Publications

Export 265 results:
Filters: Author is Stanimire Tomov  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
D
Brown, C., A. Abdelfattah, S. Tomov, and J. Dongarra, Design, Optimization, and Benchmarking of Dense Linear Algebra Algorithms on AMD GPUs,” Innovative Computing Laboratory Technical Report, no. ICL-UT-20-12: University of Tennessee, August 2020.  (476.36 KB)
Haidar, A., A. Abdelfattah, M. Zounon, P. Wu, S. Pranesh, S. Tomov, and J. Dongarra, The Design of Fast and Energy-Efficient Linear Solvers: On the Potential of Half-Precision Arithmetic and Iterative Refinement Techniques,” International Conference on Computational Science (ICCS 2018), vol. 10860, Wuxi, China, Springer, pp. 586–600, June 2018. DOI: 10.1007/978-3-319-93698-7_45  (487.88 KB)
Kabir, K., A. Haidar, S. Tomov, and J. Dongarra, On the Design, Development, and Analysis of Optimized Matrix-Vector Multiplication Routines for Coprocessors,” ISC High Performance 2015, Frankfurt, Germany, July 2015.  (1.49 MB)
Tomov, S., A. Haidar, A. Ayala, D. Schultz, and J. Dongarra, Design and Implementation for FFT-ECP on Distributed Accelerated Systems,” Innovative Computing Laboratory Technical Report, no. ICL-UT-19-05: University of Tennessee, April 2019.  (3.19 MB)
Baboulin, M., J. Dongarra, A. Remy, S. Tomov, and I. Yamazaki, Dense Symmetric Indefinite Factorization on GPU Accelerated Architectures,” Lecture Notes in Computer Science, vol. 9573: Springer International Publishing, pp. 86-95, September 2015, 2016. DOI: 10.1007/978-3-319-32149-3_9  (327.14 KB)
Tomov, S., Dense Linear Algebra Solvers for Multicore with GPU Accelerators , Atlanta, GA, International Parallel and Distributed Processing Symposium (IPDPS 2010), April 2010.  (956.68 KB)
Tomov, S., R. Nath, H. Ltaeif, and J. Dongarra, Dense Linear Algebra Solvers for Multicore with GPU Accelerators,” Parallel Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE International Symposium on, Atlanta, GA, pp. 1-8, 2010. DOI: 10.1109/IPDPSW.2010.5470941  (1 MB)
Dongarra, J., J. Kurzak, P. Luszczek, and S. Tomov, Dense Linear Algebra on Accelerated Multicore Hardware,” High Performance Scientific Computing: Algorithms and Applications, London, UK, Springer-Verlag, 00 2012.
Tomov, S., and J. Dongarra, Dense Linear Algebra for Hybrid GPU-based Systems,” Scientific Computing with Multicore and Accelerators, Boca Raton, Florida, CRC Press, 2010.
Yamazaki, I., S. Tomov, and J. Dongarra, Deflation Strategies to Improve the Convergence of Communication-Avoiding GMRES,” 5th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, New Orleans, LA, November 2014.  (465.52 KB)
C
Tomov, S., J. Langou, A. Canning, L-W. Wang, and J. Dongarra, Conjugate-Gradient Eigenvalue Solvers in Computing Electronic Properties of Nanostructure Architectures,” International Journal of Computational Science and Engineering (to appear), January 2005.  (428.21 KB)
Tomov, S., J. Langou, J. Dongarra, A. Canning, and L-W. Wang, Conjugate-Gradient Eigenvalue Solvers in Computing Electronic Properties of Nanostructure Architectures,” International Journal of Computational Science and Engineering, vol. 2, no. 3/4, pp. 205-212, 00 2006.  (428.21 KB)
Yamazaki, I., S. Tomov, and J. Dongarra, Computing Low-rank Approximation of a Dense Matrix on Multicore CPUs with a GPU and its Application to Solving a Hierarchically Semiseparable Linear System of Equations,” Scientific Programming, 2015.  (648.87 KB)
Sun, J., J. Fu, J. Drake, Q. Zhu, A. Haidar, M. Gates, S. Tomov, and J. Dongarra, Computational Benefit of GPU Optimization for Atmospheric Chemistry Modeling,” Journal of Advances in Modeling Earth Systems, vol. 10, issue 8, pp. 1952–1969, August 2018. DOI: 10.1029/2018MS001276  (3.4 MB)
Tomov, S., J. Langou, A. Canning, L-W. Wang, and J. Dongarra, Comparison of Nonlinear Conjugate-Gradient methods for computing the Electronic Properties of Nanostructure Architectures,” Proceedings of 5th International Conference on Computational Science (ICCS), Atlanta, GA, USA, Springer's Lecture Notes in Computer Science, pp. 317-325, January 2005.  (172.86 KB)
Gates, M., S. Tomov, and A. Haidar, Comparing Hybrid CPU-GPU and Native GPU-only Acceleration for Linear Algebra,” 2015 SIAM Conference on Applied Linear Algebra, Atlanta, GA, SIAM, October 2015.  (4.7 MB)
Gates, M., S. Tomov, H. Anzt, P. Luszczek, and J. Dongarra, Clover: Computational Libraries Optimized via Exascale Research , Houston, TX, 2020 Exascale Computing Project Annual Meeting, February 2020.  (872 KB)
Cao, C., J. Dongarra, P. Du, M. Gates, P. Luszczek, and S. Tomov, clMAGMA: High Performance Dense Linear Algebra with OpenCL ,” International Workshop on OpenCL, Bristol University, England, May 2014.  (460.91 KB)
Cao, C., J. Dongarra, P. Du, M. Gates, P. Luszczek, and S. Tomov, clMAGMA: High Performance Dense Linear Algebra with OpenCL,” University of Tennessee Technical Report (Lawn 275), no. UT-CS-13-706: University of Tennessee, March 2013.  (526.6 KB)
Horton, M., S. Tomov, and J. Dongarra, A Class of Hybrid LAPACK Algorithms for Multicore and GPU Architectures,” Symposium for Application Accelerators in High Performance Computing (SAAHPC'11), Knoxville, TN, July 2011.  (329.68 KB)
Baboulin, M., S. Donfack, J. Dongarra, L. Grigori, A. Remi, and S. Tomov, A Class of Communication-Avoiding Algorithms for Solving General Dense Linear Systems on CPU/GPU Parallel Machines,” Proc. of the International Conference on Computational Science (ICCS), vol. 9, pp. 17-26, June 2012.
Abdelfattah, A., A. Haidar, S. Tomov, and J. Dongarra, Cholesky Factorization on Batches of Matrices with Fixed and Variable Sizes , San Jose, CA, GPU Technology Conference (GTC16), Poster, April 2016.  (480.51 KB)
YarKhan, A., A. Haidar, C. Cao, P. Luszczek, S. Tomov, and J. Dongarra, Cholesky Across Accelerators,” 17th IEEE International Conference on High Performance Computing and Communications (HPCC 2015), Elizabeth, NJ, IEEE, August 2015.
Brown, J., A. Abdelfattah, V. Barra, V. Dobrev, Y. Dudouit, P. Fischer, T. Kolev, D. Medina, M. Min, T. Ratnayaka, et al., CEED ECP Milestone Report: Public release of CEED 2.0 : Zenodo, April 2019. DOI: 10.5281/zenodo.2641316  (4.98 MB)
Tomov, S., A. Abdelfattah, V. Barra, N. Beams, J. Brown, J-S. Camier, V. Dobrev, J. Dongarra, Y. Dudouit, P. Fischer, et al., CEED ECP Milestone Report: Performance Tuning of CEED Software and 1st and 2nd Wave Apps : Zenodo, October 2019. DOI: 10.5281/zenodo.3477618  (8.31 MB)
Abdelfattah, A., K. Arturov, C. Cecka, J. Dongarra, C. Freitag, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, et al., C++ API for Batch BLAS,” SLATE Working Notes, no. 04, ICL-UT-17-12: University of Tennessee, December 2017.  (1.89 MB)
B
Anzt, H., J. Dongarra, M. Gates, J. Kurzak, P. Luszczek, S. Tomov, and I. Yamazaki, Bringing High Performance Computing to Big Data Algorithms,” Handbook of Big Data Technologies: Springer, 2017. DOI: 10.1007/978-3-319-49340-4  (1.22 MB)
Anzt, H., S. Tomov, J. Dongarra, and V. Heuveline, A Block-Asynchronous Relaxation Method for Graphics Processing Units,” Journal of Parallel and Distributed Computing, vol. 73, issue 12, pp. 1613–1626, December 2013. DOI: http://dx.doi.org/10.1016/j.jpdc.2013.05.008  (1.08 MB)
Anzt, H., S. Tomov, J. Dongarra, and V. Heuveline, A Block-Asynchronous Relaxation Method for Graphics Processing Units,” University of Tennessee Computer Science Technical Report, no. UT-CS-11-687 / LAWN 258, November 2011.  (1.08 MB)
Anzt, H., S. Tomov, M. Gates, J. Dongarra, and V. Heuveline, Block-asynchronous Multigrid Smoothers for GPU-accelerated Systems , no. UT-CS-11-689, December 2011.  (608.95 KB)
Anzt, H., S. Tomov, M. Gates, J. Dongarra, and V. Heuveline, Block-asynchronous Multigrid Smoothers for GPU-accelerated Systems,” ICCS 2012, Omaha, NE, June 2012.  (608.95 KB)
Nath, R., S. Tomov, and J. Dongarra, Blas for GPUs,” Scientific Computing with Multicore and Accelerators, Boca Raton, Florida, CRC Press, 2010.  (1.05 MB)
Abdelfattah, A., A. Haidar, S. Tomov, and J. Dongarra, Batched One-Sided Factorizations of Tiny Matrices Using GPUs: Challenges and Countermeasures,” Journal of Computational Science, vol. 26, pp. 226–236, May 2018. DOI: 10.1016/j.jocs.2018.01.005  (3.73 MB)
Haidar, A., A. Abdelfattah, S. Tomov, and J. Dongarra, Batched Matrix Computations on Hardware Accelerators Based on GPUs,” 2015 SIAM Conference on Applied Linear Algebra (SIAM LA), Atlanta, GA, SIAM, October 2015.  (9.36 MB)
Haidar, A., T. Dong, P. Luszczek, S. Tomov, and J. Dongarra, Batched matrix computations on hardware accelerators based on GPUs,” International Journal of High Performance Computing Applications, February 2015. DOI: 10.1177/1094342014567546  (2.16 MB)
Haidar, A., P. Luszczek, S. Tomov, and J. Dongarra, Batched Matrix Computations on Hardware Accelerators,” EuroMPI/Asia 2015 Workshop, Bordeaux, France, September 2015.  (589.05 KB)
Dongarra, J., I. Duff, M. Gates, A. Haidar, S. Hammarling, N. J. Higham, J. Hogg, P. Valero Lara, P. Luszczek, M. Zounon, et al., Batched BLAS (Basic Linear Algebra Subprograms) 2018 Specification , July 2018.  (483.05 KB)
A
Kurzak, J., S. Tomov, and J. Dongarra, Autotuning GEMMs for Fermi,” University of Tennessee Computer Science Technical Report, UT-CS-11-671, (also Lawn 245), April 2011.  (397.45 KB)
Kurzak, J., S. Tomov, and J. Dongarra, Autotuning GEMM Kernels for the Fermi GPU,” IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 11, November 2012. DOI: 10.1109/TPDS.2011.311  (742.5 KB)
Nath, R., S. Tomov, E. Agullo, and J. Dongarra, Autotuning Dense Linear Algebra Libraries on GPUs , Basel, Switzerland, Sixth International Workshop on Parallel Matrix Algorithms and Applications (PMAA 2010), June 2010.  (579.44 KB)
Lopez, F., E. Chow, S. Tomov, and J. Dongarra, Asynchronous SGD for DNN Training on Shared-Memory Parallel Architectures,” Innovative Computing Laboratory Technical Report, no. ICL-UT-20-04: University of Tennessee, Knoxville, March 2020.  (188.51 KB)
Lopez, F., E. Chow, S. Tomov, and J. Dongarra, Asynchronous SGD for DNN Training on Shared-Memory Parallel Architectures,” Workshop on Scalable Deep Learning over Parallel And Distributed Infrastructures (ScaDL 2020), May 2020.  (188.51 KB)
Yamazaki, I., A. Abdelfattah, A. Ida, S. Ohshima, S. Tomov, R. Yokota, and J. Dongarra, Analyzing Performance of BiCGStab with Hierarchical Matrix on GPU Clusters,” IEEE International Parallel and Distributed Processing Symposium (IPDPS), Vancouver, BC, Canada, IEEE, May 2018.  (1.37 MB)
Abdelfattah, A., A. Haidar, S. Tomov, and J. Dongarra, Analysis and Design Techniques towards High-Performance and Energy-Efficient Dense Linear Solvers on GPUs,” IEEE Transactions on Parallel and Distributed Systems, vol. 29, issue 12, pp. 2700–2712, December 2018. DOI: 10.1109/TPDS.2018.2842785  (2.53 MB)
Masliah, I., A. Abdelfattah, A. Haidar, S. Tomov, M. Baboulin, J. Falcou, and J. Dongarra, Algorithms and Optimization Techniques for High-Performance Matrix-Matrix Multiplications of Very Small Matrices,” Innovative Computing Laboratory Technical Report, no. ICL-UT-18-09: Innovative Computing Laboratory, University of Tennessee, September 2018.  (3.74 MB)
Masliah, I., A. Abdelfattah, A. Haidar, S. Tomov, M. Baboulin, J. Falcou, and J. Dongarra, Algorithms and Optimization Techniques for High-Performance Matrix-Matrix Multiplications of Very Small Matrices,” Parallel Computing, vol. 81, pp. 1–21, January 2019. DOI: 10.1016/j.parco.2018.10.003  (3.27 MB)
Yamazaki, I., T. Mary, J. Kurzak, S. Tomov, and J. Dongarra, Access-averse Framework for Computing Low-rank Matrix Approximations,” First International Workshop on High Performance Big Graph Data Management, Analysis, and Mining, Washington, DC, October 2014.
Dong, T., T. Kolev, R. Rieben, V. Dobrev, S. Tomov, and J. Dongarra, Acceleration of the BLAST Hydro Code on GPU,” Supercomputing '12 (poster), Salt Lake City, Utah, SC12, November 2012.
Anzt, H., W. Sawyer, S. Tomov, P. Luszczek, and J. Dongarra, Acceleration of GPU-based Krylov solvers via Data Transfer Reduction,” International Journal of High Performance Computing Applications, 2015.
Gates, M., S. Tomov, and J. Dongarra, Accelerating the SVD Two Stage Bidiagonal Reduction and Divide and Conquer Using GPUs,” Parallel Computing, vol. 74, pp. 3–18, May 2018. DOI: 10.1016/j.parco.2017.10.004  (1.34 MB)

Pages