these routines, so error messages in the output file indicating that a LINPACK or EISPACK
routine did not converge should not be regarded with alarm.

In the eigensystem timing program, we have equivalenced some work arrays and then
passed them to a subroutine, where both arrays are modified. This is a violation of the

105

Fortran 77 standard, which says “if a subprogram reference causes a dummy argument
in the referenced subprogram to become associated with another dummy argument in the
referenced subprogram, neither dummy argument may become defined during execution of
the subprogram.” 1 If this causes any difficulties, the equivalence can be commented out
as explained in the comments for the main eigensystem timing programs.

If a large numbers of test failures occur for a specific matrix type or operation, it could
be that there is an optimization problem with your compiler. Thus, the user could try
reducing the level of optimization or eliminating optimization entirely for those routines to
see if the failures disappear when you rerun the tests.

MACHINE-SPECIFIC DIFFICULTIES

Some IBM compilers do not recognize DBLE as a generic function as used in LAPACK.
The software tools we use to convert from single precision to double precision convert
REAL(C) and AIMAG(C), where C is COMPLEX, to DBLE(Z) and DIMAG(Z), where Z
is COMPLEX*16, but IBM compilers use DREAL(Z) and DIMAG(Z) to take the real and
imaginary parts of a double complex number. IBM users can fix this problem by changing
DBLE to DREAL when the argument of DBLE is COMPLEX*16.

IBM compilers do not permit the data type COMPLEX*16 in a FUNCTION subpro-
gram definition. The data type on the first line of the function subprogram must be changed
from COMPLEX*16 to DOUBLE COMPLEX for the following functions:

ZBEG from the Level 2 BLAS test program
ZBEG from the Level 3 BLAS test program
ZLADIV from the LAPACK library
ZLARND from the test matrix generator library
ZLATM2 from the test matrix generator library
ZLATM3 from the test matrix generator library

The functions ZDOTC and ZDOTU from the Level 1 BLAS are already declared DOUBLE
COMPLEX. If that doesn’t work, try the declaration COMPLEX FUNCTION*16.

If compiling on a SUN, you may run out of space in /tmp (especially when compiling in
the LAPACK/SRC directory). Thus, either you will need to have your systems administrator
increase the size of your tmp partition, or change the archive command to ar crl so that
the archive command will only place temporary files in the current working directory rather
than in the default temporary directory /tmp.

Some of our test matrices are scaled near overflow or underflow, but on the Crays, prob-
lems with the arithmetic near overflow and underflow forced us to scale by only the square
root of overflow and underflow. The LAPACK auxiliary routine SLABAD (or DLABAD)
is called to take the square root of underflow and overflow in cases where it could cause
difficulties. We assume we are on a Cray if log10(overflow) is greater than 2000 and take
the square root of underflow and overflow in this case. The test in SLABAD is as follows:

IF(LOG10(LARGE).GT.2000.) THEN

1 ANSI X3.9-1978, sec. 15.9.3.6

106

SMALL = SQRT(SMALL)

LARGE = SQRT(LARGE)

END IF

Users of other machines with similar restrictions on the effective range of usable numbers
may have to modify this test so that the square roots are done on their machine as well.
SLABAD is located in LAPACK/SRC.

For machines which have a narrow exponent range or lack gradual underflow (DEC
VAXes for example), it is not uncommon to experience failures in sec.out and/or dec.out
with SLAQTR/DLAQTR or DTRSYL. The failures in SLAQTR/DLAQTR and DTRSYL
occur with test problems which are very badly scaled when the norm of the solution is very
close to the underflow threshold (or even underflows to zero). We believe that these failures
could probably be avoided by an even greater degree of care in scaling, but we did not want
to delay the release of LAPACK any further. These tests pass successfully on most other
machines. An example failure in dec.out on a MicroVAX II looks like the following:

Tests of the Nonsymmetric eigenproblem condition estimation routines

DLALN2, DLASY2, DLANV2, DLAEXC, DTRSYL, DTREXC, DTRSNA, DTRSEN, DLAQTR

Relative machine precision (EPS) = 0.277556D-16

Safe minimum (SFMIN) = 0.587747D-38

Routines pass computational tests if test ratio is less than 20.00

DEC routines passed the tests of the error exits (35 tests done)

Error in DTRSYL: RMAX = 0.155D+07

LMAX = 5323 NINFO= 1600 KNT= 27648

Error in DLAQTR: RMAX = 0.344D+04

LMAX = 15792 NINFO= 26720 KNT= 45000

107

Appendix E

Installation Guide for Non-Unix
Systems

The non-Unix version of LAPACK is created in two steps. First, the user must untar the
Unix tar tape or tar file according to the directions in section 4. Second, after the tape
has been read or the file has been tarred, the user must then go to the LAPACK directory
and type latape. The execution of this file creates a directory called ASCII in the user’s
main directory. This ASCII directory contains the grouped files needed for a non-Unix
installation. The layout of the ASCII directory is as described in this appendix.

In the installation instructions, each file will be identified by the name given below.
Files with names ending in ‘F’ contain Fortran source code; those with names ending in ‘D’
contain data for input to the test and timing programs. There are two sets of data for each
timing run; data file 1 for small, non-vector computers, such as workstations, and data file
2 for large computers, particularly Cray-class supercomputers. All file names have at most
eight characters.

The leading one or two characters of the file name generally indicates which of the
different versions of the library or test programs will use it:

A: all four data types
SC: REAL and COMPLEX
DZ: DOUBLE PRECISION and COMPLEX*16
S: REAL
D: DOUBLE PRECISION
C: COMPLEX
Z: COMPLEX*16

Many of the files occur in groups of four, corresponding to the four different Fortran floating-
point data types, and we will frequently refer to these files generically, using ‘x’ in place of
the first letter (for example, xLASRCF).

1. README List of files as in this section

2. ALLAUXF LAPACK auxiliary routines used in all versions

108

3. SCLAUXF LAPACK auxiliary routines used in S and C versions
4. DZLAUXF LAPACK auxiliary routines used in D and Z versions

5. SLASRCF LAPACK routines and auxiliary routines
6. CLASRCF
7. DLASRCF
8. ZLASRCF

9. LSAMEF LSAME: function to compare two characters
10. TLSAMEF Test program for LSAME
11. SLAMCHF SLAMCH: function to determine machine parameters
12. TSLAMCHF Test program for SLAMCH
13. DLAMCHF DLAMCH: function to determine machine parameters
14. TDLAMCHF Test program for DLAMCH
15. SECONDF SECOND: function to return time in seconds
16. TSECONDF Test program for SECOND
17. DSECNDF DSECND: function to return time in seconds
18. TDSECNDF Test program for DSECND

19. ALLBLASF Auxiliary routines for the BLAS (and LAPACK)

20. SBLAS1F Level 1 BLAS
21. CBLAS1F
22. DBLAS1F
23. ZBLAS1F
24. CB1AUXF Auxiliary routines for Complex Level 1 BLAS
25. ZB1AUXF Auxiliary routines for D.P. Complex Level 1 BLAS

26. SBLAS2F Level 2 BLAS
27. CBLAS2F
28. DBLAS2F
29. ZBLAS2F

30. SBLAS3F Level 3 BLAS
31. CBLAS3F
32. DBLAS3F
33. ZBLAS3F

34. SBLAT1F Test program for Level 1 BLAS
35. CBLAT1F
36. DBLAT1F
37. ZBLAT1F

38. SBLAT2F Test program for Level 2 BLAS
39. CBLAT2F

109

40. DBLAT2F
41. ZBLAT2F

42. SBLAT2D Data file for testing Level 2 BLAS
43. CBLAT2D
44. DBLAT2D
45. ZBLAT2D

46. SBLAT3F Test program for Level 3 BLAS
47. CBLAT3F
48. DBLAT3F
49. ZBLAT3F

50. SBLAT3D Data file for testing Level 3 BLAS
51. CBLAT3D
52. DBLAT3D
53. ZBLAT3D

54. SCATGENF Auxiliary routines for the test matrix generators
55. DZATGENF

56. SMATGENF Test matrix generators
57. CMATGENF
58. DMATGENF
59. ZMATGENF

60. ALINTSTF Auxiliary routines for the linear equation test program

61. SLINTSTF Test program for linear equation routines
62. CLINTSTF
63. DLINTSTF
64. ZLINTSTF

65. SCLNTSTF Auxiliary routines for linear equation test programs
66. DZLNTSTF

67. SLINTSTD Data file 1 for linear equation test program
68. DLINTSTD
69. CLINTSTD
70. ZLINTSTD

71. SBAKTSTD Data file for testing SGEBAK
72. DBAKTSTD Data file for testing DGEBAK
73. CBAKTSTD Data file for testing CGEBAK
74. ZBAKTSTD Data file for testing ZGEBAK

110

75. SBALTSTD Data file for testing SGEBAL
76. DBALTSTD Data file for testing DGEBAL
77. CBALTSTD Data file for testing CGEBAL
78. ZBALTSTD Data file for testing ZGEBAL

79. SECTSTD Data file for testing eigencondition routines
80. DECTSTD
81. CECTSTD
82. ZECTSTD

83. SEDTSTD Data file for testing nonsymmetric eigenvalue driver routines
84. DEDTSTD
85. CEDTSTD
86. ZEDTSTD

87. SSBTSTD Data file for testing SSBTRD
88. DSBTSTD Data file for testing DSBTRD
89. CSBTSTD Data file for testing CHBTRD
90. ZSBTSTD Data file for testing ZHBTRD

91. SGGTSTD Data file for testing nonsymmetric generalized eigenvalue routines
92. DGGTSTD
93. CGGTSTD
94. ZGGTSTD

95. SSGTSTD Data file for testing symmetric generalized eigenvalue routines
96. DSGTSTD
97. CSGTSTD
98. ZSGTSTD

99. AEIGTSTF Auxiliary routines for the eigensystem test program
100. SCIGTSTF
101. DZIGTSTF

102. SEIGTSTF Test program for eigensystem routines
103. CEIGTSTF
104. DEIGTSTF
105. ZEIGTSTF

106. NEPTSTD Data file for testing Nonsymmetric Eigenvalue Problem
107. GEPTSTD Data file for testing Generalized Nonsymmetric Eigenvalue Problem
108. SEPTSTD Data file for testing Symmetric Eigenvalue Problem
109. SVDTSTD Data file for testing Singular Value Decomposition
110. GLMTSTD Data file for testing Generalized Linear Regression Model

111

111. GQRTSTD Data file for testing Generalized QR and RQ
112. GSVTSTD Data file for testing Generalized Singular Value Decomposition
113. LSETSTD Data file for testing Constrained Linear Least Squares Problem

114. SGKTSTD Data file for testing SGGBAK
115. DGKTSTD Data file for testing DGGBAK
116. CGKTSTD Data file for testing CGGBAK
117. ZGKTSTD Data file for testing ZGGBAK

118. SGLTSTD Data file for testing SGGBAL
119. DGLTSTD Data file for testing DGGBAL
120. CGLTSTD Data file for testing CGGBAL
121. ZGLTSTD Data file for testing ZGGBAL

122. SBBTSTD Data file for testing SGBBRD
123. DBBTSTD Data file for testing DGBBRD
124. CBBTSTD Data file for testing CGBBRD
125. ZBBTSTD Data file for testing ZGBBRD

126. ALINTIMF Auxiliary routines for the linear system timing program
127. SCINTIMF
128. DZINTIMF

129. SLINTIMF Timing program for linear equations
130. CLINTIMF
131. DLINTIMF
132. ZLINTIMF

133. SLINTIMD Data file 1 for timing dense square linear equations
134. DLINTIMD
135. CLINTIMD
136. ZLINTIMD

137. SRECTIMD Data file 1 for timing dense rectangular linear equations
138. DRECTIMD
139. CRECTIMD
140. ZRECTIMD

141. SBNDTIMD Data file 1 for timing banded linear equations
142. DBNDTIMD
143. CBNDTIMD
144. ZBNDTIMD

145. SBLTIMAD Data file 1-a for timing the BLAS
146. DBLTIMAD

112

147. CBLTIMAD
148. ZBLTIMAD

149. SBLTIMBD Data file 1-b for timing the BLAS
150. DBLTIMBD
151. CBLTIMBD
152. ZBLTIMBD

153. SBLTIMCD Data file 1-c for timing the BLAS
154. DBLTIMCD
155. CBLTIMCD
156. ZBLTIMCD

157. SLINTM2D Data file 2 for timing dense square linear equations
158. DLINTM2D
159. CLINTM2D
160. ZLINTM2D

161. SRECTM2D Data file 2 for timing dense rectangular linear equations
162. DRECTM2D
163. CRECTM2D
164. ZRECTM2D

165. SBNDTM2D Data file 2 for timing banded linear equations
166. DBNDTM2D
167. CBNDTM2D
168. ZBNDTM2D

169. SBLTM2AD Data file 2-a for timing the BLAS
170. DBLTM2AD
171. CBLTM2AD
172. ZBLTM2AD

173. SBLTM2BD Data file 2-b for timing the BLAS
174. DBLTM2BD
175. CBLTM2BD
176. ZBLTM2BD

177. SBLTM2CD Data file 2-c for timing the BLAS
178. DBLTM2CD
179. CBLTM2CD
180. ZBLTM2CD

181. AEIGTIMF Auxiliary routines for the eigensystem timing program
182. SCIGTIMF

113

183. DZIGTIMF

184. SEIGTIMF Timing program for the eigensystem routines
185. CEIGTIMF
186. DEIGTIMF
187. ZEIGTIMF

188. SEIGSRCF Instrumented LAPACK routines
189. CEIGSRCF
190. DEIGSRCF
191. ZEIGSRCF

192. SCIGSRCF Instrumented auxiliary routines used in S and C versions
193. DZIGSRCF Instrumented auxiliary routines used in D and Z versions

194. SGEPTIMD Data file 1 for timing Generalized Nonsymmetric Eigenvalue Problem
195. SNEPTIMD Data file 1 for timing Nonsymmetric Eigenvalue Problem
196. SSEPTIMD Data file 1 for timing Symmetric Eigenvalue Problem
197. SSVDTIMD Data file 1 for timing Singular Value Decomposition

198. CGEPTIMD
199. CNEPTIMD
200. CSEPTIMD
201. CSVDTIMD

202. DGEPTIMD
203. DNEPTIMD
204. DSEPTIMD
205. DSVDTIMD

206. ZGEPTIMD
207. ZNEPTIMD
208. ZSEPTIMD
209. ZSVDTIMD

210. SGEPTM2D Data file 2 for timing Generalized Nonsymmetric Eigenvalue Problem
211. SNEPTM2D Data file 2 for timing Nonsymmetric Eigenvalue Problem
212. SSEPTM2D Data file 2 for timing Symmetric Eigenvalue Problem
213. SSVDTM2D Data file 2 for timing Singular Value Decomposition

214. CGEPTM2D
215. CNEPTM2D
216. CSEPTM2D
217. CSVDTM2D

114

218. DGEPTM2D
219. DNEPTM2D
220. DSEPTM2D
221. DSVDTM2D

222. ZGEPTM2D
223. ZNEPTM2D
224. ZSEPTM2D
225. ZSVDTM2D

E.1 Installing LAPACK on a non-Unix System

Installing and testing the non-Unix version of LAPACK involves the following steps:

1. Read the tape or tar the file.

2. Test and install the machine-dependent routines.

3. Create the BLAS library, if necessary.

4. Run the Level 2 and 3 BLAS test programs.

5. Create the LAPACK library.

6. Create the library of test matrix generators.

7. Run the LAPACK test programs.

8. Run the LAPACK timing programs.

E.1.1 Read the Tape or Tar the File

Read the tape as instructed in section 4. You will need about 33 megabytes to read in
the complete tape. The total space requirements including the object files is approximately
80 MB for all four data types.

E.1.2 Test and Install the Machine-Dependent Routines.

There are five machine-dependent functions in the test and timing package, at least
three of which must be installed. They are

LSAME LOGICAL Test if two characters are the same regardless of case
SLAMCH REAL Determine machine-dependent parameters
DLAMCH DOUBLE PRECISION Determine machine-dependent parameters
SECOND REAL Return time in seconds from a fixed starting time
DSECND DOUBLE PRECISION Return time in seconds from a fixed starting time

If you are working only in single precision, you do not need to install DLAMCH and
DSECND, and if you are working only in double precision, you do not need to install
SLAMCH and SECOND. These five subroutines and their test programs are provided in
the files LSAMEF and TLSAMEF, SLAMCHF and TSLAMCHF, etc.

115

E.1.2.1 Installing LSAME

LSAME is a logical function with two character parameters, A and B. It returns .TRUE.
if A and B are the same regardless of case, or .FALSE. if they are different. For example,
the expression

LSAME(UPLO, ’U’)

is equivalent to

(UPLO.EQ.’U’).OR.(UPLO.EQ.’u’)

The test program in TLSAMEF tests all combinations of the same character in upper
and lower case for A and B, and two cases where A and B are different characters.

Compile LSAMEF and TLSAMEF and run the test program. If LSAME works correctly,
the only message you should see is

ASCII character set

Tests completed

The working version of LSAME should be appended to the file ALLBLASF. This file, which
also contains the error handler XERBLA, will be compiled with either the BLAS library in
Section A.3 or the LAPACK library in Section A.5.

E.1.2.2 Installing SLAMCH and DLAMCH

SLAMCH and DLAMCH are real functions with a single character parameter that
indicates the machine parameter to be returned. The test program in TSLAMCHF simply
prints out the different values computed by SLAMCH, so you need to know something about
what the values should be. For example, the output of the test program for SLAMCH on
a Sun SPARCstation is

Epsilon = 5.96046E-08

Safe minimum = 1.17549E-38

Base = 2.00000

Precision = 1.19209E-07

Number of digits in mantissa = 24.0000

Rounding mode = 1.00000

Minimum exponent = -125.000

Underflow threshold = 1.17549E-38

Largest exponent = 128.000

Overflow threshold = 3.40282E+38

Reciprocal of safe minimum = 8.50706E+37

On a Cray machine, the safe minimum underflows its output representation and the overflow
threshold overflows its output representation, so the safe minimum is printed as 0.00000
and overflow is printed as R. This is normal. If you would prefer to print a representable

116

number, you can modify the test program to print SFMIN*100. and RMAX/100. for the
safe minimum and overflow thresholds.

Compile SLAMCHF and TSLAMCHF and run the test program. If the results from
the test program are correct, save SLAMCH for inclusion in the LAPACK library. Repeat
these steps with DLAMCHF and TDLAMCHF. If both tests were successful, go to Section
A.2.3.

If SLAMCH (or DLAMCH) returns an invalid value, you will have to create your own
version of this function. The following options are used in LAPACK and must be set:

‘B’: Base of the machine

‘E’: Epsilon (relative machine precision)

‘O’: Overflow threshold

‘P’: Precision = Epsilon*Base

‘S’: Safe minimum (often same as underflow threshold)

‘U’: Underflow threshold

Some people may be familiar with R1MACH (D1MACH), a primitive routine for set-
ting machine parameters in which the user must comment out the appropriate assignment
statements for the target machine. If a version of R1MACH is on hand, the assignments in
SLAMCH can be made to refer to R1MACH using the correspondence

SLAMCH(‘U’) = R1MACH(1)

SLAMCH(‘O’) = R1MACH(2)

SLAMCH(‘E’) = R1MACH(3)

SLAMCH(‘B’) = R1MACH(5)

The safe minimum returned by SLAMCH(’S’) is initially set to the underflow value, but
if 1/(overflow) ≥ (underflow) it is recomputed as (1/(overflow)) ∗ (1 + ε), where ε is the
machine precision.

E.1.2.3 Installing SECOND and DSECND

Both the timing routines and the test routines call SECOND (DSECND), a real function
with no arguments that returns the time in seconds from some fixed starting time. Our
version of this routine returns only “user time”, and not “user time + system time”. The
version of second in SECONDF calls ETIME, a Fortran library routine available on some
computer systems. If ETIME is not available or a better local timing function exists, you
will have to provide the correct interface to SECOND and DSECND on your machine.

The test program in TSECONDF performs a million operations using 5000 iterations of
the SAXPY operation y := y+αx on a vector of length 100. The total time and megaflops
for this test is reported, then the operation is repeated including a call to SECOND on

117

each of the 5000 iterations to determine the overhead due to calling SECOND. Compile
SECONDF and TSECONDF and run the test program. There is no single right answer,
but the times in seconds should be positive and the megaflop ratios should be appropriate
for your machine. Repeat this test for DSECNDF and TDSECNDF and save SECOND
and DSECND for inclusion in the LAPACK library in Section A.5.

E.1.3 Create the BLAS Library

Ideally, a highly optimized version of the BLAS library already exists on your machine.
In this case you can go directly to Section A.4 to make the BLAS test programs. Other-
wise, you must create a library using the files xBLAS1F, xBLAS2F, xBLAS3F, CB1AUXF,
ZB1AUXF, and ALLBLASF. You may already have a library containing some of the BLAS,
but not all (Level 1 and 2, but not Level 3, for example). If so, you should use your local
version of the BLAS wherever possible and, if necessary, delete the BLAS you already have
from the provided files. The file ALLBLASF must be included if any part of xBLAS2F or
xBLAS3F is used. Compile these files and create an object library.

E.1.4 Run the BLAS Test Programs

Test programs for the Level 2 and 3 BLAS are in the files xBLAT2F and xBLAT3F. A
test program for the Level 1 BLAS is not included, in part because only a subset of the
original set of Level 1 BLAS is actually used in LAPACK, and the old test program was
designed to test the full set of Level 1 BLAS. The original Level 1 BLAS test program is
available from netlib as TOMS algorithm 539.

a) Compile the files xBLAT2F and xBLAT3F and link them to your BLAS library or
libraries. Note that each program includes a special version of the error-handling
routine XERBLA, which tests the error-exits from the Level 2 and 3 BLAS. On most
systems this will take precedence at link time over the standard version of XERBLA
in the BLAS library. If this is not the case (the symptom will be that the program
stops as soon as it tries to test an error-exit), you must temporarily delete XERBLA
from ALLBLASF and recompile the BLAS library.

b) Each BLAS test program has a corresponding data file xBLAT2D or xBLAT3D. As-
sociate this file with Fortran unit number 5.

c) The name of the output file is indicated on the first line of each input file and is
currently defined to be SBLAT2.SUMM for the REAL Level 2 BLAS, with similar
names for the other files. If necessary, edit the name of the output file to ensure that
it is valid on your system.

d) Run the Level 2 and 3 BLAS test programs.

If the tests using the supplied data files were completed successfully, consider whether
the tests were sufficiently thorough. For example, on a machine with vector registers, at
least one value of N greater than the length of the vector registers should be used; otherwise,
important parts of the compiled code may not be exercised by the tests. If the tests were

118

not successful, either because the program did not finish or the test ratios did not pass
the threshold, you will probably have to find and correct the problem before continuing. If
you have been testing a system-specific BLAS library, try using the Fortran BLAS for the
routines that did not pass the tests. For more details on the BLAS test programs, see [8]
and [6].

E.1.5 Create the LAPACK Library

Compile the files xLASRCF with ALLAUXF and create an object library. If you have
compiled either the S or C version, you must also compile and include the files SCLAUXF,
SLAMCHF, and SECONDF, and if you have compiled either the D or Z version, you must
also compile and include the files DZLAUXF, DLAMCHF, and DSECNDF. If you did not
compile the file ALLBLASF and include it in your BLAS library as described in Section
A.3, you must compile it now and include it in your LAPACK library.

E.1.6 Create the Test Matrix Generator Library

Compile the files xMATGENF and create an object library. If you have compiled either
the S or C version, you must also compile and include the file SCATGENF, and if you have
compiled either the D or Z version, you must also compile and include the file DZATGENF.

E.1.7 Run the LAPACK Test Programs

There are two distinct test programs for LAPACK routines in each data type, one for
the linear equations routines and one for the eigensystem routines. In each data type, there
is one input file for testing the linear equation routines and fourteen input files for testing
the eigenvalue routines. For more information on the test programs and how to modify the
input files, see Section 6.

E.1.7.1 Testing the Linear Equation Routines

a) Compile the files xLINTSTF and either SCLNTSTF (for single precision real and
complex) or DZLNTSTF (for double precision and double complex) and link them
to your matrix generator library, your LAPACK library, and your BLAS library or
libraries in that order (on some systems you may get unsatisfied external references if
you specify the libraries in the wrong order).

b) The data files for the linear equation test program are called xLINTSTD. For each of
the test programs, associate the appropriate data file with Fortran unit number 5.

c) The output file is written to Fortran unit number 6. Associate a suitably named file
(e.g., SLINTST.OUT) with this unit number.

d) Run the test programs.

If you encountered failures in this phase of the testing process, please refer to Section 6.8.

119

E.1.7.2 Testing the Eigensystem Routines

a) Compile the files xEIGTSTF and link them to your matrix generator library, your
LAPACK library, and your BLAS library or libraries in that order (on some systems
you may get unsatisfied external references if you specify the libraries in the wrong
order). If you have compiled either the S or C version, you must also compile and
include the file SCIGTSTF, and if you have compiled either the D or Z version, you
must also compile and include the file DZIGTSTF.

b) There are seventeen sets of data files for the eigensystem test program, xBAKTSTD,
xBALTSTD, xECTSTD, xEDTSTD, xSBTSTD, xGGTSTD, xSGTSTD, NEPTSTD,
SEPTSTD, SVDTSTD, GLMTSTD, GQRTSTD, GSVTSTD, LSETSTD, xGKT-
STD, xGLTSTD, and xBBTSTD. Note that seven of the input files (NEPTSTD,
SEPTSTD, SVDTSTD, GLMTSTD, GQRTSTD, GSVTSTD, and LSETSTD) are
used regardless of the data type of the test program. For each run of the test pro-
grams, associate the appropriate data file with Fortran unit number 5.

c) The output file is written to Fortran unit number 6. Associate suitably named files
with this unit number (e.g., SNEPTST.OUT, SBAKTST.OUT, etc.).

d) Run the test programs.

If you encountered failures in this phase of the testing process, please refer to Section 6.8.

E.1.8 Run the LAPACK Timing Programs

There are two distinct timing programs for LAPACK routines in each data type, one
for the linear equations routines and one for the eigensystem routines. The timing program
for the linear equations routines is also used to time the BLAS. We encourage you to
conduct these timing experiments in REAL and COMPLEX or in DOUBLE PRECISION
and COMPLEX*16; it is not necessary to send timing results in all four data types.

Two sets of input files are provided, a small set and a large set. The small data sets are
appropriate for a standard workstation or other non-vector machine. The large data sets
are appropriate for supercomputers, vector computers, and high-performance workstations.
We are mainly interested in results from the large data sets, and it is not necessary to run
both the large and small sets. The values of N in the large data sets are about five times
larger than those in the small data set, and the large data sets use additional values for
parameters such as the block size NB and the leading array dimension LDA. The small input
files end with the four characters ‘TIMD’ and the large input files end with the characters
‘TM2D’ (except for the BLAS timing files, see Section A.8.2).

We encourage you to obtain timing results with the large data sets, as this allows us to
compare different machines. If this would take too much time, suggestions for paring back
the large data sets are given in the instructions below. We also encourage you to experiment
with these timing programs and send us any interesting results, such as results for larger
problems or for a wider range of block sizes. The main programs are dimensioned for the
large data sets, so the parameters in the main program may have to be reduced in order

120

to run the small data sets on a small machine, or increased to run experiments with larger
problems.

The minimum time each subroutine will be timed is set to 0.0 in the large data files
and to 0.05 in the small data files, and on many machines this value should be increased.
If the timing interval is not long enough, the time for the subroutine after subtracting the
overhead may be very small or zero, resulting in megaflop rates that are very large or zero.
(To avoid division by zero, the megaflop rate is set to zero if the time is less than or equal to
zero.) The minimum time that should be used depends on the machine and the resolution
of the clock.

For more information on the timing programs and how to modify the input files, see
Section 7.

If you encountered failures in this phase of the testing process, please refer to Section 6.8.

E.1.8.1 Timing the Linear Equations Routines

Three input files are provided in each data type for timing the linear equation routines,
one for square matrices, one for band matrices, and one for rectangular matrices. The small
data sets are in xLINTIMD, xBNDTIMD, and xRECTIMD, and the large data sets are in
xLINTM2D, xBNDTM2D, and xRECTM2D.

a) Compile the files xLINTIMF, and link them to your LAPACK library and your BLAS
library or libraries in that order (on some systems you may get unsatisfied external
references if you specify the libraries in the wrong order). If you have compiled either
the S or C version, you must also compile and include the file SCINTSTF, and if you
have compiled either the D or Z version, you must also compile and include the file
DZINTSTF.

b) Make any necessary modifications to the input files. You may need to set the minimum
time a subroutine will be timed to a positive value, or to restrict the size of the tests
if you are using a computer with performance in between that of a workstation and
that of a supercomputer. The computational requirements can be cut in half by using
only one value of LDA. If it is necessary to also reduce the matrix sizes or the values
of the blocksize, corresponding changes should be made to the BLAS input files (see
Section A.8.2).

Associate the appropriate input file with Fortran unit number 5.

c) The output file is written to Fortran unit number 6. Associate a suitably named file
with this unit number (e.g., SLINTIM.OUT, SBNDTIM.OUT, and SRECTIM.OUT
for the REAL version).

e) Run the timing programs in each data type you are using for each of the three input
files.

E.1.8.2 Timing the BLAS

The linear equation timing program is also used to time the BLAS. Three input files are
provided in each data type for timing the Level 2 and 3 BLAS. These input files time the

121

BLAS using the matrix shapes encountered in the LAPACK routines, and we will use the
results to analyze the performance of the LAPACK routines. For the REAL version, the
small data sets are SBLTIMAD, SBLTIMBD, and SBLTIMCD and the large data sets are
SBLTM2AD, SBLTM2BD, and SBLTM2CD. There are three sets of inputs because there
are three parameters in the Level 3 BLAS, M, N, and K, and in most applications one of
these parameters is small (on the order of the blocksize) while the other two are large (on
the order of the matrix size). In SBLTIMAD, M and N are large but K is small, while in
SBLTIMBD the small parameter is M, and in SBLTIMCD the small parameter is N. The
Level 2 BLAS are timed only in the first data set, where K is also used as the bandwidth
for the banded routines.

a) Make any necessary modifications to the input files. You may need to set the minimum
time a subroutine will be timed to a positive value. If you modified the values of N or
NB in Section A.8.1, set M, N, and K accordingly. The large parameters among M,
N, and K should be the same as the matrix sizes used in timing the linear equation
routines, and the small parameter should be the same as the blocksizes used in timing
the linear equations routines. If necessary, the large data set can be simplified by
using only one value of LDA.

Associate the appropriate input file with Fortran unit number 5.

b) The output file is written to Fortran unit number 6. Associate a suitably named file
with this unit number (e.g., SBLTIMA.OUT, SBLTIMB.OUT, and SBLTIMC.OUT
for the three runs of the REAL version).

c) Run the timing programs in each data type you are using for each of the three input
files.

E.1.8.3 Timing the Eigensystem Routines

Four input files are provided in each data type for timing the eigensystem routines, one
for the generalized nonsymmetric eigenvalue problem, one for the nonsymmetric eigenvalue
problem, one for the symmetric eigenvalue problem and generalized symmetric eigenvalue
problem, and one for the singular value decomposition. For the REAL version, the small
data sets are SGEPTIMD, SNEPTIMD, SSEPTIMD, and SSVDTIMD and the large data
sets are SGEPTM2D, SNEPTM2D, SSEPTM2D, and SSVDTM2D. Each of the four input
files reads a different set of parameters and the format of the input is indicated by a 3-
character code on the first line.

The timing program for eigenvalue/singular value routines accumulates the operation
count as the routines are executing using special instrumented versions of the LAPACK
routines. The first step in compiling the timing program is therefore to make a library of
the instrumented routines.

a) Compile the files xEIGSRCF and create an object library. If you have compiled either
the S or C version, you must also compile and include the file SCIGSRCF, and if you
have compiled either the D or Z version, you must also compile and include the file
DZIGSRCF. If you did not compile the file ALLBLASF and include it in your BLAS

122

library as described in Section A.3, you must compile it now and include it in the
instrumented LAPACK library.

b) Compile the files xEIGTIMF with AEIGTIMF and link them to your test matrix
generator library, the instrumented LAPACK library created in the previous step,
your LAPACK library from Section A.5, and your BLAS library in that order (on
some systems you may get unsatisfied external references if you specify the libraries
in the wrong order). If you have compiled either the S or C version, you must also
compile and include the file SCIGTIMF, and if you have compiled either the D or Z
version, you must also compile and include the file DZIGTIMF.

c) Make any necessary modifications to the input files. You may need to set the minimum
time a subroutine will be timed to a positive value, or to restrict the number of tests
if you are using a computer with performance in between that of a workstation and
that of a supercomputer. Instead of decreasing the matrix dimensions to reduce the
time, it would be better to reduce the number of matrix types to be timed, since the
performance varies more with the matrix size than with the type. For example, for
the nonsymmetric eigenvalue routines, you could use only one matrix of type 4 instead
of four matrices of types 1, 3, 4, and 6. See Section 7 for further details.

Associate the appropriate input file with Fortran unit number 5.

d) The output file is written to Fortran unit number 6. Associate a suitably named file
with this unit number (e.g., SGEPTIM.OUT, SNEPTIM.OUT, SSEPTIM.OUT, and
SSVDTIM.OUT for the four runs of the REAL version).

e) Run the programs in each data type you are using with the four data sets.

E.1.9 Send the Results to Tennessee

Congratulations! You have now finished installing, testing, and timing LAPACK. If
you encountered failures in any phase of the testing or timing process, please consult our
release notes file on netlib (send email to netlib@ornl.gov and in the message type ”send
release notes from lapack”). This file contains machine-dependent installation clues which
hopefully will alleviate your difficulties or at least let you know that other users have
had similar difficulties on that machine. If there is not an entry for your machine or the
suggestions do not fix your problem, please feel free to contact the authors at

lapack@cs.utk.edu.

Tell us the type of machine on which the tests were run, the version of the operating
system, the compiler and compiler options that were used, and details of the BLAS library
or libraries that you used. You should also include a copy of the output file in which the
failure occurs.

We would like to keep our release notes file as up-to-date as possible. Therefore, if you
do not see an entry for your machine, please contact us with your testing results.

Comments and suggestions are also welcome.

123

We encourage you to make the LAPACK library available to your users and provide
us with feedback from their experiences. This release of LAPACK is not guaranteed to be
compatible with any previous test release.

124

Bibliography

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S.
Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users’ Guide,
Second Edition, SIAM, Philadelphia, PA, 1994.

[2] E. Anderson and J. Dongarra, LAPACK Working Note 16: Results from the Initial
Release of LAPACK, University of Tennessee, CS-89-89, November 1989.

[3] C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, and
D. Sorensen, LAPACK Working Note #5: Provisional Contents, Argonne National
Laboratory, ANL-88-38, September 1988.

[4] Z. Bai, J. Demmel, and A. McKenney, LAPACK Working Note #13: On the Condi-
tioning of the Nonsymmetric Eigenvalue Problem: Theory and Software, University of
Tennessee, CS-89-86, October 1989.

[5] J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling, “A Set of Level 3 Basic Linear
Algebra Subprograms,” ACM Trans. Math. Soft., 16, 1:1-17, March 1990

[6] J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling, “A Set of Level 3 Basic Linear
Algebra Subprograms: Model Implementation and Test Programs,” ACM Trans. Math.
Soft., 16, 1:18-28, March 1990.

[7] J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson, “An Extended Set of Fortran
Basic Linear Algebra Subprograms,” ACM Trans. Math. Soft., 14, 1:1-17, March 1988.

[8] J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson, “An Extended Set of Fortran
Basic Linear Algebra Subprograms: Model Implementation and Test Programs,” ACM
Trans. Math. Soft., 14, 1:18-32, March 1988.

[9] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, “Basic Linear Algebra
Subprograms for Fortran Usage,” ACM Trans. Math. Soft., 5, 3:308-323, September
1979.

125

	Introduction
	Revisions Since the First Public Release
	File Format
	Overview of Tape Contents
	LAPACK Routines
	Level 1, 2, and 3 BLAS
	LAPACK Test Routines
	LAPACK Timing Routines

	Installing LAPACK on a Unix System
	Read the Tape or Untar the File
	Edit the file LAPACK/make.inc
	Edit the file LAPACK/Makefile

	Further Details of the Installation Process
	Test and Install the Machine-Dependent Routines.
	Installing LSAME
	Installing SLAMCH and DLAMCH
	Installing SECOND and DSECND

	Create the BLAS Library
	Run the BLAS Test Programs
	Create the LAPACK Library
	Create the Test Matrix Generator Library
	Run the LAPACK Test Programs
	Testing the Linear Equations Routines
	Testing the Eigensystem Routines

	Run the LAPACK Timing Programs
	Timing the Linear Equations Routines
	Timing the BLAS
	Timing the Eigensystem Routines

	Send the Results to Tennessee

	More About Testing
	The Linear Equation Test Program
	Tests for General and Symmetric Matrices
	Tests for Triangular Matrices
	Tests for the Orthogonal Factorization Routines
	Tests for the Least Squares Driver Routines
	Tests for the Equilibration Routines
	Input File for Testing the Linear Equation Routines

	Testing the Eigenproblem Balancing and Backward Transformation Routines
	Testing the Nonsymmetric Eigenvalue Routines
	The Nonsymmetric Eigenvalue Drivers
	Test Matrices for the Nonsymmetric Eigenvalue Routines
	Test Matrices for the Nonsymmetric Eigenvalue Drivers
	Tests Performed on the Nonsymmetric Eigenvalue Routines
	Tests Performed on the Nonsymmetric Eigenvalue Drivers
	Input File for Testing the Nonsymmetric Eigenvalue Routines
	Input File for Testing the Nonsymmetric Eigenvalue Drivers

	Testing the Generalized Nonsymmetric Eigenvalue Routines
	The Generalized Nonsymmetric Eigenvalue Drivers
	Test Matrices for the Generalized Nonsymmetric Eigenvalue Routines
	Test Matrices for the Generalized Nonsymmetric Eigenvalue Drivers
	Tests Performed on the Generalized Nonsymmetric Eigenvalue Routines
	Tests Performed on the Generalized Nonsymmetric Eigenvalue Drivers
	Input File for Testing the Generalized Nonsymmetric Eigenvalue Routines and Drivers

	Testing the Nonsymmetric Eigenvalue Condition Estimation Routines
	Testing the Symmetric Eigenvalue Routines
	The Symmetric Eigenvalue Drivers
	Test Matrices for the Symmetric Eigenvalue Routines
	Test Matrices for the Symmetric Eigenvalue Drivers
	Tests Performed on the Symmetric Eigenvalue Routines
	Tests Performed on the Symmetric Eigenvalue Drivers
	Input File for Testing the Symmetric Eigenvalue Routines and Drivers
	Input File for Testing the Banded Symmetric Eigenvalue Routines and Drivers

	Testing the Generalized Symmetric Eigenvalue Routines and Drivers
	The Generalized Symmetric Eigenvalue Drivers
	Test Matrices for the Generalized Symmetric Eigenvalue Routines and Drivers
	Tests Performed on the Generalized Symmetric Eigenvalue Routines and Drivers
	Input File for Testing the Generalized Symmetric Eigenvalue Routines and Drivers

	Testing the Singular Value Decomposition Routines
	The Singular Value Decomposition Driver
	Test Matrices for the Singular Value Decomposition Routines
	Test Matrices for the Banded Singular Value Decomposition Routines
	Test Matrices for the Singular Value Decomposition Driver
	Tests Performed on the Singular Value Decomposition Routines
	Tests Performed on the Banded Singular Value Decomposition Routines
	Tests Performed on the Singular Value Decomposition Driver
	Input File for Testing the Singular Value Decomposition Routines
	Input File for Testing the Banded Singular Value Decomposition Routines

	Testing the Generalized Singular Value Decomposition Driver
	Test Matrices for the Generalized Singular Value Decomposition Driver
	Tests Performed on the Generalized Singular Value Decomposition Driver
	Input File for Testing the Generalized Singular Value Decomposition Driver

	Testing the Generalized QR and RQ Factorization Routines
	Test Matrices for the Generalized QR and RQ Factorization Routines
	Tests Performed on the Generalized QR and RQ Factorization Routines
	Input File for Testing the Generalized QR and RQ Factorization Routines

	Testing the Generalized Linear Regression Model Driver
	Test Matrices for the Generalized Linear Regression Model Driver
	Tests Performed on the Generalized Linear Regression Model Driver
	Input File for Testing the Generalized Linear Regression Model Driver

	Testing the Constrained Linear Least Squares Driver
	Test Matrices for the Constrained Linear Least Squares Driver
	Tests Performed on the Constrained Linear Least Squares Driver
	Input File for Testing the Constrained Linear Least Squares Driver

	More About Timing
	The Linear Equation Timing Program
	Timing the Level 2 and 3 BLAS
	Timing the Nonsymmetric Eigenproblem
	Timing the Generalized Nonsymmetric Eigenproblem
	Input File for Timing the Generalized Nonsymmetric Eigenproblem

	Timing the Symmetric and Generalized Symmetric Eigenproblem
	Timing the Singular Value Decomposition
	Timing the Generalized Singular Value Decomposition
	Timing the Generalized QR and RQ Factorizations
	Timing the Generalized Linear Regression Model Problem
	Timing the Constrained Linear Least Squares Problem

	LAPACK Routines
	LAPACK Auxiliary Routines
	Operation Counts for the BLAS and LAPACK
	Caveats
	Installation Guide for Non-Unix Systems
	Installing LAPACK on a non-Unix System
	Read the Tape or Tar the File
	Test and Install the Machine-Dependent Routines.
	Installing LSAME
	Installing SLAMCH and DLAMCH
	Installing SECOND and DSECND

	Create the BLAS Library
	Run the BLAS Test Programs
	Create the LAPACK Library
	Create the Test Matrix Generator Library
	Run the LAPACK Test Programs
	Testing the Linear Equation Routines
	Testing the Eigensystem Routines

	Run the LAPACK Timing Programs
	Timing the Linear Equations Routines
	Timing the BLAS
	Timing the Eigensystem Routines

	Send the Results to Tennessee

	Bibliography

