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1 Introduction

Within the past years, hardware vendors have started designing low precision special function units
in response to the demand of the Machine Learning community and their demand for high com-
pute power in low precision formats. Also the server-line products are increasingly featuring low-
precision special function units, such as the NVIDIA tensor cores in ORNL’s Summit supercom-
puter providing more than an order of magnitude higher performance than what is available in IEEE
double precision. At the same time, the gap between the compute power on the one hand and the
memory bandwidth on the other hand keeps increasing, making data access and communication
prohibitively expensive compared to arithmetic operations. Having the choice between ignoring the
hardware trends and continuing the traditional path, and adjusting the software stack to the changing
hardware designs, the US Exascale Computing Project decided for the aggressive step of building a
multiprecision focus effort to take on the challenge of designing and engineering novel algorithms
exploiting the compute power available in low precision and adjusting the communication format
to the application specific needs. To start the multiprecision focus effort, we survey the numerical
linear algebra community and summarize all existing multiprecision knowledge, expertise, and soft-
ware capabilities in this landscape analysis report. We also include current efforts and preliminary
results that may not yet be considered “‘mature technology,” but have the potential to grow into
production quality within the multiprecision focus effort. As we expect the reader to be familiar
with the basics of numerical linear algebra, we refrain from providing a detailed background on the
algorithms themselves but focus on how mixed- and multiprecision technology can help improving
the performance of these methods and present highlights of application significantly outperforming
the traditional fixed precision methods.
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2 Dense Linear Algebra

2.1 Low Precision BLAS

The revolution of machine learning applications and artificial intelligence (AI) spiked an interest in
developing high-performance half-precision arithmetic (16-bit floating-point format), since most AI
applications do not necessarily require the accuracy of single or double precision [1]. Half precision
also enables machine learning applications to run faster, not only because of the faster arithmetic,
but also because of the reduction in memory storage and traffic by a factor of 2× against single
precision, and by a factor of 4× against double precision.

In terms of vendor support, NVIDIA, Google, and AMD manufacture hardware that is capable of
performing floating point arithmetic using 16-bit formats. Google’s Tensor Processing Units (TPUs)
are customized chips that are mainly designed for machine learning workloads using the bfloat16
format. AMD also provides half-precision capabilities, and their software stack shows support for
both the bfloat16 format and the IEEE format [2]. The theoretical performance of half-precision
on AMD GPUs follows the natural 2×/4× speedups against single/double precisions, respectively.
As an example, the Mi50 GPU has a theoretical FP16 performance of 26.5 Tflop/s, against a 13.3
Tflop/s for FP32 and 6.6 Tflop/s for FP64. But perhaps the most widely accessible hardware with
half-precision capability are NVIDIA GPUs, which have introduced half-precision arithmetic since
the Pascal architecture. Throughout this section, we will focus on NVIDIA GPUs and its math
libraries to highlight half-precision developemnts for numerical kernels.

NVIDIA GPUs implement the “binary16” format which is defined by the IEEE-754 standard [2].
While the Pascal GPU architecture introduced hardware support for FP16 arithmetic, the Volta archi-
tecture, which powers the Summit supercomputer,1 comes with hardware acceleration units (called
Tensor Cores) for matrix multiplication in FP16. These Tensor Cores are theoretically 12× faster
than the theoretical FP16 peak performance of the preceding architecture. Applications taking ad-
vantage of the Tensor Cores can run up to 4× faster than using the regular FP16 arithmetic on the
same GPU. The Tensor Cores are also able to perform a mixed-precision multiplication, with a low
precision input (e.g. half-precision) and a higher precision output (typically single-precision). The
Tensor Core units are discussed in more details in Section 2.1.1.

In terms of half-precision Basic Linear Algebra Subroutines (BLAS), most of the available routines
consider only dense matrix multiplications (GEMMs). From the perspective of machine learning
applications, most of the performance critical components in training/inference can be reformulated
to take advantage of the GEMM kernel. As for dense linear algebra, many high level algorithms are
built to extract their high performance from GEMM calls. Therefore, accelerating such performance-
critical steps through FP16 GEMM (HGEMM) would propagate the performance advantage to the
entire algorithm, while keeping other numerical stages in their original precision(s). An example
of this practice is the mixed precision dense LU factorization [3], which is used to accelerate the
solution of Ax = b in double precision, see Section 2.2.

2.1.1 Hardware Acceleration of Half Precision

The CUDA Toolkit is one of the first programming models to provide half-precision (i.e., FP16)
arithmetic. Early support was added in late 2015 for selected embedded GPU models that are based
on the Maxwell architecture. The FP16 arithmetic has become mainstream in CUDA-enabled GPUs
since the Pascal architecture. In general, half precision has a dynamic range that is significantly
smaller than single or double precision.

The Volta and Turing architectures introduce hardware acceleration for matrix multiplication in
FP16. The hardware acceleration units are called Tensor Cores. They can deliver a theoretical
peak performance that is up to 8× faster than the peak FP32 performance. As an example, each
Volta V100 GPU has 640 Tensor Cores, evenly distributed across 80 multiprocessors. Each Tensor
Core possesses a mixed-precision 4 × 4 × 4 matrix processing array which performs the operation
D = A×B+C, where A, B, C and D are 4×4 matrices. The inputs A and B must be represented in
FP16 format, while C and D can be represented in FP16 or in FP32 formats. It is also possible that
C and D point to the same matrix.

1https://www.olcf.ornl.gov/summit/
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NVIDIA’s vendor library cuBLAS provides various optimized routines, mostly GEMMs, that can
take advantage of the Tensor Core acceleration if configured accordingly. As an example, the routine
cublasHgemm implements the GEMM operation for real FP16 arithmetic.

Apart from the vendor library, taking advantage of the Tensor Cores in a custom kernel is possible
also through the use of low-level APIs that are provided by the programming model. As shown
in Figure 1, Tensor Cores deal with input and output data through opaque data structures called
fragments. Each fragment is used to store one matrix. Fragments can be loaded from shared memory
or from global memory using the load matrix sync() API. A similar API is available for storing
the contents of an output fragment into the shared/global memory of the GPU. The mma sync()

API is used to perform the multiplication. The user is responsible for declaring the fragments as
required, and calling the APIs in the correct sequence.

Figure 1: Programmability of the Tensor Core units

The programming model imposes some restrictions to the programming of the Tensor Cores. First,
the GEMM dimensions (M, N , K), which also control the size of the fragments, are limited to three
discrete combinations, namely (16, 16, 16), (32, 8, 16), and (8, 32, 16). Second, the operations of
load, store, and multiply must be performed by one full warp (32 threads). Finally, the load/store
APIs require that the leading dimension of the corresponding matrix be multiple of 16-bytes. As an
example, a standard GEMM operation of size (16, 16, 16) requires three load matrix sync()

calls (for A, B, and C), one mma sync() call, and then a final store matrix sync() call to
write the result. The latest CUDA version to date (10.1) provides direct access to the Tensor Cores
through an instruction called mma.sync. The instruction allows one warp to perform four inde-
pendent GEMM operations of size (8, 8, 4). However, using the explicit instruction may lead to
long-term compatibility issues for open-source libraries as new architectures are released.

2.1.2 Half-precision GEMM (HGEMM)

The cuBLAS library provides several routines that take advantage of the reduced FP16 precision.
Figure 2 shows the performance of three different HGEMM kernels. An HGEMM kernel with half-
precision output can achieve up to 30 Tflop/s of performance if the tensor cores are turned off.
While this is around 2× the single-precision performance, a significantly higher performance can
be achieved if the tensor cores are turned on. As the figure shows, the tensor cores are capable of
delivering an asymptotic 100 Tflop/s, which is 5× the asymptotic performance of a non-accelerated
HGEMM.

However, perhaps the most interesting performance graph of Figure 2 is the HGEMM with FP32
output. The reason is that its performance is close to the accelerated HGEMM kernel, but with
much more precision on the output. This is of particular importance for mixed-precision algo-
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Figure 2: Performance of different HGEMM kernel from the cuBLAS library on square sizes. Re-
sults are shown on a Tesla V100 GPU using CUDA-9.1.

rithms [3, 4]. To put this fact in more perspective, Figure 3 shows the forward error between the
three different HGEMM kernels, with respect to the single-precision GEMM kernel from the Intel
MKL library. The forward error is computed as ‖RcuBLAS−RMKL‖F√

k+2|α|‖A‖F‖B‖F+2|β|‖C‖F
, where k is equal to the

matrix size. The first surprising observation is that an HGEMM operation with FP16 output is more
accurate if the tensor cores are turned on, which means that the utilization of the tensor core units
achieves both better performance and higher accuracy. The second observation is that performing
HGEMM with FP32 output achieves at least two more digits of accuracy when compared with the
other two HGEMM variants. Given that HGEMM with FP32 output is mostly within 90% of the
peak tensor core throughput, it is clearly the best option for mixed-precision algorithms that target
achieving higher accuracy while taking advantage of the half-precision.
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Figure 3: Forward error of HGEMM with respect to MKL SGEMM (C = αAB + βC). Results
are shown for square sizes using cuBLAS 9.1 and MKL 2018.1. The forward error is computed as

‖RcuBLAS−RMKL‖F√
k+2|α|‖A‖F‖B‖F+2|β|‖C‖F

, where k is equal to the matrix size.

2.1.3 Batch HGEMM

Apart from the vendor-supplied BLAS, few efforts have focused on building open-source BLAS rou-
tines that utilize the tensor cores of NVIDIA GPUs. An example of such efforts is in the MAGMA
library [5], which has a batch HGEMM kernel that makes use of the tensor cores [6]. The kernel
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builds an abstraction layer over the tensor cores to overcome their size restrictions, so that arbitrary
blocking sizes can be used by the kernel. The batch HGEMM kernel in MAGMA outperforms
cuBLAS for relatively small sizes, as shown in Figure 4. The same work also shows that extremely
small matrix (e.g. whose sizes ≤ 10) may not necessarily benefit from tensor core acceleration.
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Figure 4: Performance of the batch HGEMM kernel on square sizes. Results are shown on a Tesla
V100 GPU using CUDA-9.1.

2.2 Classical Iterative Refinement

On modern architectures, the performance of 32-bit operations is often at least twice as fast as
the performance of 64-bit operations. There are two reasons for this. Firstly, 32-bit floating point
arithmetic is usually twice as fast as 64-bit floating point arithmetic on most modern processors.
Secondly the number of bytes moved through the memory system is halved.

Mixed precision algorithms stem from the observation that, in many cases, a single precision solution
of a problem can be refined to the point where double precision accuracy is achieved. The refinement
can be accomplished, for instance, by means of the Newtons algorithm (see Equation (1)) which
computes the zero of a function f (x) according to the iterative formula

xn+1 = xn −
f (xn)
f ′(xn)

(1)

In general, we would compute a starting point and f (x) in single precision arithmetic and the refine-
ment process will be computed in double precision arithmetic.

If the refinement process is cheaper than the initial computation of the solution, then double precision
accuracy can be achieved nearly at the same speed as the single precision accuracy.

A common approach to the solution of linear systems, either dense or sparse, is to perform the LU
factorization of the coefficient matrix using Gaussian elimination. First, the coefficient matrix A is
factored into the product of a lower triangular matrix L and an upper triangular matrix U . Partial
row pivoting is in general used to improve numerical stability resulting in a factorization PA = LU ,
where P is a permutation matrix. The solution for the system is achieved by first solving Ly = P b
(forward substitution) and then solvingUx = y (backward substitution). Due to round-off errors, the
computed solution x carries a numerical error magnified by the condition number of the coefficient
matrix A.

In order to improve the computed solution, we can apply an iterative process which produces a
correction to the computed solution at each iteration, which then yields the method that is commonly
known as the iterative refinement (IR) algorithm. As Demmel points out [7], the nonlinearity of the
round-off errors makes the iterative refinement process equivalent to the Newtons method applied
to the function f (x) = b − Ax. Provided that the system is not too ill-conditioned, the algorithm
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produces a solution correct to the working precision. Iterative refinement in double/double precision
is a fairly well understood concept and was analyzed by Wilkinson [8], Moler [9] and Stewart [10].

Iterative refinement is a long-standing method that was programmed by Wilkinson in the 1940s
for the ACE digital computer. The idea is to improve the computed solution of a linear system
by iteratively solving a correction equation and adding the correction to the current solution; for a
comprehensive treatment, Higham [11, Chap. 12].

The algorithm can be modified to use a mixed precision approach. The three tasks original solve/-
factorization, residual computation, and correction equation solvecan be done in the same precision
(fixed precision) or in different precisions (mixed precision). The original usage was mixed preci-
sion, with the residual computed at twice the working precision.

For the current work, the factorization PA = LU and the solution of the triangular systems Ly = P b
and Ux = y are computed using single precision arithmetic. The residual calculation and the update
of the solution are computed using double precision arithmetic and the original double precision
coefficients (see Algorithm 1). The most computationally expensive operation, the factorization
of the coefficient matrix A, is performed using single precision arithmetic and takes advantage of
its higher speed. The only operations that must be executed in double precision are the residual
calculation and the update of the solution (they are denoted with an εd in Algorithm 1).

Algorithm 1 Mixed precision, Iterative Refinement for Direct Solvers

1: LU ← PA . (εs)
2: Solve Ly = P b . (εs)
3: Solve Ux0 = y . (εs)
4: for k = 1,2, . . . do
5: rk ← b −Axk−1 . (εd)
6: Solve Ly = P rk . (εs)
7: Solve Uzk = y . (εs)
8: xk ← xk−1 + zk . (εd)
9: Check convergence

10: end for

We observe that the only operation with computational complexity of O(n3) is handled in single
precision, while all operations performed in double precision are of at most O(n2) complexity. The
coefficient matrix A is converted to single precision for the LU factorization and the resulting factors
are stored in single precision while the initial coefficient matrix A needs to be kept in memory.
Therefore, one drawback of the following approach is that the it uses 50% more memory than the
standard double precision algorithm.

The method in Algorithm 1 can offer significant improvements for the solution of a sparse linear
system in many cases if:

1. single precision computation is significantly faster than double precision computation;

2. the iterative refinement procedure converges in a small number of steps;

3. the cost of each iteration is small compared to the cost of the system factorization. If the
cost of each iteration is too high, then a low number of iterations will result in a perfor-
mance loss with respect to the full double precision solver. In the sparse case, for a fixed
matrix size, both the cost of the system factorization and the cost of the iterative refine-
ment step may substantially vary depending on the number of nonzeroes and the matrix
sparsity structure; this will be addressed in Section 4.2. In the dense case, results are more
predictable.

Note that the choice of the stopping criterion in the iterative refinement process is critical. Formulas
for the errors computed at each step of Algorithm 1 can be obtained for instance in [12, 13].

Recently, Carson and Higham [14] analyzed a three-precision iterative refinement scheme (factor-
ization precision, working precision, residual precision) and concluded that if the condition num-
ber of A is not too large, namely κ∞(A) = ‖A‖∞

∥∥∥A−1∥∥∥∞ < 104, then using FP16 for the O(n3)
portion (the LU factorization) and (FP32, FP64) or (FP64, FP128) as the (working, residual) preci-
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sion for the O(n2) portion (refinement loop), one can expect to achieve forward error and back-
ward error on the order of 10−8 and 10−16 respectively. We note that, if x̂ is an approximate
solution of Ax = b the forward error is defined by ‖x̂−x‖∞‖x‖∞

and the backward error is defined by

min{ε : (A+∆A)x̂ = b,‖∆A‖ ≤ ε ‖A‖} and can be evaluated as ‖r‖2
‖A‖2‖x̂‖2

, where r = b −Ax̂.

2.3 GMRES-IR

Carson and Higham [15] proposed the use of Generalized Minimum Residual (GMRES) [16] pre-
conditioned by the FP16 LU factors as the solver in correction equation and showed that in this case
the constraint on the condition number can be relaxed to κ∞(A) < 108 when the (working, residual)
precision is (FP32, FP64) and to 1012 when the (working, residual) precision is (FP64, FP128). We
refer to [17, Table 2.2] for limiting condition number, and forward, backward errors. Analysis cov-
ering this GMRES-based approach when two precisions are used with the residual precision equal
to the working precision is given in [17].

The idea is that the GMRES solver will provide a better and more stable approximate solution
to Azk = rk than the basic triangular solve, which is directly affected by the quality of the low-
precision LU factors. Using GMRES, we can still guarantee that the solution of the correction
equation Azk = rk has some correct digits and a residual at the level of the convergence tolerance
requested by the algorithm. The convergence tolerance of the refinement process is chosen to be
of the order of the unit roundoff of the low-precision arithmetic used during the factorization (e.g.,
we use 10−4 or 10−8 when the LU factorization is in FP16 or FP32, respectively). This variant is
called GMRES-based iterative refinement (GMRES-IR) by Carson and Higham, and it is described
in Algorithm 2. Note that U−1 and L−1 are never explicitly formed; instead matrixvector products
U−1L−1Ay needed by GMRES are computed by multiplication by A followed by two triangular
solves. Since this paper focuses on the practical usage and possible performance gains rather than
error analysis, we point the reader to [11, 15, 17] for detailed error analysis of the IR and GMRES-IR
techniques.

Algorithm 2 Iterative refinement using GMRES (GMRES-IR)

1: Convert A to Af from precision uw to uf
2: Perform LU factorization of Af in precision uf
3: Find the initial solution x0 using the computed LU factorization of Af in precision uf then cast
x0 to precision uw

4: // Refinement loop, outer loop
5: repeat
6: Compute residual rk = b −Axk in precision ur and cast it to uw . Residual
7: Solve U−1L−1Azk =U−1L−1rk by GMRES in precision uw . Correction
8: Correct the current solution xk+1 = xk + zk in precision uw . Update
9: until xk is accurate enough

The design and implementation of numerical algorithms that efficiently exploit current highly paral-
lel computer architectures is a challenge, especially if close to peak performance is to be achieved.
Since in the GMRES-IR approach O(n3) operations are in lower precision, this idea allows a new
class of iterative refinement solvers and a number of computational techniques that allow us to
solve fundamental Ax = b problems close to peak FP64 performance. The developments open
up directions for future work, including further optimizations, development of a full set of mixed-
precision factorizations, linear system solvers as well as eigensolvers and singular value decompo-
sition (SVD).

2.3.1 Scaling

It is clear that the use of low precision floating-point arithmetic in iterative refinement can lead
to significant speedups. However, fp16 has a small dynamic range, and therefore encountering
overflow, underflow, and subnormal numbers is very likely. To address these issues now we discuss
scaling algorithms, which are presented in [18], [19] and [20]. We refer interested readers to these
references for more details.
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We consider a two-sided diagonal scaling prior to converting to fp16: A is replaced by RAS, where

R = diag(ri), S = diag(si), ri , si > 0, i = 1: n.

Such scaling algorithms have been developed in the context of linear systems and linear program-
ming problems. Despite the large literature on scaling such problems, no clear conclusions are
available on when or how one should scale; see [21] for a recent experimental study. In contrast to
previous studies, where the aim of scaling has been to reduce a condition number or to speed up the
convergence of an iterative method applied to the scaled matrix, we scale in order to help squeeze
a single or double precision matrix into half precision, with a particular application to using the
resulting half precision LU factors for iterative refinement.

Our usage of two-sided diagonal scaling is given in Algorithm 3.

Algorithm 3 (Two-sided diagonal scaling then round). This algorithm rounds A ∈ Rn×n to the fp16
matrix A(h), scaling all elements to avoid overflow. θ ∈ (0,1] is a parameter.

1: Apply any two-sided diagonal scaling algorithm to A, to obtain diagonal matrices R, S.
2: Let β be the maximum magnitude of any entry of RAS.
3: µ = θxmax/β
4: A(h) = f lh(µ(RAS))

We consider two different algorithms for determining R and S; both algorithms are carried out at the
working precision. One option is row and column equilibration, which ensures that every row and
column has maximum element in modulus equal to 1—that is, each row and column is equilibrated.
The LAPACK routines xyyEQU carry out this form of scaling [22]. A symmetry-preserving two-
sided scaling is proposed by Knight, Ruiz, and Uçar [23]. The algorithm is iterative and scales
simultaneously on both sides rather than sequentially on one side then the other.

2.4 Mixed-precision Factorizations

Haidar at al. [3] proposed IR methods using mixed-precision factorizations. While classical IR and
extensions like the GMRES-IR use fixed-precision factorizations (e.g., in precision uf as illustrated
in Algorithm 2), mixed-precision factorizations apply higher precision (e.g., uw) at critical parts of
the algorithm to get extra-precise factorizations while retaining the performance of the low-precision
counterpart. The developments were applied to GPU Tensor Cores and illustrate that FP16 can be
used to get FP64 accuracy for problems with κ∞(A) of up to 105, compared to a more typical
requirement of κ∞(A) < 104. The work illustrates that mixed-precision techniques can be of great
interest for linear solvers in many engineering areas. The results show that on single NVIDIA V100
GPU the new solvers can be up to four times faster than an optimized double precision solver [3],[4],
[24].

The mixed-precision factorizations were motivated by the need to get extra precision when working
with very low precisions, like the FP16. Also, this allows to easily overcome implementation issues
and other limitations of using FP16 arithmetic, and thus harness the power of specialized hardware,
like the GPU Tensor Cores, for a larger range of scientific computing applications.

A building-block for the mixed-precision factorizations is mixed-precision BLAS. Having mixed-
precision BLAS can enable the ease of developing many mixed-precision LAPACK algorithms.
Currently, cuBLAS provides mixed FP32-FP16 precision HGEMM that uses the GPU’s Tensor
Cores FP16 acceleration. In this GEMM, the input A and B matrices can be FP32, internally get
casted to FP16, used to compute a GEMM on Tensor Cores in full (FP32) accuracy, and the result
stored back on the GPU memory in FP32. There are two main benefits of having such mixed-
precision BLAS routines. First, note that this mixed-precision HGEMM is almost as fast as the
non-mixed FP16 precision only HGEMM (see Figure 2), and second, the use of mixed-precision
gains about one more decimal digit of accuracy (see Figure 3).

Besides the two main benefits outlined above, the availability of mixed-precision GEMM also en-
ables us to easily develop other mixed-precision algorithms, e.g., LAPACK, and in particular, the
various mixed-precision factorizations that we recently added in MAGMA [3]. Figure 5 shows the
performance of the mixed-precision LU (marked as ”FP16-TC hgetrf LU”). Note that this factor-
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Figure 5: Mixed-precision LU (hgetrf) in MAGMA and its speedup vs. FP64 LU.
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Figure 6: Mixed-precision iterative refinement in MAGMA and acceleration vs. FP64 solvers. Note
≈ 2% overhead per iteration, and more than 2× less overhead in terms of iterations for mixed-
precision LU vs. regular FP16 LU (the 3 vs. 7 iterations until FP64 convergence).

ization is about 4 − 5× faster than dgetrf. Its data storage is in FP32 and the implementation is the
same as sgetrf, except that it uses the mixed-precision HGEMMs for the trailing matrix updates.

Figure 6 shows the mixed-precision iterative refinement in MAGMA [3]. The 4× overall acceler-
ation is due to a number of optimizations. First, note that the 3 iterations to get to FP64 accuracy
led to loss of about 2 Tflop/s compared to the hgetrf performance (24 Tflop/s vs. 26 Tflop/s), i.e.,
the overhead of one iteration can be deduced as being about 2%. Loosing 75%, e.g., through up to
40 iterations, would lead to no acceleration compared to FP64 solver. This overhead per iteration is
very low, which is due to fusing all data conversions with computational kernels. Without fusion,
the overhead would have been easily about 3× higher. Second, note that the iterative refinement
using the mixed-precision factorization has more than 2× smaller overhead in terms of iterations to
solution (the 3 vs. 7 iterations until FP64 convergence). This is due to the extra digit of accuracy that
the mixed-precision HGEMM has over the FP16 HGEMM, which also translates to a more accurate
mixed-precision LU.
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2.5 Cholesky Factorization

In the previous section we considered scaling of a general and symmetric matrix, we now assume that
we are given a symmetric positive definite matrixA ∈ Rn×n in finite precision arithmetic of precision
u and wish to compute a Cholesky factorization in finite precision arithmetic with precision uh > u.
The most practically important cases are where (uh,u) = (half, single), (half, double), or (single,
double). Naively, we might first form A(h) = f lh(A), where f lh denotes the operation of rounding to
precision uh, and then compute the Cholesky factorization of A(h) in precision uh. For half precision
this procedure can fail for two reasons. First, if fp16 is used then the limited range might cause
overflow during the rounding. Second, for both bfloat16 and fp16, A(h) might not be (sufficiently)
positive definite, because a matrix whose smallest eigenvalue is safely bounded away from zero
with respect to single precision or double precision may become numerically indefinite under the
perturbation induced by rounding to half precision. The second issue can also be encountered when
a double precision matrix is rounded to single precision. To overcome these problems we will use
scaling and shifting.

2.5.1 Scaling

The first step is to scale the matrix A to H = D−1AD−1, D = diag(a1/2ii ), and D will be kept at
precision u. Because Cholesky factorization is essentially numerically invariant under two-sided
diagonal scaling (as can be seen from the recurrence relations for the Cholesky factors), the sole
reason for scaling is to reduce the dynamic range in order to avoid overflow and reduce the chance
of underflow, for fp16. For bfloat16 or single precision it will not usually be necessary to scale, and
we can work with A throughout. For the rest of the presentation we will always scale, for simplicity
of notation. Two-sided diagonal scaling before rounding to low precision was used in [18] in the
context of LU factorization. The scaling used there equilibrates rows and columns; our scaling with
D is the natural analogue of that for symmetric positive definite matrices. For Cholesky factorization
we need an extra ingredient to ensure a successful factorization, which we consider next.

2.5.2 Shifting

We now convert H to the lower precision uh, incorporating a shift to ensure that the lower precision
matrix is sufficiently positive definite for Cholesky factorization to succeed, as discussed in [19, Sec.
2]. We will shiftH by cnuhI , where cn is a positive integer constant, to obtain G =H+cnuhI . Since
the diagonal of H is I , this shift incurs no rounding error and it produces the same result whether
we shift in precision u then round or round then shift in precision uh.

For fp16, in view of the narrow range we will also multiply the shifted matrix by a scalar to bring
it close to the overflow level xmax, in order to minimize the chance of underflow and of subnormal
numbers being produced. So our final precision-uh matrix is constructed as

G =H + cnuhI,
β = 1+ cnuh, µ = θxmax/β, (2)

A(h) = f lh(µG),

where θ ∈ (0,1) is a parameter. Note that β = maxij |gij |, so the largest absolute value of any
element of A(h) is θxmax. Note also that since the growth factor for Cholesky factorization is 1 (see,
e.g., [11, Prob. 10.4]), there is no danger of overflow during Cholesky factorization of A(h).

We refer to [19, Sec. 3.3] for an analysis regarding the choice of cn. However since the estimates are
pessimistic, we take the pragmatic approach of taking cn to be a small constant c. If the Cholesky
factorization fails we will increase c and try again. We will determine experimentally how large c
should be for a range of problems of interest. Based on this we give the low precision Cholesky
factorization algorithm in Algorithm 4.

2.6 Iterative Refinement for Least Squares Problems

We consider the linear least squares problem minx ‖Ax − b‖2, where A ∈ Rm×n with m ≥ n has full
rank. The ideas of mixed-precision iterative refinement and GMRES-IR can be adapted to the least
squares case. Least squares problems may be ill conditioned in practice, and so rounding errors may
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Algorithm 4 (Cholesky factorization in precision uh). Given a symmetric positive definiteA ∈ Rn×n
in precision u this algorithm computes an approximate Cholesky factorization RTR ≈ µD−1AD−1 at
precision uh, where D = diag(a1/2ii ). The scalar θ ∈ (0,1] and the positive integer c are parameters.

1: D = diag(a1/2ii ), H =D−1AD−1 % Set hii ≡ 1 instead of computing it.
2: G =H + cuhI
3: β = 1+ cuh
4: µ = θxmax/β
5: A(h) = f lh(µG)
6: Attempt Cholesky factorization A(h) = RTR in precision uh.
7: if Cholesky factorization failed then
8: c← 2c, goto line 2
9: end if

result in an insufficiently accurate solution. In this case, iterative refinement may be used to improve
accuracy, and it also improves stability.

2.6.1 Cholesky-Based Approach

The normal equations method solves
ATAx = AT b

using the Cholesky factorization of ATA (see Section 2.5). In general, this method is deprecated
by numerical analysts because it has a backward error bound of order κ2(A)u [11, sect. 20.4] and
the Cholesky factorization can break down for κ2(A) > u−1/2, but it is used by statisticians with
some justification [25]. Here, we assume that A is (sufficiently) well conditioned. We propose the
GMRES-IR-based least squares solver given in Algorithm 5.

Algorithm 5 (Cholesky-based GMRES-IR for the least squares problem) Let a full rank A ∈ Rm×n,
where m ≥ n, and b ∈ Rm be given in precision u. This algorithm solves the least squares problem
minx ‖b −Ax‖2 using Cholesky-based GMRES-IR. The scalar θ ∈ (0,1] and the positive integer c
are parameters.

1: Compute B = AS, where S = diag(1/‖aj‖2), with aj the jth column of A.
2: µ = θxmax
3: B(h) = f lh(µ1/2B)
4: Compute C = B(h)TB(h) in precision uh.
5: Compute the Cholesky factorization C + cuhdiag(cii) = RTR in precision uh.
6: if Cholesky factorization failed then
7: c← 2c, goto line 5
8: end if
9: Form b(h) = f lh(SAT b).

10: Solve RTRy0 = b(h) in precision uh and form x0 = µSy0 at precision u.
11: for i = 0: imax − 1 do
12: Compute ri = AT (b −Axi) at precision ur and round ri to precision u.
13: Solve MATAdi = Mri by GMRES at precision u, where M = µSR−1R−T S and matrix–

vector products with ATA are computed at precision ur , and store di at precision u.
14: xi+1 = xi + di at precision u.
15: if converged then
16: return xi+1, quit
17: end if
18: end for

We make some comments on the algorithm. Line 1 produces a matrix B with columns of unit 2-
norm. The computation C = B(h)TB(h) on line 4 produces a symmetric positive definite matrix with
constant diagonal elements µ = θxmax, so overflow cannot occur for θ < 1. The shift on line 5 is
analogous to that in Algorithm 4, but here the matrix C is already well scaled and in precision uh so
there is no need to scale C to have unit diagonal.
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There are two reasons why explicitly forming C = B(h)TB(h) in Algorithm 5 is reasonable from the
numerical stability point of view. First, C is used to form a preconditioner, so the usual problems
with forming a cross product matrix (loss of significance and condition squaring) are less of a con-
cern. Second, if we are working in fp16 on an NVIDIA V100 we can exploit the tensor cores when
forming C to accumulate block fused multiply-add operations in single precision; this leads to a
more accurate C, as shown by the error analysis of Blanchard et al. [26].

For the computed R̂ we have
R̂T R̂ ≈ B(h)TB(h) ≈ µSATAS,

or
(ATA)−1 ≈ µSR̂−1R̂−T S,

so we are preconditioning with an approximation to the inverse of ATA. We apply the precon-
ditioned operator MATA to vectors at precision ur . Computing y = ATAx costs 4mn flops and
SR−1R−T y costs another 2n2 + n flops, making 4mn+2n2 + n flops in total. For m� n and large
n, computing y = ATAx costs a factor n/4 fewer flops than the mn2 flops needed to form ATA,
while for m ≈ n the difference is a factor n/6. For large n, even allowing for the fact that the flops
we are comparing are at different precisions, as long as GMRES converges quickly the cost of the
refinement stage should be negligible compared with the cost of forming ATA and computing the
Cholesky factorization.

Related to this work is the Cholesky–QR algorithm for computing a QR factorization A = QR.
It forms the cross-product matrix ATA, computes the Cholesky factorization ATA = RTR, then
obtains the orthogonal factor Q as Q = AR−1, and this process can be iterated for better numerical
stability; see, for example, [27], [28], [29], [30]. Our work differs in that we do not compute Q, we
carry out the Cholesky factorization in lower precision than the working precision, and we solve a
least squares problem using preconditioned iterative refinement.

2.6.2 Augmented Matrix Approach

Another approach to mixed precision least squares iterative refinement was presented by Carson,
Higham, and Pranesh in [20]. This approach is based on the method of using the QR factorization

A =Q
[
R
0

]
,

where Q = [Q1,Q2] ∈ Rm×m is an orthogonal matrix with Q1 ∈ Rm×n and Q2 ∈ Rm×(m−n), and
R ∈ Rn×n is upper triangular. The unique least squares solution is x = R−1QT1 b with residual ‖b −
Ax‖2 = ‖QT2 b‖2.

An iterative refinement approach that works even when Ax = b is inconsistent was suggested by
Björck [31]. Refinement is performed on the augmented system[

I A
AT 0

][
r
x

]
=

[
b
0

]
, (3)

which is equivalent to the normal equations. In this way, the solution xi and residual ri for the least
squares problem are simultaneously refined. Björck [31] shows that the linear system can be solved
by reusing the QR factors of A.

Existing analyses of the convergence and accuracy of this approach in finite precision assume that
at most two precisions are used; the working precision u is used to compute the QR factorization,
solve the augmented system, and compute the update. A second precision ur ≤ u is used to compute
the residuals. Typically ur = u2, in which case it can be shown that as long as the condition number
of the augmented system matrix is smaller than u−1, the refinement process will converge with a
limiting forward error on the order of u; see [32] and [11, sect. 20.5] and the references therein.

The work [20] shows that the three-precision iterative refinement approach of Carson and
Higham [14] can be applied in this case; the theorems developed in [14] regarding the forward
error and normwise and componentwise backward error for iterative refinement of linear systems
are applicable. The only thing that must change is the analysis of the method for solving the cor-
rection equation since we now work with a QR factorization of A, which can be used in various
ways.
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The work in [20] also extends the GMRES-based refinement scheme of [15] to the least squares case
and shows that one can construct a left preconditioner using the existing QR factors of A such that
GMRES provably converges to a backward stable solution of the preconditioned augmented system.
Further, it is shown that an existing preconditioner developed for saddle point systems can also work
well in the GMRES-based approach in practice, even though the error analysis is not applicable. We
refer the reader to [20] for further details.

2.7 Quantized Integer LU Factorization

Quantization is a technique widely being used in deep learning inference [33, 34]. While the model
is usually still trained in single precision, quantization compress the data and use lower precision
to carry out the computation in inference stage which is applying the trained model to new data
for real application. For an int8 quantized model, the data is converted into 8-bit integers. The
computation and communication are reduced 4 times comparing to 32-bit single precision while the
accuracy lost is acceptable (usually < 1% for predictive models). Integer arithmetic is available on
most hardware architectures. Field Programmable Gate Array (FPGA)s are usually more capable
in integer operations and might not have floating-point number arithmetic units. New Application-
Specific Integrated Circuit (ASIC)s for deep learning inference are also moving toward using mostly
integer arithmetic for quantized neural networks. This motivated to investigate the use of integer
arithmetic for the Gaussian elimination (LU factorization) with partial pivoting.

2.7.1 Quantized Integer LU Algorithm

Storage format i in 32-bit integer
Represented real number R(i) = i/232 × 20

Conversion from double precision number α i← int32(α × 232)
Conversion to double precision number α α← double(i)/232

Addition R(i) +R(j) = i/232 + j/232 = (i + j)/232 = R(i + j)

Multiplication R(i)×R(j) = i/232 × j/232 = (i × j)/264
= (i × j/232)/232 = R(i × j/232)

Table 1: Proposed Fixed-point Number Representation

The basic idea is to scale down numbers to fit into a fixed-point number representation: i/232 × 20
where i is in 32 bits integer. The exponent will not change under addition or multiplication so
can be ignored. The addition under is form is simply integer addition. Multiplication becomes:
i/232 × j/232 = i × j/264 = (i × j/232)/232. To compute i × j/232 can be done with 32 bits integer
multiply and return the high 32 bits in the 64 bits result. Note that this operation can be done in
one instruction on modern CPU instruction set architectures (ISAs) including x64 and ARM. Table 1
summarizes the proposed fixed-point number representation.

Algorithm 6 shows for LU factorization with partial pivoting based on integer arithmetic. The com-
putation inside the loop is mainly 32-bit integer arithmetic. Line 9 requires 64-bit integer division
but only once per column. The scale in line 10 will remain in int32 range because the pivot has
larger magnitude then other elements in the column. The update in line 11 is 32-bit integer multiply
but we only need the high 32 bits in 64 bits results.

The input integer r determines the number of bits (32 − r) we are actually using while converting
A into integer. Because the matrix would grow during the factorization and we do not have any
dynamic scaling during the factorization, it might hit the integer range and overflow at some point.
To avoid it, we first scale the matrix into [−2−r ,2−r ]. The higher r is, the more room we will have
from the integer range. But less accurate the input matrix would be after converted into int32.

2.7.2 Quantized Integer LU Numerical Results

Figure 7 shows the normalized backward error ‖Ax − b‖∞/‖A‖∞‖x‖∞ vs. input matrix size. The
algorithm is implemented in MATLAB R2018b. Each element of the matrix is generated from uni-
form random distribution: uniform(-1,1). Each point is the the geometric average over 30 random
matrices and error bars indicate the 15% and 85% percentiles. The result from single and double
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Algorithm 6 LU factorization with partial pivoting based on integer arithmetic.

1:
Input: n by n matrix A in double precision.

Integer r for the range while normalizing A.
2: Declare identity matrix P as permutation matrix.
3: m←max(A)× 2r ; A← A/m . Normalize A into [−2−r ,2−r ]
4: Aint← int32(A× 232) . Convert A into proposed fixed-point representation.
5: for i = 1 . . .n do . Main loop over columns
6: pivot← (argmax |Aint[i:n, i]|) + i − 1 . Find the pivot index.
7: swap (Aint[i, :],Aint[pivot, :]) . Swap rows.
8: swap (P [i, :], P [pivot, :])
9: α← int64(232)/A[i, i] . Find the scale with integer division.

10: Aint[i:n, i]← αAint[i:n, i] . Scale the column.
11: Aint[i +1:n, i +1:n]← Aint[i +1:n, i +1:n]−Aint[i +1:n, i]×Aint[i, i +1:n]/232
12: . Integer rank-1 update with a division using integer shift.
13: end for
14: L← lower triangular part of double(A)/232 with unit diagonal.
15: U ← upper triangular part of double(A)/232 including diagonal.
16: Return: P ,L,U as the result of factorization such that P (A/m) = LU
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Figure 7: Normalized backward error vs. input matrix size for different number of usable bits r.
Result in single and double precision are also shown.

precision LU factorization is also reported in bold lines as reference. For the results which are
> 10−6, overflow occurred and the algorithm failed. Otherwise there’s no numerical error during the
factorization. The error is only introduced in the conversions between floating-point and fixed-point
format, not during integer factorization. The backward error grows with r since the input is trun-
cated more at the conversion. But still when r = 10 it is still using 32− 10 = 22 bits and the result
is comparable with single precision which is using 23 mantissa bits.

2.7.3 Future Work on Quantized Integer LU

We would like to show case that it is possible to have low precision factorization using integer arith-
metic. For the next step we will conduct more detailed error analysis. Extend to shorter integers such
as int16 and int8. Also to tackle the overflow problem, we would like to consider dynamically
scale the columns during factorization to keep the numbers in range. And the same as per chan-
nel quantization in deep learning, assign a different range to each column might also be a feasible
approach.
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2.8 Symmetric Eigenvalue Problems

In [35] an algorithm is described for determining rigorous error bounds for a simple eigenvalue and
its associated eigenvector. The algorithm has the pleasing feature of providing an improved eigenpair
as a by-product. This approach assumes that an eigenpair is given. No assumptions are made about
how that eigenpair was found, whether through some knowledge of the physical problem, an initial
eigenvalue decomposition in a lower precision or a clever guess.

We are interested in improving the accuracy of an eigenvalue- eigenvector pair. Consider the eigen-
value problem Ax = λx, where λ and x have been found by some means. Because they were arrived
at by some calculation on a computer with finite precision or by some insight into the problem, they
are, in general, not the true eigenvalue and eigenvector, but an approximation. We know, however,
that there exist µ and ỹ such that A(x + ỹ = λ + µ) = (λ + µ)(x + ỹ) is the exact solution to the
eigenvalue problem, where µ and ỹ are the corrections to the computed λ and x.

We will normalize x such that ||x||∞= 1 and say xs = 1, where the sth component of x is the largest.
This can be done because we have one degree of freedom in our choice of the components for x.
We will assume that the sth component of x is exact and no correction is needed. This determines
the value of ỹs, which is the correction to xs. Because xs is exact, the value of ỹs is zero. This also
determines the degree of freedom in the corrected vector, x + ỹ, through the relationship between x
and ỹ, namely (x+ ỹs) = 1.

We can rewrite equation A(x+ ỹ = λ+µ) = (λ+µ)(x+ ỹ) as (A−λI)ỹ−µx = λx−Ax+µỹ. Note that
λx −Ax is the residual for the computed eigenvalue and eigenvector. If we look more closely at the
product (A−λI)ỹ, we discover that because ỹs = 0, the sth column of (A−λI) does not participate
in the product with ỹ. In the formulation of (A −λI)ỹ − µx, we can replace the s component of ỹ,
which is zero, by the value µ and the sth column of (A−λI) by −x to arrive at (A−λI)ỹ −µx.

We will define y by y ≡ ỹ + µes, where es is the sth column of the identity matrix. So the sth
component of the newly defined y has the value µ; i.e., ys = µ. We will also define the matrix B as the
matrix (A−λI) with the sth column replaced by −x. Thus we can rewrite (A−λI)ỹ−µx = λx−Ax+µỹ
as By = r + ysỹ, where r = λx −Ax.

Because the n + 1 element of the solution vector is known, we will solve with the truncated form
of B, truncated so the n+l row and n+l column are no longer present. This truncation can be done
because we know the solution vector has a zero in the (n + 1)th position. The above equation is a
nonlinear equation defining the correction y. This system can be solved by the following iterative
method for solving,

By(p+1) = r + y(p)s ỹ(p), where ỹp = y(p)s − y
(p)
s es. This is the approach used in [36].

Algorithm 7 Iterative refinement for symmetric eigenvalue problem.

1: Input: A = AT ∈ Rn×n, X̂ ∈ Rn×` , 1 ≤ ` ≤ n
2: Output: X ′ ∈ Rn×` , D̃ = diag

(
λ̃i

)
∈ R`×` , Ẽ ∈ R`×` , ω ∈ R

3: function
[
X ′ , D̃, Ẽ,ω

]
← REFSYEV(A, X̂)

4: R← In − X̂T X̂
5: S← X̂TAX̂
6: λ̂i ← sii /(1− rii) for i = 1, . . . , ` . Compute approximate eigenvalues.
7: D̃← diag

(
λ̃i

)
8: ω← 2

(∥∥∥S − D̃∥∥∥
2
+ ‖A‖2‖R‖2

)
9: eij ←


sij+λ̃j rij
λ̃j−λ̃i

if
∣∣∣λ̃i − λ̃j ∣∣∣ > ω

rij /2 otherwise
for 1 ≤ i, j ≤ ` . Compute the entries of the refinement

matrix Ẽ.
10: X ′← X̂ + X̂Ẽ . Update X̂ by X̂(In + Ẽ)
11: end function
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Figure 8: Convergence of eigenvalue refinement from single to double precision for n = 200.

Algorithm 7 shows another approach using an iterative refinement procedure for solving a symmetric
eigenvalue problem [37]. This methods succeeds also for clustered eigenvalues [38]. Line 4, 5,
and 10 represent the compute intensive parts of the algorithm, which amounts to 4 calls to matrix-
matrix multiply function xGEMM. Line 8 is the matrix norm. The original analysis uses 2-norm but
it is suggested to approximate it using the Frobenius norm because it is much easier to compute in
practice. Line 9 is an element-wise operation to construct the refinement matrix E. Line 10 is the
update of eigenvectors by applying the refinement matrix E. High-precision arithmetic is required
for all computations except line 8 for matrix norm. Although the algorithm can work for only a
subset of eigenvectors, it is only refining in the corresponding subspace. Hence the refinement
process could be limited. In other words, the desired accuracy might be unattainable if only a part
of the spectrum is refined in higher precision.

Figure 8 shows the convergence behavior of algorithm 7 on a real symmetric matrix of size n = 200
when refining the entire eigen-specturm. Each line represents the convergence of one eigenvalue,
and the normalized residual ‖Ax −λx‖/‖A‖‖x‖ is plotted against subsequent iteration numbers.

Iterative refinement based on linear solve is also possible [36]. Algorithm 8 is the procedure called
SICE which, in each iteration, solves a linear system resulting from a rank-1 update in order to refine
a single eigen-pair. The rank-1 update is introduced while replacing one column in A−λI to remove
one degree of freedom on eigenvector correction and, at the same time, compute a correction for the
corresponding eigenvalue. The original formulation [36] solves the system with two series of Givens
rotations to make it upper triangular. This process is hard to parallelize on modern architectures.
Also, some form of orthogonalization should be considered while using the algorithm to refine more
than one eigenvalue.

In many applications, we are satisfied with a subset of the eigenvalue eigenvector pairs. In this
case, it can be much more efficient to use an algorithm such as the Multiple Relatively Robust
Representations (MRRR) [39] to compute the eigenpairs once the matrix has been reduced to a
tri-diagonal form. Though this method by itself is less accurate than its counterparts (Divide and
Conquer and QR), [40] show that using a mixed precision approach can be beneficial to improve the
accuracy of the solve and the overall time to solution. The mixed precision approach here also shows
promise in improving the orthogonality over its single precision and other solver counterparts.

3 Data and communication compression for multiprecision algorithms

A fundamental requirement for accelerating scientific computations through multiprecision use is
the ability to efficiently convert data between the different floating point formats employed and to
minimize the communications associated with these data movements. Techniques and implemen-
tations to accomplish this efficiently have been developed usually ad-hoc, e.g., implemented and
tuned for particular algorithms and implementations that use mixed-precision. Thus, although there
are some solutions that address particular challenges, there are no standards, often there are no user-
level interfaces to lower-level building blocks, and therefore not extracted as independent, supported
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Algorithm 8 SICE algorithm for iteratively refining computed eigenvalue.
1: function [x,λ]← SICE(A, x0, λ0)
2: [Q,T ]←schur(A) . Schur decomposition to find A =QTQT where T is quasi upper

triangular.
3: [m,s]←max(x0) . Find maximum value and index in the eigenvector.
4: x0← x0/m . Normalize
5: for i = 1,2, . . . do
6: c←−xi−1 − (A−λi−1I)[:, s] . Column s of A−λi−1I
7: d←QT c
8: f ← eTs Q . Row s of Q
9: Solve the rank-1 updated system Q(T −λi−1I + df T )QT yi = Axi−1 −λi−1xi−1

10: λi ← λi−1 + yi[s] . Eigenvalue correction.
11: xi ← xi−1 + yi . Eigenvector correction.
12: xi[s]← xi−1[s] . Restore x[s].
13: if 2× yi[s] > yi−1[s] then
14: Break from for loop.
15: end if
16: end for
17: x← xi
18: λ← λi
19: end function

libraries or components infrastructure that other developers can use. To address this, we have been
investigating a number of building blocks that can be extracted and included in numerical libraries
for the development of mixed-precision algorithms. The components that are of interest for data and
communication compression are discussed in the subsequent subsections.

3.1 Data conversions

Many mixed-precision algorithms need to convert data between different standard IEEE formats.
For example, LAPACK supports this type of data conversion as needed for its mixed-precision
iterative refinement solvers. Support is provided through auxiliary routines for either general or
triangular matrices, following standard LAPACK naming conventions and matrix representations.
For example, general matrices can be converted from FP64 to FP32 as follows:

z l a g 2 c (M, N, zA , LDA, cA , LDCA, INFO )
d l a g 2 s (M, N, dA , LDA, sA , LDSA, INFO ) .

The first example is for casting double complex to single complex matrix, and the second for double
to single real matrix. The other way around (from single to double) is also provided through the
clag2z and slag2d routines.

The interfaces for converting triangular matrices are:

z l a t 2 c (UPLO, N, zA , LDA, cA , LDCA, INFO )
d l a t 2 s (UPLO, N, dA , LDA, sA , LDSA, INFO )

and the ones for going from single to double are clat2z and slat2z, respectively.

These routines, following LAPACK’s interfaces, are also provided in MAGMA for GPUs. MAGMA
also adds conversion from single to half precision (FP32 to FP16) for general matrices:

s l a g 2 h (M, N, sA , LDA, hA , LDHA, INFO , QUEUE)

and the corresponding hlag2s. These routines are well optimized for NVIDIA GPUs, and also
supported for AMD GPUs (through hipMAGMA). MAGMA also provides the batched equivalent
for batches of conversions.

A more specialized for mixed-precision calculations library may have to support a more complete
set of data conversion routines, e.g., for arrays, strided arrays, tensors, etc., and more combinations
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Figure 9: Speedup of All2All by 4× compression using cast (red) vs. 2× compression using cast
(dotted green) vs. 4× compression using ZFP on Nvidia V100 GPUs.

of formats, including user/application defined. For example, some mixed-precision FFT algorithms
(see Section 3.3) use dynamic ”splitting” of a high precision array (e.g., FP32) into two lower-
precision (e.g., FP16) arrays. See also Section 7 for further discussion and extensions on formats.

3.2 Data compression

Data compression for reducing communications is another component needed for the development
of mixed-precision algorithms. The simplest form that we consider is the casting, as discussed in
Section 3.1. This is an example of a lossy compression. Casting from FP64 to FP32 for example,
leads directly to a loss of about 8 decimal digits of accuracy, but reduces the data size by a factor
of two. Casting has been used to accelerate the FP64 solvers in MAGMA up to 4× using the
mixed-precision iterative refinement techniques [24, 4, 3] and we use it as benchmark to evaluate
the potential of using other compression algorithms.

We evaluated for example the possibility to use ZFP compression. ZFP provides lossy compression
algorithms, where the compression mode can be specified by the user as either fixed rate, fixed
accuracy, or fixed precision [41]. Analysis for the round-off error introduced by ZFP in compressing
floating-point data is presented in [42]. The values in this experiment are taken random numbers and
the compression specified is 4×. Note that compared to casting, the compression rate is as casting
to FP16, but the accuracy is comparable to casting to FP32. These results make it feasible to use
tools like ZFP to accelerate memory-bound codes, e.g., like FFT (see Section 3.3), up to 4× while
loosing about 8 decimal digits of accuracy.

3.2.1 Mixed-precision MPI

Of interest is MPI extension that fuses subsequent data conversions with the MPI communications.
The conversion must be user specified and includes casting or other data compression or conversion
mechanisms, where a single MPI call will convert the input data as specified, send the converted
data, and the corresponding MPI call will receive and convert the result again, as specified by the
user. Our MPI collaborators have developed preliminary mixed-precision MPI for All2All and P2P
communication using casting. The results show that asymptotically, for large enough data, the MPI
communications can be accelerated proportional to the data compression, i.e., the conversion is
negligible. The implementations are for CPUs, as well as GPUs using GPU-direct communications.

Our preliminary results can also use ZFP to compress the data. Figure 9 illustrates an acceleration
result for All2All in FP64 (marked as base, i.e., the acceleration of 1 line).
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heFFTe GPU acceleration 
Packing     0.91%
Unpacking 0.72%

FFT computation       1.03 %
MPI communication  97.34%

Packing      9.65%
Unpacking 29.13%

FFT computation       11.77%
MPI communication  49.45%

0.14s

0.17s

0.43s

0.72s 0.71s0.017s

Local kernels
accelerated
43x

using GPUs

Total speedup
2x

heFFTe weak scaling on 3D FFTs 

Figure 10: Left: heFFTe acceleration using GPUs vs. CPUs of 10243 FFT on 4 Summit nodes.
Note than nodal computations are accelerated 43× using GPUs. Right: heFFTe weak scalability
with sizes indicated on the graph on up to 1024 nodes (6 V100 GPUs; double complex arithmetic;
starting and ending with bricks; performance assumes 5N3log2N

3 flops).

Note that here we use ZFP and manage to accelerate the MPI communication more than 2× while
loosing only about 8 decimal digits of accuracy, i.e., we achieve an acceleration that outperforms the
corresponding version that uses cast to FP32 (while having the same accuracy). The data sending
itself is accelerated close to 4× as it is compressed 4×, but the overall acceleration drops when adding
the cost for the data compression and decompression. This means that acceleration theoretically still
can go up to about 4× in implementations where the GPU work on compression and decompression
is pipelined and overlapped with the communication.

3.3 Approximate Fast Fourier Transforms

One application of the mixed-precision technologies described in this Section is the acceleration of
multidimentional FFTs through mixed-precision algorithms. We found that more than dozen of ECP
applications use FFTs in their codes, e.g., including LAMMPS, HACC, ExaAM, and applications
from the Copa co-design center [43]. ECP applications that require FFT-based solvers suffer from
the lack of fast and scalable 3D FFT routines for distributed-heterogeneous parallel systems as the
ones projected for the upcoming exascale computing systems, and some of the applications have
indicated interest in exploring the use of approximate FFTs that trade some loss of accuracy for
increase in performance.

To address the above needs for high-performance scalable FFTs on large-scale GPU systems, we de-
veloped and released the Highly Efficient FFTs for Exascale (heFFTe) library [44, 45, 46]. heFFTe
v0.2 features very good weak, as well as strong, scalability and performance that is close to 90% of
the roofline peak (see Figure 10). However, after accelerating the local/nodal computations of about
43× using GPUs (vs CPUs), the main bottleneck becomes the MPI communications. Currently, on
typical FFT problems the GPUs can be used only about 1% of the time, i.e., the GPUs are free to
be used for other computations 99% of the time, while the rest 99% of the time is spent in MPI
communications. Thus, any acceleration in the MPI communications would translate into the same
acceleration of the overall FFT computation.

3.3.1 Approximate FFTs with accuracy-for-speed tradeoff

One idea to accelerate FFTs using mixed-precision is through a tradeoff of accuracy for speed. Here
we reduce the communication volume by compressing the data, e.g., by casting or compression as
outlined in Section 3.2.

Multidimensional FFTs use All2All-type of MPI communications, where first data is packed (locally
on each GPU, using and benefiting from GPUs’ high bandwidth), next is the MPI communication,
and finally data is unpacked locally on each GPU [43, 44]. As packing and unpacking are memory
bound and involve going through the data once, the addition of casting or other type of compression
can be fused with the packing/unpacking and thus significantly remove its overhead. This idea is
explored through the use of mixed-precision MPI that fuses all these operations (as in Section 3.2.1).
Quantification of the speedups obtained vs. the reduction in accuracy is as illustrated in Figure 9.
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Current work is on overlapping the use of the GPUs for compression/decompression with the MPI
communications through pipelining. This is possible as FFTs are memory bound and GPUs can be
free to do other computations up to 99% of the time, e.g., as benchmarked for the Summit hardware
configuration.

3.3.2 Accuracy control

Accuracy requirements are mainly application dependent and can be controlled through specifying
a desired compression rate. The accuracy of the resulting mixed-precision FFTs will be higher than
the corresponding FFT using ”low” precision for both storage and computation, while retaining
the same performance. Moreover, going to the extreme, it is possible to tune the mixed-precision
FFTs to be of the same accuracy, e.g., as FP64 FFTs. For example, this can be done through
evaluating the loss of decimal digits in local computations due to round-off and use an appropriate
data compression rate, so that only the valid digits get to be communicated.

3.3.3 Dynamic splitting

Another idea in accelerating multidimensional FFTs is that instead of compression, the high-
precision FFT data can be dynamically split into two scaled data sets of lower-precision data, apply
the FFT transformations on the two sets in parallel and combine the result at the end. This was
explored in the context of FP32 data that gets split into two FT16 sets in order to apply fast GPU
Tensor Cores computations on the FP16 data [47, 48], e.g., by going to a small radix, e.g., 4, where
the FFT matrix can be represented exactly (even in FP16) and benefit from Tensor Cores accelerated
HGEMMs. An extension of this idea can take into account that the FFT matrix is never assembled,
except for a small radix matrix in order to apply it on the data as GEMM. Thus, without much
computational overhead (because of the memory-bound nature of FFT) one can use higher precision
Fourier matrix and computations (than the precision that stores the data) to accelerate the entire FFT
computation.

4 Multiprecision Sparse Factorizations

Direct methods for sparse systems can also benefit from using lower precision formats. The idea is
to perform the expensive calculations in lower precision, taking advantage of the faster speed often
provided by hardware. Then, some cheaper “fixup” algorithm is employed to recover the accuracy
at a higher precision. Sparse factorizations, such as sparse LU and QR factorizations, are most
often used to construct sparse direct solvers. Two related but orthogonal research directions can be
taken here. The first is about the factorizations themselves, and the second is in the context of direct
solvers.

4.1 Multiprecision sparse LU and QR

Similar to dense LU and QR factorizations, a large fraction of the computation lies in the Schur
complement updates throughout the elimination steps. In the dense case, much of the work in
the Schur complement update can be realized in terms of GEMM operations. However, in the
sparse case, each Schur complement update usually follows three steps: 1) gather the values from
sparse data structures into contiguous memory, 2) perform GEMM operation, 3) scatter the output
of GEMM into destination sparse data structures.

The benefit of using lower precision is two fold: for step 2), we can use very fast lower precision
vendor-provided GEMM functions, e.g. those utilizing NVIDIA’s Tensor Cores. For the gather/s-
catter in steps 1) and 3), the amount of data movement would be reduced.

For the dense case the main benefit comes from accelerated GEMM speed. But in the sparse case,
GEMM is only one part of the three steps above. Furthermore, the dimensions of the GEMM kernel
calls is generally smaller and of non-uniform size throughout factorization. Therefore, the speed
gain from GEMM alone is limited. We will need to design new schemes to enhance overlap of
GEMM computation with gather/scatter operations.
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4.2 Multiprecision sparse direct solvers

For the dense case, in Section 2.2 we revisited the mixed precision iterative refinement (IR) algo-
rithms with adaptive precision adjustment depending on convergence history. The algorithms can
deliver high accuracy to the solution even when the expensive LU and QR factorizations are done
in lower precision. We recall the IR algorithm using three precisions in Algorithm 9 [49, 50]. This
algorithm is already available in xGERFSX functions in LAPACK.

The following three precisions are used:

• εw is the working precision used to store the input data A and b. It is the lowest precision
used in the solver, and is the desired precision for the output.

• εx is the precision used to store the computed solution x(i). We require εx ≤ εw, possibly
εx ≤ ε2w if necessary for componentwise convergence.

• εr is the precision used to compute the residuals r(i). We usually have εr � εw, typically
being at least twice the working precision (εr ≤ ε2w).

Algorithm 9 Three-precisions Iterative Refinement for Direct Solvers

1: Solve Ax(1) = b using the basic solution method (e.g., LU or QR) . (εw)
2: i = 1
3: repeat
4: r(i)← b −Ax(i) . (εr )
5: Solve Adx(i+1) = r(i) using the basic solution method . (εw)
6: Update x(i+1)← x(i) + dx(i+1) . (εx)
7: i← i +1
8: until x(i) is “accurate enough”
9: return x(i) and error bounds

With the above setup and adaptive adjustment of εx and εr , the algorithm converges with small
normwise error and error bound if the normwise condition number ofA does not exceed 1/(γ(n)εw).
Similarly, the algorithm converges with small componentwise error and error bound if the compo-
nentwise condition number of A does not exceed 1/(γ(n)εw). Moreover, this IR procedure can
return to the user the reliable error bounds both normwise and componentwise. The error analysis
in [49] should all carry through to the sparse cases.

The following are example configurations of the precisions:

• εw = 2−53 (IEEE-754 double precision), εx = 2−53, εr = 2−106 (double-double)

• εw = 2−16 (B-float), εx = 2−24, εr = 2−53

Our plan is first to extend the above algorithm to the sparse direct solvers SuperLU and
STRUMPACK. While doing so, we will address the following open questions:

• When εw is bfloat16, the error analysis and error bounds may need be revisited.

• The relative cost of sparse LU/QR (lines 1 and 5) and sparse matvec (line 4) is different
from the dense counter part. For a typical 3D PDE discretized problem, the respective costs
are O(n2) and O(n4/3). Thus, the ratio between ”expensive” and ”cheap” is smaller than
the dense case. We need to be more mindful with the higher precision calculations.

5 Multiprecision efforts in Krylov solver technology

The scope of our review includes both Lanczos-based (short-term recurrence) and Arnoldi-based
(long-term recurrence) methods and the associated methods for solving linear systems of equations
Ax = b. In the context of long-term recurrence methods, we consider the Arnoldi-QR algorithm
with the modified Gram-Schmidt implementation of the Generalized Minimum Residual (GMRES)
Krylov subspace method for iteratively solving linear systems of equations. The emphasis here is to
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examine the approaches employed to date that incorporate mixed-precision floating point arithmetic
to speed-up computations, and yet retain some or all of the numerical properties of the original
algorithms in full double precision arithmetic (i.e. representation error and loss of orthogonality).

5.1 Lanczos-CG

5.1.1 Theoretical Results

We first summarize very briefly the most well-known results on the finite precision behavior of
Lanczos and CG methods, and discuss how such results could potentially be extended to the mixed
precision case and existing progress in this area. We note that there is a huge literature on the finite
precision behavior of Lanczos-based methods which we cannot hope to fully describe here. For a
more thorough account and historical references, we point the reader to the manuscript of Meurant
and Strakoš [51].

Fundamental relations dealing with the loss of orthogonality and other important quantities in finite
precision Lanczos have been derived by Chris Paige [52]. These results were subsequently used by
Anne Greenbaum to prove backward stability-like results for the CG method [53]; namely, Green-
baum showed that CG in finite precision can be seen as exact CG run on a larger linear system, in
which the coefficient matrix has eigenvalues in tight clusters around the eigenvalues of the original
matrix (where the diameter of these clusters depends on properties of the matrix and the machine
precision). Greenbaum also proved fundamental results on the maximum attainable accuracy in fi-
nite precision in what she calls “recursively computed residual methods”, which includes CG, BICG,
BICGSTAB, and other Lanczos-based methods [54]. The results of Paige and Greenbaum have also
been extended to s-step Lanczos/CG variants in [55], where it is shown that s-step Lanczos in finite
precision behaves like classical Lanczos run in a lower “effective” precision (where this “effective”
precision depends on the conditioning of the polynomials used to generate the s-step bases). We be-
lieve that these existing results can be extended to the mixed precision case; in Paige’s analysis [52],
he first defines an ε0 quantity that is used for errors in inner products and an ε1 quantity that comes
from errors in matrix-vector products, but then these quantities are combined in later theorems in or-
der to simplify the analysis. It is possible to expand upon his analysis and keep these two quantities
separate; such results could also then be interpreted in the framework of Greenbaum [53].

Existing results in the area of mixed precision Lanczos-based methods are contained within the work
on “inexact Krylov subspace methods”, which also applies to Arnoldi-based methods; see, e.g., the
manuscripts of Simoncini and Szyld [56], and van den Eshof and Sleijpen [57]. Within such frame-
works, it is assumed that the matrix-vector products are computed with some bounded perturbation
(which can change in each iteration) and all other computation is exact. These methods were mo-
tivated by improving performance in applications where the matrix-vector products dominate the
cost of the computation, e.g., when the matrix is dense or the application of A involves solving a
linear system. Many theoretical results on “inexact Krylov subspace methods”, mostly focused on
the maximum attainable accuracy, have been proved in the literature. A surprising result is that the
inexactness in the matrix-vector products can be permitted to grow in norm as the iterations progress
at a rate proportional to the inverse of the residual norm without affecting the maximum attainable
accuracy. However, a crucial practical question is whether inexactness will affect the convergence
behavior before the attainable accuracy is reached; this is entirely possible in the case of short-term
recurrence methods such as CG and has not been well-studied theoretically.

5.1.2 Practical Applications

We briefly mention works which make use of mixed precision Krylov subspace methods in practical
applications, focusing on performance rather than on theoretical results.

One instance of this is in the work of Clark et al. [58], which uses mixed precision CG and
BICGSTAB methods implementing the “reliable update” strategy of Sleijpen and van der Vorst [59]
within a Lattice QCD application run on GPUs. The idea behind the “reliable update” strategy is
that the true residual is computed and used to replace the recursively updated residual in select iter-
ations, thus improving the attainable accuracy; this is done in conjunction with batched updates to
the solution vector. By using higher (double) precision only in the true residual computations and
group updates (and single or half precision for the rest of the computation), the authors claim they
are able to achieve full double precision accuracy. This deserves further theoretical study, which we
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believe can be achieved by extending the results in [59] and the related work of van der Vorst and
Ye [60] to the mixed precision setting.

5.2 Arnoldi-QR MGS-GMRES

For MGS-GMRES the mixed precision work by Gratton et. al. [61] is the most recent and appro-
priate - and in particular the loss-of-orthogonality relations due to Björck [62] and Paige [52], later
refined by Paige, Rozložnik and Strakoš [63], are employed in order to provide tolerances for mixed
single–double computations. MGS-GMRES convergence stalls (the norm-wise relative backward
error approaches ε) when linear independence of the Krylov vectors is lost, and this is signaled by
Paige’s S matrix norm ‖S‖2 = 1. The S matrix [64] is derived from the lower triangular T matrix
appearing in the rounding error analyses by Giraud et. al. [65].

To summarize, the Gratton et. al. [61] paper postulates starting from the Arnoldi-QR algorithm
using the modified Gram-Schmidt algorithm and employing exact arithmetic in the MGS-GMRES
iterative solver. The Arnoldi-QR algorithm applied to a non-symmetric matrixA produces the matrix
factorization, with loss of orthogonality Fk

AVk = Vk+1Hk , V Tk+1Vk+1 = I +Fk (4)
They next introduce inexact (e.g. single precision) inner products - this directly relates to the loss-
of-orthogonality relations for the A = QR factorization produced by MGS. The resulting loss of
orthogonality, as measured by ‖I −QTQ‖2, grows as O(ε)κ(A) as was derived by Björck [62] and
O(ε)κ([ r0, AVk ]) for Arnoldi-QR - which is described by Paige, Rozložnı́k and Strakoš [66, 63]
and related work. The inexact inner products are given by

hij = v
T
i wj + ηij (5)

where hij are elements of the Hessenberg matrix Hk , and the Arnoldi-QR algorithm produces a QR
factorization of the matrix [

r0, AVk
]
= Vk+1

[
β e1, Hk

]
, (6)

The loss of orthogonality relations for Fk are given below, where the matrix U is strictly upper
triangular

Fk = Ūk + Ū
T
k , Uk =


vT1 v2 · · · vT1 vk+1

. . .
vTk vk+1

 (7)

Define the matrices,

Nk =


η11 · · · η1k

. . .
ηkk

 , Rk =


h21 · · · h2k

. . .
hk+1,k

 (8)

The loss of orthogonality relation derived by Björck [62], for the A = QR factorization via the
modified Gram-Schmidt algorithm can be applied to the Arnoldi-QR algorithm to obtain

Nk = −
[
0, Uk

]
Hk = −UkRk (9)

The complete loss of orthogonality (linear independence) of the Krylov vectors in MGS-GMRES
signals the minimum error is achieved and GMRES then stalls or really can go no further than
when the norm-wise relative backward error reaches O(ε). Gratton et al. [61] show how to maintain
sufficient orthogonality in order to achieve a desired relative residual error level - by switching
the inner products from double to single at certain tolerance levels and combine this with inexact
matrix-vector products as in van den Eshof and Sleijpen [57] and Simoncini and Szyld [56].

In practice, the restarted variant of GMRES is often employed to reduce memory requirements.
The algorithm produces both implicit and explicit residuals. Thus, we might ask whether either
can be performed in reduced precision. The work described herein on iterative refinement by Nick
Higham and Erin Carson for mixed precision can be applied to analyse the convergence of restarted
GMRES(m), assuming a fixed number of iterations - because restarted GMRES is just iterative
refinement with GMRES as the solver for the correction term. However, a more detailed analysis
with experiments has yet to be performed. We are fairly certain that the residual computations must
be performed in higher precision in order to achieve a norm-wise backward error close to double
precision machine round-off.
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5.3 Alterative Approaches

Although somewhat outside the scope of this review, we can demonstrate that it is possible to modify
the Gratton et al. [61] analysis based on the inverse compact WY form of the MGS algorithm, in-
troduced by Šwirydowicz et al. [67]. Rather than treat all of the inner products in the MGS-GMRES
algorithm equally, consider the strictly upper triangular matrix U = LT from the loss of orthogo-
nality relations. We introduce single precision L:,j−1 = QTj−1qj−1 and double precision triangular

solve r = (I + Lj−1)−1Q
T
j−1a to update R - as this would directly employ the forward error analysis

of Higham [68]. The former affects the loss of orthogonality, whereas the latter affects the repre-
sentation error for QR - but then also for Arnoldi-QR. This could allow more (or most) of the inner
products to be computed in single precision.

Evidence for maintaining orthogonality is provided in Figure 11, with ‖I−QTQ‖ plotted forA =QR
using the inner products in standard MGS (blue) in double precision versus the inverse compact WY
MGS (red) with QTj−1qj−1 in single precision (simulated in MATLAB) - and we observe at least the
same or slightly higher error levels. The x-axis is log condition number for randomly generated
matrices. The lower triangular solve is computed in double precision.

Barlow [69] contains similar if not the same algorithm formulations in block form. His work is
related to Björck’s 1994 paper [70, Section 7] which derives the triangular matrix T using a recur-
sive form for MGS, and which is referred to as a “compact WY” representation in the literature.
While Björck used a lower triangular matrix for the compact WY form of MGS, Malard and Paige
[71] derived the upper triangular form, also employed by Barlow, which reverses the order of el-
ementary projectors. The latter is unstable in that a backward recurrence leads to O(ε)κ2(A) loss
of orthogonality. An interesting observation from Julien Langou is that the upper triangular form
is less stable than the lower triangular (even though the backward-forward algorithm results in re-
orthogonalization; see the algorithm in Leon, Björck, Gander [72]).

Barlow [69] employs the Householder compact WY representation of reflectors and also refers to
the work of Chiara Puglisi [73] – discussed in Joffrain et al. [74] – and this is referred to as the
“inverse compact WY” representation of Householder; this originally comes from Walker’s work on
Householder GMRES [75]. Barlow then extends this approach to the block compact WY form of
MGS; see also the technical report by Sun [76]. The contribution by Šwirydowicz et al. [67] was to
note that there exists an inverse compact WY representation for MGS - having the projector

P IM = I −Qj−1T IMQTj−1 = I −Qj−1(I +Lj−1)
−1QTj−1

and to “lag” the norm ‖qj−1‖2 so that these can be computed in one global reduction. Barlow [69]
makes this connection for blocks (and in effect this is given in his equation (3.10)) and references
Puglisi [73].

Björck and Paige [77] made the link between Householder and MGS based on the observation made
by Sheffield. Paige defines this to be augmentation and Gratton et al. [61] also references this
work. Paige has also recently extended these augmentation ideas to Lanczos. The T matrix appears
in Paige’s work with Wülling [78] and then later in [64] to derive the loss of orthogonality matrix
S = (I+LTj−1)

−1LTj−1. This also appears in the work of Giraud, Gratton and Langou [65]; Langou also
worked with Barlow and Smoktunowicz [79] on the Pythagorean trick to reduce cancellation error
in the computation of vector norms and a Cholesky-like form of classical Gram-Schmidt (CGS).

In order to combine single-double floating-point operations in MGS-GMRES, at first it appears that
we could store the T matrix in single precision - but then we would still have to form QTj−1a, and
store Qj−1 in double precision. By examining the cost trade-offs a bit further, we can instead use a
form of re-orthogonalization based on a backward-forward solver recurrence

T = (I +LTj−1)
−1 (I +Lj−1)

−1

and our initial computational results demonstrate this works well, driving the relative residual to
O(ε) in double, with orthogonality maintained to O(ε) in single.

The representation error (backwards error) for A + E = QR computed by MGS, is not affected by
single precision inner products - and remains O(ε). We are not aware of whether or not this was
previously known.
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Figure 11: Loss of Orthogonality for Mixed Single-Double MGS Algorithm

Figure 12: GMRES residuals and loss of orthogonality ‖S‖2 for impcol e matrix
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6 Multiprecision Preconditioners

In the iterative solution process of large sparse systems, preconditioners are an important build-
ing block facilitating satisfactory convergence. The concept of preconditioning is to turn an ill-
conditioned liner system Ax = b into a (left-) preconditioned system MAx = Mb (AMy = b,
x = My for right-preconditioning), which allows for faster convergence of the iterative solver.
The convergence characteristics typically depend on the conditioning of the target system. For
an ill-conditioned A, the preconditioner is also required to be ill-conditioned. Otherwise, the pre-
conditioner can not be expected to improve the conditioning of the problem or the convergence of
the iterative solver. In that respect, the preconditioner basically tries to approximate the inverse
of the system matrix. Obviously, if the preconditioner is the exact inverse, the solution is readily
available. However, computing the exact inverse is prohibitively expensive, and in most cases, the
preconditioner is just a rough approximation of the system matrix inverse. As a consequence, it
is natural to question the need for using high precision for a preconditioner that is inherently car-
rying only limited accuracy. Indeed, choosing a lower precision format for the preconditioner is a
valid strategy as long as the accuracy loss induced by using a lower precision format neither im-
pacts the preconditioner accuracy nor its regularity. For example, Trilinos allows the use of low
precision preconditioners inside high precision iterative solvers, see Section 9, and the hypre team
works on multigrid methods running the first cycles in lower precision. However, the use of lower
precision in the preconditioner application results in different rounding effects than when using high
precision. Specifically, the rounding effects make the preconditioner non-constant as the rounding
effects are not only larger than in high precision, but also depend on the input data [80]. As a result,
low precision preconditioners can only be used to accelerate an iterative method that can handle
non-constant preconditioners, i.e., can converge even if the preconditioner changes in-between it-
erations. For the Krylov subspace solvers generating search directions orthogonal to the previous
search direction, a changing preconditioner requires an additional orthogonalization of the precon-
ditioned search direction against the previous preconditioned search direction. The flexible Krylov
solvers (e.g. FGMRES, FCG) contain this additional orthogonalization and are therefore slightly
more expensive. At the same time, they do allow for using low precision preconditioners, which can
compensate for the additinal cost.

An alternative workaround is to decouple the memory precision from the arithmetic precision,
see Section 7, and only store the preconditioner in low precision but apply it in high precision [80].
Running all arithmetic in high precision keeps the preconditioner constant, and removes the need
for the additional orthogonalization of the preconditioned search direction. On the other hand, de-
coupling memory precision from arithmetic precision requires to convert in-between the formats
on-the-fly when reading data from main memory. Fortunately, most iterative solvers and precon-
ditioners are memory bound, and the conversion can be hidden behind the memory transfers. A
production-ready implementation of an adaptive precision block-Jacobi preconditioner decoupling
memory precision from arithmetic precision is available in the Ginkgo library, see Section 9.

7 Multiprecision efforts decoupling the arithmetic format from the memory
format

Across the complete hardware technology foodchain, we are witnessing a widening gap between the
compute power in terms of float point operations per second on the one side and the communication
power in terms of memory bandwidth. In modern processor technology, retrieving values from
main memory takes several orders of magnitude longer than performing arithmetic operations, and
communicating between distinct nodes of a cluster is again orders of magnitude slower than main
memory access. In consequence more and more algorithms hit the memory wall – and already
today, virtually all applications inside the ECP ecosystem are memory bound on modern hardware
architectures. With no disruptive hardware changes on the horizon, we are facing a situation where
all applications suffer from the slow communication to main memory or in-between nodes.

A promising – and maybe the only promising – strategy to overcome this problem is to utilize the
bandwidth capacity more carefully, reduce the communication volume and the number of commu-
nication points, and whenever possible, trade communication against computations. Specifically,
the idea is to radically decouple the memory precision from the arithmetic precision, employ high
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Figure 13: Accessor separating the memory format from the arithmetic format and realizing on-the-
fly data conversion in each memory access.

Invert	the	diagonal	block
using	Gauss-Jordan	elimination.

Compute	condition	 number	
and	exponent	range.

Select	storage	format:

fp11,52
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Figure 14: Storage format optimization for block-Jacobi: Starting from the most compact storage
(left top), the format is extended in exponent bits to fit the data range (rightwards) and to preserve
regularity (downwards) until both is satisfied.

precision only in the computations, and lower the precision as much as possible when accessing
data in main memory or communicating with remote processors [81]. An important aspect in
this context is the design of a “memory accessor” that converts data on the fly between the IEEE
high precision arithmetic format and the memory/communication format, see Figure 13. Also, the
memory/communication format does not necessarily have to be part of the IEEE standard, but can
also be an arbitrary composition of sign, exponent, and significand bits [82], or even nonstandard
formats like L. Gustafson’s Unum format [83]. Obviously, there is a close link to the idea to
complement the format separation with compression techniques, like proposed in Section 3.

A proof-of-concept for the idea of decoupling arithmetic precision from memory precision is the
adaptive precision block-Jacobi preconditioner [80] available in the Ginkgo sparse linear algebra
library. The idea here is to compute a block-Jacobi preconditioner in high precision, but then store
the distinct inverted diagonal blocks in the lowest floating point precision format that avoids overflow
and still preserves the regularity of the preconditioner, see Figure fig. 14.

This storage format is chosen for each diagonal block individually, respectively reflecting the char-
acteristics. Figure 15 (top) visualizes the distribution of formats when storing the inverted diagonal
blocks of size 24 for symmetric positive definite matrices of the Suite Sparse Matrix Collection.
Obviously, converting to a lower format generally reduces the accuracy of the linear operator, but as
block-Jacobi preconditioners ignore all off-(block)diagonal entries, they are typically only a rough
approximation of the matrix inverse and therewith by design only have very limited accuracy. Ex-
perimental results reveal that the use of a lower precision format for storing the inverted diagonal
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Figure 15: Top: Distribution of floating point formats among the distinct blocks when preserving
1 digit accuracy of each inverted diagonal block. Each column represents one symmetric positive
definite matrices of the Suite Sparse Matrix Collection. Bottom: Impact on the top-level CG solver
solving the system-induced linear problem. For most systems, the convergence rate is unaffected by
the use of a lower storage precision format, all preconditioner applications are faster, resulting in an
average 20% runtime reduction.
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blocks has in most cases only negligible effects on the preconditioner effectiveness and the outer
solver convergence. At the same time, storing the inverted diagonal blocks in lower precision re-
duces the memory access volume in every preconditioner application, therewith accelerating the
bandwidth bound iterative solution process, see Figure 15. For the adaptive precision block-Jacobi
preconditioner, is important that the accessor converts the inverted diagonal blocks back to the IEEE
standard precision not only for performance reasons – leveraging the highly-optimized IEEE float-
ing point arithmetic of the processors – but also for numeric reasons: Using working precision in
the arithmetic operations of the precnditioner application preserves the preconditioner as a constant
operator, applying a preconditioner in lower precision would result in a non-constant preconditioner
and require the use of a (more expensive) flexible iterative solver [80].

7.1 Using different precision formats in Multigrid methods

Multigrid methods are highly effective iterative methods. There are basically two types of multigrid
methods: geometric multigrid methods (GMG) and algebraic multigrid methods (AMG). GMG re-
quires actual grids on each level to generate its components, whereas AMG can be considered more
like a black box method, in that it can be given a matrix and right hand side and will generate the
components for each level automatically using sensible heuristics. These methods are an interesting
target for multiprecision treatment due to their different components which affect the overall algo-
rithm in different ways. GMG and AMG components combine smoothers, coarser grid, restriction
and prolongation operators on each level. In addition, it is of interest to investigate changes in pre-
cision on different levels. Finally, GMG and AMG can be used as preconditioners to other solvers,
i.e. there is potential to use lower precision across the whole preconditioner. Historically, most
work focused on the use of a lower precision GMG or AMG method as a preconditioner to a double
precision solver. Additionally, there are attempts to apply ZFP [41] within MG or establish an error
analysis framework for AMG.

Ljungkvist and Kronbichler[84, 85] successfully use mixed precision to solve the Laplace problem
for different orders with a matrix-free geometric multigrid approach. Their solver infrastructure
allows for using mixed-precision arithmetic that performs the multigrid V-cycle in single precision
with an outer correction in double precision, increasing throughput by up to 83 percent.

Similarly, Glimberg et al [86] use a single precision multigrid to precondition a double precision
defect correction scheme and solve the Laplace problem within a nonlinear water wave application
on a GPU architecture. They achieve a speedup of up to 1.6 of the mixed precision version over the
double precision version, a speedup of 1.9 for a purely single precision version.

Yamagishi and Matsumura [87] also apply a single precision multigrid to a double precision con-
jugate gradient solver to the Poisson/Helmholtz problem within their non-hydrostatic ocean model.
They report a speedup up to 2 for a single precision Matvec over a double precision one and im-
proved overall times using this approach, however they compare the full application run only to their
CPU version.

There are various publications that pursue the same strategy of using a single precision AMG pre-
conditioner to a double precision solver.

Emans and van de Meer [88]perform a careful analysis of the individual kernels of preconditioned
Krylov solvers on multi-core CPUs, including sparse matrix-vector multiplications (SpMV) which
make up a large portion of AMG. They also consider the effect of communication, where lower
precision leads to smaller size messages, but latencies are still an issue, particularly on the coarsest
levels of AMG. They find that the use of mixed precision for the preconditioner barely affects con-
vergence and therefore speedups for the kernels, which were between 1.1 and 1.5, can potentially
carry over to the whole solver and lead to improvements of runtimes within CFD applications.

Sumiyoshi et al [89] investigate AMG performance on a heterogeneous computer architecture with
both CPUs and GPUs for isotropic and anisotropic Poisson problems. They consider smoothed
aggregation AMG as a stand-alone solver. They carefully analyze different portions of the algorithm
on five different architectures, including one multi-core CPU cluster. They report speedups between
1.2 and 1.6 on the GPU-CPU architectures for the mixed-precision implementation over the double
precision version. These speedups are related to SpMV performance (between 1.6 and 1.8) on
these architectures. However, the mixed-precision version was slightly slower on the CPU-only
architecture, which achieved barely any improvement for the SpMV operations.
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Richter et al [90] examine the performance of a single precision AMG solver (ML and PETSc)
applied to a double precision PCG solver. They apply the method for an electrostatic simulation of
the high voltage isolator on a GPU/CPU computer architecture. Their mixed precision version takes
about 84 percent of the time of the double precision version.

An approach described in a presentation by Kate Clark [91] takes the use of mixed precision even
further to involve half precision. Clark and collaborators achieved good results using a double
precision defect correction approach with a single precision Krylov solver and a half precision AMG
preconditioner.

Another interesting related study by Fox and Kolasinski [92] examines the use of ZFP, a lossy
compression algorithm, within multigrid. Due to the local structure of ZFP, ZFP can easily be
integrated into numerical simulations without changing the underlying algorithms. However, since
ZFP is a lossy algorithm, it will introduce some error, thus, it is important to understand if the
error caused by ZFP overwhelms other traditional sources of error, such as discretization error. The
study shows that for MG on a Poisson problem, applying ZFP to the approximation vector, can
significantly decrease memory use and thus is expected to decrease runtimes, while the generated
errors stay below discretization error. Since a hardware version of ZFP is not available yet, no
actual runs were possible, however the results show good potential to use GMG and/or AMG as a
preconditioner.

Currently, Tamstorf et al [93] appear to be the only ones who have investigated the theory of multi-
precision multigrid methods. Their original intent was to improve the appearance of the movement
of cloth within Disney movies, which requires higher than FP64 accuracy. However, their theory
applies equally to decreased precision. They have created a theoretical framework with rigorous
proofs for a mixed-precision version of multigrid for solving the algebraic equations that arise from
discretizing linear elliptic partial differential equations (PDEs). The arising matrices being sparse
and symmetric positive definite enable the use of the so-called energy or A norm to establish con-
vergence and error estimates. Bounds on the convergence behavior of multigrid are developed and
analyzed as a function of the matrix condition number. Both theoretical and numerical results con-
firm that convergence to the level of discretization accuracy can be achieved with mixed-precision
versions of V-cycles and full multigrid. This framework is inspired by the results of Carson and
Higham [15] but ultimately provides tighter bounds for many PDEs. Tamstorf et al [94] further
extend their theoretical framework to include the quantization error. They use the bounds to guide
the choice of precision level in their progressive-precision multigrid scheme by balancing quanti-
zation, algebraic and descretization errors. They show that while iterative refinement is susceptible
to quantization errors during the residual and update computation, the V-cycle used to compute the
correction in each iteration is much more resilient, and continues to work if the system matrices in
the hierarchy become indefinite due to quantization.

8 Low precision and multiprecision technology for Machine Learning

Modern high-performance computing (HPC) hardware continues to experience an ongoing shift
towards supporting a variety reduced-precision formats for representing floating-point numbers in
order to offer a much increased performance rate. However, portability is often of little concern
as the hardware tends to serve only a specific set of workloads that are of special interest to the
particular vendor. The examples include Intel’s Cascade Lake Vector Neural Network Instructions
(VNNI) and the recently announced Xe platform for graphics cards, AMD’s Radeon Instinct cards
(MI5, MI8, MI25, MI55, MI60) and NVIDIA’s compute cards from the Pascal, Volta, and Turing
series. Finally, ARM included 16-bit floating point (FP16) in its NEON vector unit specification
VFP 8.2-A. These accelerators follow two types of specifications for 16-bit floating-point format:
IEEE-compliant FLOAT16 and extended-range BFLOAT16.

At the same time, a new breed of accelerators take the use of reduced precision to a new level
as they target new machine learning workloads. This new hardware includes Cloud AI 100 by
Qualcomm, Dot-Product Engine by HPE, Eyeriss by MIT [95], TPU by Google [96], MAERI by
Georgia Institute of Technology [97] Deep Learning Boost by Intel, CS-1 by Cerebras, and Zion by
Facebook.

In general, the machine learning community has been more aggressive in evaluating multiple pre-
cision to the extent that even a 1-bit Stochastic Gradient Descent has been considered [98]. The

33



typical use case in machine learning is to use the training with 32-bit arithmetic and use different
precision for the inference task. The quantization for the inference is supported in popular frame-
works like TensorFlow [99] and pyTorch [100]. Quantization is the approach to store the tensors
and compute on them using bitwidths lower than floating point bitwidths. Even in machine learning
frameworks, the support for quantizations is limited to just the key functionality needed for a con-
volutional neural networks or recurrent neural networks with some limited hardware support. For
example, pyTorch and TensorFlow supports 8-bit quantization for activation and weights. This al-
lows using 8-bits for inference where the additional 2-4x performance is necessary. On the training
front, it has been shown that 16-bit training is sufficient for certain tasks [1, 101]. The recent Gordon
Bell winner demonstrated that lower-precison training can be used for scientific machine learning
tasks as well [102].

The analogous effort to the work in deep learning to the examples of our interest in scientific
computing involves training the network in lower precision and performing inference in a higher
one [103, 104]. The compute imbalance between training and inference is even higher than that of
factorization and the subsequent iterative refinement. Another difference is that in the context of
neural network training, lowering the precision may be incorporated into the model as a regularizer.

9 Multiprecision capabilities of xSDK Math Libraries and Interoperability

9.1 Ginkgo

Ginkgo is a modern sparse linear algebra library able to run on multi- and manycore archi-
tectures [105]. The library design is guided by combining ecosystem extensibility with heavy,
architecture-specific kernel optimization using the platform-native languages CUDA (NVIDIA
GPUs), HIP (AMD GPUs), or OpenMP (Intel/AMD/ARM multicore). The software development
cycle ensures production-quality code by featuring unit testing, automated configuration and in-
stallation, Doxygen code documentation, as well as a Continuous Integration (CI) and Continuous
Benchmarking framework.

Ginkgo uses a static template parameter for the value type and a template parameter for the integer
type to allow for compilation in different precision formats. Standard value type formats supported
are IEEE double precision, IEEE single precision, double complex precision, and single complex
precision. Theoretically, Ginkgo can also be compiled for any other (arbitrary) precision format, but
the support on both the hardware and the software side is very limited outside the IEEE standard.

Aside from being compilable for different precision formats, Ginkgo features the adaptive precision
block-Jacobi preconditioner, decoupling the memory precision from the arithmetic precision, and
optimizing the storage format for the inverted diagonal block individually. Even though heavily
leveraging advanced multiprecision technology, the numerical considerations of the adaptive preci-
sion block-Jacobi preconditioner are fully automated and hidden from the user who can employ the
functionality as black-box algorithm without numerical degradation. Building upon the knowledge
gained in the adaptive precision block-Jacobi, Ginkgo is currently employing the accessor concept
to consequently separate the memory precision from the arithmetic precision, see section 7.

A orthogonal multiprecision technology that is under consideration for integration into Ginkgo is
the multiprecision SpMV based on value clustering.

9.2 heFFTe

The Highly-Efficient FFTs for Exascale (heFFTe) library provides fast and robust multi-dimensional
FFT routines for Exascale platforms. heFFTe leverages established but ad hoc software tools that
have traditionally been part of application codes, but not extracted as independent, supported li-
braries. These multidimensional FFTs rely on third-party 1D FFTs, either from FFTW or from
vendor libraries.

FFTs are used in many domain applications–including molecular dynamics, spectrum estimation,
fast convolution and correlation, signal modulation, and wireless multimedia applications. For ex-
ample, distributed 3-D FFT is one of the most important kernels used in molecular dynamics com-
putations, and its performance can affect an application’s scalability on larger machines. Similarly,
the performance of the first principle calculations depends strongly on the performance of the FFT
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solver. Specifically, for DOE, we found that more than a dozen ECP applications use FFT in their
codes. However, the current state-of-the-art FFT libraries are not scalable on large heterogeneous
machines with many nodes, or even on one node with multiple high-performance GPUs (e.g., several
NVIDIA V100 GPUs). To address these needs, the heFFTe v0.2 library release demonstrates very
good weak and strong scalability, and a very high performance that is close to 90% of the roof-line
theoretical peak performance. This is achieved through (1) efficient use of GPUs’ high bandwidth,
(2) algorithms to reduce global communications, when possible, and (3) employment of GPUDirect
technologies as well as MPI optimizations. heFFTe provides multi-precision capabilities with sup-
port for both single and double precision arithmetic. heFFTe is a C++ library, and the arithmetic
used is templated, so that other precisions can be easily added. Current work is on adding mixed-
precision capabilities using mixed-preision MPI and compression, as described in Section 3.2.

9.3 hypre

hypre is a software library of high-performance preconditioners and solvers for the solution of large,
sparse linear systems of equations on massively parallel computers. The hypre library was created
with the primary goal of providing users with advanced parallel preconditioners. The library features
parallel multigrid solvers for both structured and unstructured grid problems. For ease of use, these
solvers are accessed from the application code via hypre’s conceptual linear system interfaces, which
allow a variety of natural problem descriptions and include a structured, a semi-structured and a
linear-algebraic interface. The (semi-)structured interfaces are an alternative to the standard matrix-
based interface, give users a more natural means for describing linear systems and provide access to
structured multigrid solvers, which can take advantage of the additional information.

9.4 Kokkos Kernels

The Kokkos Kernels project primarily focuses on performance-portable kernels for sparse/dense lin-
ear algebra and graph kernels. Kokkos Kernels relies on Kokkos programming model for portability.
The focus of sparse linear algebra kernels has been to support the requirements of frameworks such
as Trilinos and computational science applications. The sparse linear algebra data structure used is a
compressed row storage. Kokkos Kernels provides kernels for sparse matrix-vector multiplication,
sparse matrix-matrix multiplication, ILU(k) factorization, Gauss-Seidel preconditioner, triangular
solves when the triangular factors arise from direct solvers or incomplete factorizations. All these
kernels are templated on the matrix and the vector type allowing multiple precision support from
the initial software design. Kokkos Kernels also supports dense linear algebra kernels for team-level
BLAS and LAPACK functionality. This allows computational science applications to use BLAS
and LAPACK operations in the “inner-loop” when programming for accelerators. The BLAS and
LAPACK functionality is also templated on the scalar type allowing multiprecision use. Kokkos
Kernels also support graph kernels such as distance-1 coloring, distance-2 coloring and triangle
counting kernels.

9.5 MAGMA

MAGMA provides LAPACK and a large number of highly optimized dense and sparse linear al-
gebra (LA) routines for heterogeneous architectures. Besides LAPACK, other dense LA routines
in MAGMA include BLAS, Batched BLAS and LAPACK, and mixed-precision factorizations and
solvers. A MAGMA Sparse component provides support for sparse iterative solvers and precon-
ditioners, a number of sparse matrix formats and conversion routines, SpMV/MM and auxiliary
kernels.

MAGMA addresses the complex challenges of heterogeneous compute environments by providing
hybridized software that combines the strengths of different algorithms for different hardware com-
ponents. MAGMA’s LA algorithms target hybrid manycore systems featuring GPUs specifically
and thus enable applications to fully exploit the power offered by each of the hardware compo-
nents. MAGMA provides solvers for linear systems, least squares, eigenvalue problems, and singu-
lar value problems. Designed to be similar to LAPACK in functionality, data storage, and interface,
the MAGMA library allows scientists to seamlessly port any linear algebra reliant software com-
ponents to heterogeneous architectures. MAGMA allows applications to fully exploit the power
of current heterogeneous systems of multi/many-core CPUs and multi-GPUs to deliver the fastest
possible time to accurate solution within given energy constraints.
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MAGMA provides mixed-precision solvers using LU, Cholesky, or QR factorizations. In terms of
low precision developments, the latest MAGMA release to-date (v 2.5.3) provides an optimized
batch HGEMM kernel that outperforms the vendor BLAS for relatively small sizes. It also provides
a mixed-precision linear solver for Ax = b in double-precision, while taking advantage of half-
precision during the LU factorization. The mixed-precision solver is up to 4× faster than a direct
FP64 solver, and converges to double precision accuracy if the condition number of the matrix
κ∞(A) is up to 105.

9.6 PETSc

PETSc is a suite of data structures and routines for the scalable solution of scientific applications
modeled by partial differential equations; TAO is a scalable library for numerical optimization.
PETSc/TAO can be easily used in application codes written in C, C++, Fortran, and Python.

PETSc is written in pure C89 (recently extended to support portions of C999 that are supported by
the more recent Microsoft C compilers). The emphasis has always been on ultimate portability to
the Fortran and C standards. At the same time we have always insured PETSc compilers completely
with C++ as well and that the C compiled version can be used from C++ compiled code. The
largest hassle in this regard has always been the differences between complex number handling in
C and C++ requiring extensive code to handle the differences. PETSc can be built only for a single
scalar type and precision at a time, for example real numbers and quad precision. Since C does not
offer templates, managing multiple integrated precision’s is difficult. For CPUs, PETSc supports
half-precision (ARM only), single, double, quad (GNU compilers only). The above applies for
CPU based systems. For GPU’s, where large improvements in time to solution are possible with
less precision, PETSc will use its GPU interfaces to allow computing with a selected precision
at runtime on the GPUs. If the numerical values are in, say, double on the CPU they would be
converted to, for example, single when transferred to the GPU for the computation. Of course, the
more desirable case where the data remains on the GPU will require less conversion, except when
particularly desired, for example, ill-conditioning requires a portion of the computation to be done
with more precision.

9.7 PLASMA

PLASMA (Parallel Linear Algebra Software for Modern Architectures) [5] is a software package
based on modern OpenMP for solving problems in dense linear algebra. PLASMA provides im-
plementations of state-of-the-art algorithms using modern task scheduling techniques. PLASMA
provides routines for solving linear systems, least squares problems, eigenvalue problems, and sin-
gular value problems. PLASMA is based on OpenMP and its data-dependence tracking and task
scheduling. PLASMA library allows scientists to easily port their existing software components
from LAPACK to PLASMA to take advantage of the new multicore architectures. PLASMA pro-
vides LAPACK-style interface for maximum portability and compatibility. An interface with more
efficient data storage is also provided to achieve performance as close as possible to the computa-
tional peak performance of the machine.

9.8 SLATE

SLATE is a distributed, GPU accelerated library for dense linear algebra, intended as a replacement
for ScaLAPACK. To this end, SLATE provides parallel Basic Linear Algebra Subprograms (BLAS),
norms, linear systems solvers, least square solvers, singular value and eigenvalue solvers. It is
written using modern C++, with ScaLAPACK and LAPACK compatible wrappers.

SLATE provides mixed-precision solvers using both LU and Cholesky factorization. The factoriza-
tion is done in a lower precision, then iterative refinement is applied to improve the accuracy to a
higher precision. The code is templated on the two precisions; currently single/double and single-
complex/double-complex are supported. Future plans include using half precision and a more robust
GMRES refinement mechanism.
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9.9 STRUMPACK

STRUMPACK is a distributed, GPU accelerated library for dense and sparse linear algebra using
rank-structured matrix approximations, including hierarchically semiseparable (HSS), hierarchically
off-diagonal low rank (HODLR), butterfly, and a non-hierarchical format called block low rank
(BLR). The baseline sparse STRUMPACK is a multifrontal sparse LU direct solver. The frontal
matrices in the sparse factors can be approximated with the above rank-structured formats, serving
as effective sparse preconditioners with nearly optimal complexity in flops and memory. Sparse
STRUMPACK relies on ButteryPACK for the HODLR and butterfly formats, and provides C++
interfaces to the ButteryPACK Fortran library.

STRUMPACK is written using modern C++, with templated datatypes to support various preci-
sions, including real and complex, single and double precisions. It can also support half-precision.
Currently, iterative refinement and GMRES are performed in the same working precision as factor-
ization.

9.10 SuperLU

SuperLU is a distributed, GPU accelerated sparse direct solver for general sparse linear systems, us-
ing supernodal techniques in LU factorization and triangular solves. It uses MPI+OpenMP+CUDA
to support various forms of parallelism. Routines are also provided to equilibrate the system, esti-
mate the condition number, calculate the relative backward error, and estimate error bounds for the
refined solutions.

SuperLU is written in C and is callable from either C or Fortran program. The code base uses
macros to template the datatypes, so it can support the mixture of various precisions, including real
and complex, single, double and half precisions. Currently, iterative refinement is performed in the
same working precision as factorization. Work is in progress to provide lower precision factorization
coupled with higher precision iterative refinement.

9.11 Trilinos

The Trilinos Project is a premier software framework in scientific computing for the solution of
large-scale, complex multiphysics engineering and scientific problems. Trilinos is object-oriented
and organized into about 60 different packages, each with a specific focus. These packages in-
clude linear and nonlinear solvers, preconditioners (including algebraic multigrid), graph partition-
ers, eigensolvers, and optimization algorithms, among other things. Users are required to install only
the subset of packages related to the problems they are trying to solve. Trilinos supports MPI+X,
where X can be CUDA, OpenMP, etc. (anything Kokkos supports).

In Trilinos, the scalar type is a template parameter, typically set to IEEE double precision while also
IEEE single precision is fully supported. Users can employ preconditioners that are compiled in
single precision inside a double precision outer solver - however have to account for the numerical
effects, i.e., may need a flexible Krylov solver (FCG / FGMRES). A brief discussion of using mixed
precision in the Belos package was given in [106]. Other scalar types than single and double may
also be used, however, this is not common and not supported in the explicit template instantiation
(ETI) build system.

10 IEEE Formats and Format Conversion

10.1 Emulator

The half-precision (fp16) floating-point format, defined in the 2008 revision of the IEEE standard
for floating-point arithmetic, and a more recently proposed half-precision format bfloat16, are in-
creasingly available in GPUs and other accelerators. While the support for low precision arithmetic
is mainly motivated by machine learning applications, as discussed in earlier sections, general pur-
pose numerical algorithms can benefit from it too. Since the appropriate hardware is not always
available, and one may wish to experiment with new arithmetics not yet implemented in hardware,
software simulations of low precision arithmetic are needed. In [107], Higham and Pranesh discuss
a strategy to simulate low precision arithmetic using arithmetic of higher precision, and correctness
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of such simulations is explained via rounding error analysis. A MATLAB function function chop2 is
provided, that can be used to efficiently simulate fp16, bfloat16, and other low precision arithmetics,
with or without the representation of subnormal numbers and with the options of round to nearest,
directed rounding, stochastic rounding, and random bit flips in the significand. Interested readers
are referred to [107] for further details.

10.2 Rounding Error Analysis

Traditional rounding error analysis in numerical linear algebra leads to backward error bounds in-
volving the constant γn = nu/(1− nu), for a problem size n and unit roundoff u. In light of large-
scale and possibly low-precision computations, such bounds can struggle to provide any useful infor-
mation. In [108], Higham and Mary develop a new probabilistic rounding error analysis that can be
applied to a wide range of algorithms. By using a concentration inequality and making probabilistic
assumptions about the rounding errors, they show that in several core linear algebra computations
γn can be replaced by a relaxed constant γ̃n proportional to

√
n lognu with a probability bounded

below by a quantity independent of n. The new constant γ̃n grows much more slowly with n than
γn. We refer to [108], [109] for further details.
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[78] Christopher C Paige and Wolfgang Wülling. Properties of a unitary matrix obtained from a
sequence of normalized vectors. SIAM J. Matrix. Anal. Appl., 35(2):526–545, 2014.

[79] Alicja Smoktunowicz, Jesse L Barlow, and Julien Langou. A note on the error analysis of
classical Gram–Schmidt. Numerische Mathematik, 105(2):299–313, 2006.

[80] Hartwig Anzt, Jack Dongarra, Goran Flegar, Nicholas J Higham, and Enrique S Quintana-
Ortı́. Adaptive precision in block-jacobi preconditioning for iterative sparse linear system
solvers. Concurrency and Computation: Practice and Experience, 31(6):e4460, 2019.

42
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[82] Thomas Grützmacher, Terry Cojean, Goran Flegar, Fritz Göbel, and Hartwig Anzt. A cus-
tomized precision format based on mantissa segmentation for accelerating sparse linear alge-
bra. Concurrency and Computation: Practice and Experience, page e5418, 2019.

[83] J.L. Gustafson. The End of Error: Unum Computing. Chapman & Hall/CRC Computational
Science. Taylor & Francis, 2015.

[84] Karl Ljungkvist and Martin Kronbichler. Multigrid for matrix-free finite element compu-
tations on graphics processors. Technical report / Department of Information Technology,
Uppsala University, 2017.

[85] Karl Ljungkvist and Martin Kronbichler. Multigrid for matrix-free high-order finite element
computations on graphics processors. ACM Transactions on Parallel Processing, 2019.

[86] Stefan Lemvig Glimberg, Allan Peter Engsig-Karup, and Morten G Madsen. A fast gpu-
accelerated mixed-precision strategy for fully nonlinearwater wave computations. In Pro-
ceedings of ENUMATH 2011, 2011.

[87] Takateru Yamagishi and Yoshimasa Matsumura. Gpu acceleration of a non-hydrostatic ocean
model with a multigrid poisson/helmholtz solver. Procedia Computer Science, 80:16581669,
2016.

[88] Maximilian Emans and Albert van der Meer. Mixed-precision amg as linear equation solver
for definite systems. In Proceedings of International Conference on Computational Science,
ICCS 2010, volume 1, page 175183, 2012.

[89] Yuki Sumiyoshi, Akihiro Fujii, Akira Nukada, and Teruo Tanaka. Mixed-precision amg
method for many core accelerators. In EUROMPI/ASIA 14: Proceedings of the 21st Eu-
ropean MPI Users’ Group Meeting, page 127132, 2014.

[90] Christian Richter, Sebastian Schops, and Markus Clemens. Gpu-accelerated mixed precision
algebraic multigrid preconditioners for discrete elliptic field problems. IEEE Transactions on
Magnetics, 50(2), 2014.

[91] Kate Clark. Effective use of mixed precision for hpc. Smoky Mountain Conference 2019.
[92] Alyson Fox and Avary Kolasinski. Error analysis of inline zfp compression for multigrid

methods. 2019 Copper Mountain Conference for Multigrid Methods.
[93] Rasmus Tamstorf, Joseph Benzaken, and Stephen McCormick. Algebraic error analysis for

mixed precision multigrid solvers. SIAM Journal on Scientific Computing, 2020. submitted.
[94] Rasmus Tamstorf, Joseph Benzaken, and Stephen McCormick. Discretization-error-accurate

mixed precision multigrid solvers. SIAM Journal on Scientific Computing, 2020. submitted.
[95] Yu-Hsin Chen, Joel S. Emer, and Vivienne Sze. Eyeriss v2: A flexible and high-performance

accelerator for emerging deep neural networks. CoRR, abs/1807.07928, 2018.
[96] Norman P. Jouppi, Cliff Young, Nishant Patil, David A. Patterson, Gaurav Agrawal, Ramin-

der Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc
Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean,
Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hag-
mann, Richard C. Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron
Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Andy Koch, Naveen Kumar, Steve
Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan
Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagara-
jan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana
Penukonda, Andy Phelps, Jonathan Ross, Amir Salek, Emad Samadiani, Chris Severn, Gre-
gory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan,
Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Wal-
ter Wang, Eric Wilcox, and Doe Hyun Yoon. In-datacenter performance analysis of a tensor
processing unit. CoRR, abs/1704.04760, 2017.

[97] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. Maeri: Enabling flexible dataflow
mapping over dnn accelerators via reconfigurable interconnects. ACM SIGPLAN Notices,
53(2):461–475, 2018.

43



[98] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent
and its application to data-parallel distributed training of speech dnns. In Fifteenth Annual
Conference of the International Speech Communication Association, 2014.

[99] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A
system for large-scale machine learning. In 12th {USENIX} Symposium on Operating Sys-
tems Design and Implementation ({OSDI} 16), pages 265–283, 2016.

[100] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary De-
Vito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentia-
tion in pytorch. 2017.

[101] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Training deep neural networks
with low precision multiplications. arXiv preprint arXiv:1412.7024, 2014.

[102] Thorsten Kurth, Sean Treichler, Joshua Romero, Mayur Mudigonda, Nathan Luehr, Everett
Phillips, Ankur Mahesh, Michael Matheson, Jack Deslippe, Massimiliano Fatica, et al. Ex-
ascale deep learning for climate analytics. In SC18: International Conference for High Per-
formance Computing, Networking, Storage and Analysis, pages 649–660. IEEE, 2018.

[103] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learn-
ing with limited numerical precision. CoRR, abs/1502.02551, 2015. accessed: 2018-08-01.

[104] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learn-
ing with limited numerical precision. In Francis Bach and David Blei, editors, Proceedings
of the 32nd International Conference on Machine Learning, volume 37 of Proceedings of
Machine Learning Research, pages 1737–1746, Lille, France, 2015. PMLR. accessed: 2018-
08-01.

[105] Hartwig Anzt, Erik Boman, Rob Falgout, Pieter Ghysels, Michael Heroux, Xiaoye Li,
Lois Curfman McInnes, Richard Tran Mills, Sivasankaran Rajamanickam, Karl Rupp, et al.
Preparing sparse solvers for exascale computing. Philosophical Transactions of the Royal
Society A, 378(2166):20190053, 2020.

[106] Eric Bavier, Mark Hoemmen, Sivasankaran Rajamanickam, and Heidi Thornquist. Amesos2
and belos: Direct and iterative solvers for large sparse linear systems. Scientific Programming,
20:241–255, 2012.

[107] Nicholas J. Higham and Srikara Pranesh. Simulating low precision floating-point arithmetic.
SIAM Journal on Scientific Computing, 41(5):C585–C602, 2019.

[108] Nicholas J. Higham and Theo Mary. A new approach to probabilistic rounding error analysis.
SIAM Journal on Scientific Computing, 41(5):A2815–A2835, 2019.

[109] Nicholas J. Higham and Theo Mary. Sharper probabilistic backward error analysis for ba-
sic linear algebra kernels with random data. MIMS EPrint 2020.4, Manchester Institute for
Mathematical Sciences, The University of Manchester, January 2020.

44


	1 Introduction
	2 Dense Linear Algebra
	2.1 Low Precision BLAS
	2.1.1 Hardware Acceleration of Half Precision
	2.1.2 Half-precision GEMM (HGEMM)
	2.1.3 Batch HGEMM

	2.2 Classical Iterative Refinement
	2.3 GMRES-IR
	2.3.1 Scaling

	2.4 Mixed-precision Factorizations
	2.5 Cholesky Factorization
	2.5.1 Scaling
	2.5.2 Shifting

	2.6 Iterative Refinement for Least Squares Problems
	2.6.1 Cholesky-Based Approach
	2.6.2 Augmented Matrix Approach

	2.7 Quantized Integer LU Factorization
	2.7.1 Quantized Integer LU Algorithm
	2.7.2 Quantized Integer LU Numerical Results
	2.7.3 Future Work on Quantized Integer LU

	2.8 Symmetric Eigenvalue Problems

	3 Data and communication compression for multiprecision algorithms
	3.1 Data conversions
	3.2 Data compression
	3.2.1 Mixed-precision MPI

	3.3 Approximate Fast Fourier Transforms
	3.3.1 Approximate FFTs with accuracy-for-speed tradeoff
	3.3.2 Accuracy control
	3.3.3 Dynamic splitting


	4 Multiprecision Sparse Factorizations
	4.1 Multiprecision sparse LU and QR
	4.2 Multiprecision sparse direct solvers

	5 Multiprecision efforts in Krylov solver technology
	5.1 Lanczos-CG
	5.1.1 Theoretical Results
	5.1.2 Practical Applications

	5.2 Arnoldi-QR MGS-GMRES
	5.3 Alterative Approaches

	6 Multiprecision Preconditioners
	7 Multiprecision efforts decoupling the arithmetic format from the memory format
	7.1 Using different precision formats in Multigrid methods

	8 Low precision and multiprecision technology for Machine Learning
	9 Multiprecision capabilities of xSDK Math Libraries and Interoperability
	9.1 Ginkgo
	9.2 heFFTe
	9.3 hypre
	9.4 Kokkos Kernels
	9.5 MAGMA
	9.6 PETSc
	9.7 PLASMA
	9.8 SLATE
	9.9 STRUMPACK
	9.10 SuperLU
	9.11 Trilinos

	10 IEEE Formats and Format Conversion
	10.1 Emulator
	10.2 Rounding Error Analysis


