PaRSEC ENABLED LIBRARIES AND APPLICATIONS

The Distributed Tasking for Exascale (DTE) project extends the capabilities of ICL’s Parallel Runtime and Execution Controller (PaRSEC) project—a generic framework for architecture-aware scheduling and management of microtasks on distributed, many-core, heterogeneous architectures. The PaRSEC environment also provides a runtime component for dynamically executing tasks on heterogeneous distributed systems along with a productivity toolbox and development framework that supports multiple domain-specific languages and extensions and tools for debugging, trace collection, and analysis.

High level DAG, Cholesky factorization

Dependencies are expressed between block columns of the matrix

High level tasks insert tile-level tasks, synchronize, or insert (a)synchronous communication tasks

ECP SLATE

Cholesky Factorization (POTRF)

- **Double Precision** - 64 cores, 1 to 4 V100
- **Tiles of 1024x1024 doubles**

DPLASMA

Hybrid Matrix-Matrix Multiply (GEMM)

- **Double precision** (double) / 272 Nodes of Summit (40 cores + 8 V100s)
- **Tiled Algorithm, with tiles of 1024x1024 doubles**

Massively Parallel Quantum Chemistry (MPQC)

- Application part of NWChemEx
- Base implementation on top of TiledArray, itself programmed on top of MADNESS
- Replace tensor ‘ABCD’ tensor contraction in TA with a PaRSEC native implementation
- Use MADNESS over PaRSEC to simplify sharing of resources between MPQC/TA and PaRSEC native code

\[
R_{ab}^{cd} = \sum_{cd} T_{cd}^{ij} V_{ab}^{cd}
\]

Synthetic Benchmark

(random matrices)

Applicative case (C65H132) on Hybrid System

HiCMA Hierarchical Computations on Manycore Architectures

Tile, Low-Rank, Cholesky Factorization for Large Matrices

- Shaheen II: 4096 nodes (32 cores each @ 2.30 GHz (Intel Haswell))

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration.

Find out more at http://icl.utk.edu/dte/