
Trade-offs in Context Identifier Allocation in MPI

George Bosilca
bosilca@icl.utk.edu

Thomas Herault
herault@icl.utk.edu

Jack Dongarra
dongarra@eecs.utk.edu

Innovative Computing Laboratory
The University of Tennessee

Knoxville, TN, USA

ABSTRACT
The notion of communicators is one of the most central con-
cepts in the Message Passing Interface (MPI), allowing the
library developers to contextualize their message exchanges,
and scope different algorithms to well-defined groups of pro-
cesses, and allowing the MPI implementation to specialize
its matching and deliver messages in the right context. Due
to its collective nature, the communicator identifier alloca-
tion is directly linked with the performance of the collective
communication implementation on the execution platform.
We propose a scalable algorithm for communicator identi-
fier allocation, that minimize the amount of data involved in
the operation. This allows for faster context allocation im-
plementations, that are capable of taking advantage of the
hardware accelerated collective where available. Addition-
ally, we present 3 communicator storage strategies, and their
implementations in the context of Open MPI. We explore the
performance of these new algorithms, compare them with al-
gorithms available in other MPI implementations, and dis-
cuss their trade-offs.

1. INTRODUCTION
Central to the Message Passing Interface (MPI), communi-
cators bring together multiple concepts to provide the appro-
priate scope for all communication operations in MPI. The
concepts behind the notion of communicators hold 1) a con-
text of communication providing separate safe “universes”
of message passing; 2) groups, an ordered collection of pro-
cesses using the corresponding index as a process rank; 3)
virtual topologies creating a special mapping between the
ranks in a group and a topology; and 4) attributes, local
information added to a communication context for later ref-
erence. Communicators allow for the partitioning of the
communication space (operations executed on a given com-
municator do not interfere with operations executed on an-
other communicator), while a group holds an ordered set
of process identifiers (by extension, we speak of processes
belonging to a communicator).

As such, there are multiple reasons why MPI programmers
take advantage of the benefits of communicators: library
composition, topology association, neighborhood definition,
as well as dynamic process management. Communicators
are key to the composition of libraries that use MPI rou-
tines, thanks to their context property: because a communi-
cation operation posted on a communicator cannot interfere
with any other communication operation posted on a differ-
ent communicator, portable libraries create their own set of
communicators that they use exclusively (and often avoid
exposing to other levels of the software stack) for their in-
ternal communications.

Many applications need a different rank notation mecha-
nism than the default linear group rank, one related to the
logical communication pattern of the algorithm. Generally
speaking, processes are usually either viewed as a multi-
dimensional grid of processes, or as a potentially weighted
graph. The topology notion provided by MPI does not re-
flect the underlying network topology – which is, and will
remain, unknown to the application – but rather affects the
communication pattern imposed by the application. The
existence of the topologies allows, as an example, for a map-
ping between the application defined communication topol-
ogy and the underlying network topology with the goal of
improving the expected communication performance.

Another side effect of the topologies is the neighborhood
communication, which is another reason why the creation of
communicators became more mainstream with the introduc-
tion of the neighborhood collective. The topology will define
a communication pattern between neighbor processes, and
the collective algorithms will perform the collective commu-
nication pattern along the edges of the described topology,
leading to a sparse collective communication pattern. By
removing processes from an existing communicator, the pro-
grammer can restrict the scope of collective operations, and
simplify the computation of peers in point to point commu-
nications.

A further reason to create communicators involves the dy-
namic process management: at initialization of the MPI
program, the standard defines few, predefined, communi-
cators that must be provided by the MPI implementation.
MPI_COMM_WORLD is one of these pre-defined communicators,
maybe the most important as it holds all the processes that
were launched together with the current process by the mpirun
command. When using the MPI-2 dynamics operations, the

programmer can launch additional processes, or connect dif-
ferent parallel applications. These operations create new
inter-communicators that can be used to enable communi-
cations between the different applications.

Recently, several fault tolerance solutions have been pro-
posed and investigated by the Fault-Tolerance Working Group
in the context of the MPI Forum [3]. These approaches try
to break the traditional checkpoint/restart barrier, where
applications have to take checkpoints at regular intervals
and where process fault translate automatically to the ap-
plication being completely removed from the execution plat-
forms and rescheduled from the last checkpoint at a later
date. Instead, the proposed solution will help the applica-
tion developers by providing some level of support, where the
application can remain in place despite process faults, and,
either the developer or 3rd party tools will spawn the lost
processes and recreate the original execution context. What-
ever the solution, when it comes to process-level fault tol-
erance, recreating communicators upon process failure has
become a critical recurrent operation. Looking more specifi-
cally at the User-Level Failure Mitigation (ULFM) proposal,
if a rebuild of the communicator is required, the application
developer has to first shrink a communicator with faulty
processes to get a sane communicator then to merge newly
spawned processes into a inter-communicator, and finally
to merge the inter-communicator into an intra-communica-
tor. As a result, multiple temporary communicators will be
created, highlighting the necessity of an efficient, and space-
constrained communicator creation support.

These new uses of communicators creation places the con-
cept in a new light. Indeed, in the traditional usage of
communicators, communicator creation usually seldom oc-
curred, mostly during the initialization of the application or
of the different libraries used by the application, or during
important reconfigurations (e.g., when connecting different
applications together, or launching new processes, or drasti-
cally changing the communication pattern). Moreover, when
used in a fault-tolerant application, communicator creation
is an operation that must be done almost every time a failure
hits the application and a reconstruction of all the objects
that were hit by such failure is necessary. Since many com-
municators may hold the same failed process, many of them
must be rebuilt.

Building a communicator is not an inexpensive operation,
and depending on the interface used, it may be necessary to
communicate in order to gather the group of processes that
belong to it; once that group is decided, processes belonging
to the communicator must agree on a common name for it.
That name is the Communicator Identifier (CID).

We present the challenge of creating a uniquely defined com-
municator identifier, and depict the existing algorithms used
by two widely available MPI implementations, Open MPI
and MVAPICH2. Building upon these algorithms, we intro-
duce a new algorithm that uses a highest integer heuristic to
select the next available communicator identifier, and evalu-
ate different storage methods allowing for fast communicator
retrieval. Compared with the existing algorithms, we show
that our approach presents the advantage of succeeding in a
smaller number of steps to allocate the unique communica-

tor identifier, while preserving good density on the storage.

This paper is organized as follows. In Section 2 we present
the current functions proposed by the MPI standard to cre-
ate communicators. In Section 3 we present the challenge
of creating communicators that are uniquely identifiable by
all the participating processes, and present some of the ex-
isting algorithms to create them, as well as introduce the
algorithms we propose. In Section 4 we present an empiri-
cal evaluation of the overhead and performance impact of all
the algorithms described in the Section 3. Section 5 describe
prior research into this topic and then finally in Section 6
we summarize our findings and conclude.

2. CREATING COMMUNICATORS
Communicators in MPI exist in two variants: 1) intra-com-
municator featuring a single group of processes over which
the communication routines identify a source and destina-
tion process with the same rank in that communicator, and
2) inter-communicator that holds two disjoint groups of pro-
cesses, the local and the remote groups, over which the com-
munication operations uses the rank of the target process
within the target group. Communicator creation routines
can create either intra-communicators or inter-communica-
tors.

MPI 3.0 defines a few routines that enable the creation of
communicators. Most of those inherited from previous ver-
sions were targeted to creating a communicator from a par-
ent communicator by duplicating a communicator (MPI_-
COMM_DUP), or by discarding some the of participants, or by
grouping them in several resulting communicators based on
information provided either globally (MPI_COMM_CREATE) or
distributively (MPI_COMM_SPLIT). One of the properties of
these functions is that they are collective over the group
of processes of the parent communicator, and as a result
their cost might be significant when large groups are the
source, and small groups are the target of the operations.
To cover this case, a new API (MPI_COMM_CREATE_GROUP)
has been added in MPI 3.0, allowing the communicator cre-
ation operation to be collective only over the participants of
the resulting communicator.

The MPI-2 dynamic process management chapter added the
capacity to MPI applications to extend over the static group
of processes imposed by the original MPI_COMM_WORLD and
instead build an elastic universe where processes can be
added or removed dynamically during the application ex-
ecution. These management capabilities integrate with the
rest of the MPI concepts, and pass through the creation and
manipulation of communicators. These routines allow for
spawning a new group of processes with their own MPI_COM-

M_WORLD (MPI_COMM_SPAWN and MPI_COMM_SPAWN_MULTIPLE),
joining two disjoint MPI universes using a sever/client ap-
proach (MPI_COMM_ACCEPT and MPI_COMM_CONNECT), or using
a BSD socket (MPI_COMM_JOIN). Unlike the communicator
creation functions presented previously, all of these APIs
create inter-communicators.

In addition to the communicator creation functions already
available in the MPI standard, in the context of the ULFM
proposal, a new function has been proposed. The scope of
this function is to provide a simple mechanism for creating

communicators based on parent communicators with failed
processes. Once a process failure occurs, the communicators
where the failed process has been part of might become un-
suitable for safe communications. When a communicator is
in this state, it cannot be used for collective communications,
and might become an impediment for the application’s suc-
cessful completion – as without the possibility to execute col-
lective operations no communicator creation functions will
succeed. To cover such cases, ULFM proposes a new concept
that would allow the creation of a communicator by remov-
ing all processes discovered failed from a parent communica-
tor. This collective function, known as MPIX_COMM_SHRINK,
has a similar behavior to the MPI_COMM_SPLIT, and creates a
communicator in which the groups have excluded all failed
processes. As explained in Section 1, this new addition –
together with the expected usage of dynamic process man-
agement in the case of fault handling – motivates us to re-
consider the implementation of the communicator creation,
since – in this context –this operation becomes a critical
building block for resilient concepts. Moreover, as the cost
of the recovery is now tied to the performance of the com-
municator creation, a high efficiency communicator creation
is necessary to tolerate volatile environments.

2.1 Unique Communicator Identifier
Communicator creation is most often implemented as a col-
lective operation because all participating processes must
agree on a unique Communicator IDentifier (CID). This
CID is of extreme importance for a large number of MPI
functions, not only from the user perspective but also from
the perspective of the implementors of the MPI library. As
an example, it will be used in performance critical opera-
tions such as message matching. The CID uniquely identi-
fies a communicator for the group of processes that belong
to that communicator. Because allocating a new CID is an
operation that may involve only a subset of the processes
belonging to the application, it is possible that two subsets
of processes, A and B, of empty intersection (A

∨
B = ∅)

are involved, in parallel, in the allocation of two new CIDs.
Multiple cases are legitimate: CIDA = CIDB , where both
of them allocate the same CID that becomes unavailable
(until the communicator is freed) over the union of A and
B; CIDA 6= CIDB , where the two sets allocate different
CIDs, and CIDA cannot be re-used in any communicator
with a group that holds any process of A, and respectfully,
CIDB cannot be re-used in any communicator with a group
that holds any process of B. If, after these operations, a
subset C of processes, such that C

∨
A 6= ∅ and C

∨
B 6= ∅

tries to allocate a new CIDC , the allocation algorithm must
guarantee that CIDC 6= CIDA, and CIDC 6= CIDB . Thus,
the CID allocation has a collective meaning over all involved
processes.

It is of particular interest that in most MPI implementations
the CIDs are typed as integer values, and used as indexes
in sparse arrays to associate a given CID with its internal
representation of a communicator. Finding such “free” CID
among all possible values is the key part of communicators
creation. The other part is a local operation that associates
a given CID to the local object that represents the commu-
nicator for a process, in order to allow it to communicate
with other processes belonging to the same communicator.
Using a communication identifier allocation, we designate

Algorithm 1: Open MPI Vanilla Algorithm

start← lowestAvailableCID()
done← false

Atomically inProg ← inProg
⋃
{CID(parent)} while

!done do
Wait Until min inProg = CID(parent)
candidate← start
while ¬CAS(comms[candidate], nil, parent) do

candidate + +

MPI_ALLREDUCE(&candidate,&contextID,
1, MPI_INT,
MPI MAX , parent)

done← (contextID = candidate)∨
CAS(comms[contextID], nil, parent)

MPI_ALLREDUCE(&done,&done,
1, MPI_BOOL,
MPI AND , parent)

if ¬done then
comms[candidate]← nil

if candidate 6= contextID then
CAS(comms[contextID], parent, nil)

start← contextID + 1

Atomically inProg ← inProg\{CID(parent)}

an algorithm that solves both of these problems, and in this
work we propose, evaluate, and compare different communi-
cator identifier allocation algorithms over different criteria:
the speed at which the allocation of new CIDs succeeds; the
space the algorithm uses to store the associative array be-
tween CIDs and local representations of communicators; and
the impact of communicator lookup operations over commu-
nications.

3. COMMUNICATOR ALLOCATION
In this section, we present the different algorithms for the
CID allocation that we will evaluate in the rest of the paper.

3.1 Open MPI Vanilla Algorithm
The default algorithm of Open MPI is represented in Fig-
ure 1. It consists of a loop of trial and confirmations using
a simple MPI_ALLREDUCE operation. All processes start the
CID allocation algorithm by finding the smallest locally un-
used CID that is proposed as a candidate. To allow for a
multithreaded execution, CID candidates are reserved using
Compare and Swap (CAS) atomic operations. Moreover, to
guarantee progress in that case, and remove potential live-
locks, only the thread that entered with the parent commu-
nicator having the smallest CID is allowed to iterate over
the main loop until it decides upon a new CID. Then a
MAX operation is computed between all the proposers, and
the returned value is compared to the proposed value. If
the returned value is free or has been reserved for this CID
allocation, the process then participates to a second MPI_-

ALLREDUCE to confirm the success with true, otherwise it
participates with false, and a logical AND is computed be-
tween the proposed values. If every process in the parent

communicator participated to the confirmation MPI_ALLRE-

DUCE with true, then that CID is used, otherwise all reserved
CIDs are released, and the algorithm starts another round

Algorithm 2: MPICH Algorithm

contextID ← 0
lowestCID ← MAXINT

iOwnMask ← false

maskInUse← false

while contextID = 0 do
lock()
if

CID(parent) < lowestCID∨
(CID(parent) = lowestCID ∧myTag < lowestTag)

then
lowestCID ← CID(parent)
lowestTag ← myTag

maskInUse← ¬maskInUse∧
CID(parent) = lowestCID∧
myTag = lowestTag

iOwnMask ← maskInUse
if maskInUse then

localMask ← copy(mask)

unlock()

MPI_ALLREDUCE(&localMask,&localMask,
NBCID/8, MPI_BYTE,
MPI BAND , parent)

if iOwnMask then
lock()
if localMask 6= 0 then

contextID ← i s.t. localMask[i] = 1∧
∀j < i, localMask[j] = 0

mask[contextID]← 0

if
lowestCID = CID(parent)∧
lowestTag = myTag

then

lowestCID ← MAXINT

maskInUse← false

unlock()

with the next locally available CID that is higher than the
last failed candidate.

This algorithm is costly in terms of the number of MPI_ALL-
REDUCE operations: in the best case, it will complete in two
sequential MPI_ALLREDUCE calls of one int and one boolean
(respectfully), and these operations cannot be pipelined. It
always produces the smallest CID available among all the
ranks, in an effort to reduce the memory requirements of
the pointers array that Open MPI uses to store and lookup
communicators.

Communicator objects associated with the CIDs are stored
in a resizable pointer array. Finding the communicator as-
sociated with a specific CID requires a single dereference
from the array base address. The number of possible com-
municators is bounded by the maximum size of the pointer
array.

3.2 MPICH Algorithm
As described in [6], MPICH uses a bounded range for its in-
ternal communicator identifiers. The communicator alloca-
tion algorithm uses this constraint to exchange information
about all local communicator identifiers in a single MPI_-

ALLREDUCE operation. Figure 2 shows the algorithm used by
MPICH for multithreaded environments. Instead of reserv-
ing specific CID candidates for a given CID allocation, a to-
ken is passed between the threads that enter simultaneously
in a CID allocation routine. If a thread possesses the token,
it proposes all locally available CIDs simultaneously in an
MPI_ALLREDUCE, using a bit array of locally available CIDs,
thus guaranteeing that all participants of the same MPI_-

ALLREDUCE will find a globally available CID if all threads
get the same token. If the thread does not possess the to-
ken, it participates to the MPI_ALLREDUCE (in order to avoid
deadlocks), but prevents any CID from being selected by
providing 0. Threads get the token following a global or-
dering defined by the identifier of the parent CID that is
common to all callers.

In the best case, if a single thread at a time enters the CID
allocation algorithm on each process, all processes obtain
the token immediately, and the decision is taken in a sin-
gle MPI_ALLREDUCE operation, with the size of the operation
being the number of bits necessary to represent the whole
CID space (this space is bounded to a few thousands possi-
ble CIDs). Only in the case where there are contentions in
a multithreaded run, the algorithm may do multiple MPI_-

ALLREDUCE operations.

Communicator objects associated with the CIDs are stored
in a fixed size pointer array, and finding the communicator
associated with a specific CID requires a single dereference
from the array base address. The number of possible com-
municators is directly derived from the size of the array, but
it has a direct impact on the performance of the CID allo-
cation, as larger arrays will impose costlier MPI_ALLREDUCE.

3.3 Highest-CID Algorithm
Highest-CID algorithm is the variant proposed in this work.
It is a variant on the Open MPI Vanilla Algorithm: instead
of focusing the search on the smallest CID available, pro-
cesses enter the CID allocation algorithm with the highest
used CID plus one (see Figure 3). In a single-threaded envi-
ronment, this guarantees that after the first MPI_ALLREDUCE
operation using the MAX operand, all processes get a CID
that is unused by all of them. In such an environment, the
decision can thus be taken in a single MPI_ALLREDUCE round.
In the case of a multithreaded environment, the confirma-
tion round of the Open MPI Vanilla Algorithm must be kept,
as scheduling exists under which the maximal of the unused
CIDs proposed by each process might have been claimed by
another thread on at least one process during the reduce
operation.

One issue with this variant is that it does not guarantee
that the smallest CID is used: the size of the communica-
tors array may grow faster with this algorithm than with
the previous two algorithms. Thus, we consider sparse data
structures to store the associative array between the CID
and the communicator object. We considered two sparse
storage data structures: a red-black tree, and a simple mul-
tidimension dynamic array storage.

3.3.1 Red-Black Tree Communicators Storage
In the Red-Black Tree variant, we replace the dynamic asso-
ciative array that stores the communicators with a red-black

Algorithm 3: Highest-CID Algorithm

candidate← highestUsedCID() + 1
done← false

if MPIThreadMultiple then
Atomically inProg ← inProg

⋃
{CID(parent)}

while !done do
if MPIThreadMultiple then

Wait Until min inProg = CID(parent)

while ¬CAS(comms[candidate], nil, parent) do
candidate← highestUsedCID() + 1

MPI_ALLREDUCE(&candidate,&contextID,
1, MPI_INT,
MPI MAX , parent)

if ¬MPIThreadMultiple then
assert(comms[contextID] = nil)
if contextID 6= candidate then

comms[candidate]← nil

done← true

else
done← (contextID = candidate)∨

CAS(comms[contextID], nil, parent)

MPI_ALLREDUCE(&done,&done,
1, MPI_BOOL,
MPI AND , parent)

if ¬done then
comms[candidate]← nil

if candidate 6= contextID then
CAS(comms[contextID], parent, nil)

if MPIThreadMultiple then
Atomically inProg ← inProg\{CID(parent)}

tree [12]. The tree uses a simple read-write-lock mechanism
at the scope of the tree to handle atomic insertion and dele-
tion operations, but allows multiple lookup operations to
run simultaneously on the tree. Natural order of integers is
used to order the keys, that are communicator identifiers.

During insertion and deletion of elements in the tree, rota-
tion operations may be triggered, following the traditional
conditions of a red-black tree to keep it reasonably balanced
(the distance between the root and the closest leaf is at least
half the distance from the root to the farthest leaf).

3.3.2 Multidimension Dynamic Array Storage
In the multidimensional array storage, the key (a 4-byte int,
as the CID must be an int) is split in four separate bytes
(k3, k2, k1, k0), (from high significant bit to low significant
bit), that are used as an index in a 4-level multidimension
redimensionable array allocated dynamically (see Figure 1).
In order to constrain the amount of memory used to store
this multidimensional array, a reference count is maintained
on the array at each level, and the array can be freed once
its reference count reaches zero.

4. EVALUATION
This section describes the metrics that we will use to as-
sess the costs and overheads of the different algorithms and
storage methods, and present the performance evaluation.

2

5

0

1

3

4

6

7

254

255

253

0 1 2 254 255

2

5

0

1

3

4

6

7

254

255

253

0 1 2 254 255

CID 0x020103FF

k2

k1

k3

k0

Figure 1: Multidimension Dynamic Array Example

4.1 Metrics
We are interested in three metrics to validate the different
overheads of the proposed algorithms. First, the cost of the
CID allocation, then the impact of the storage methods on
the retrieval of the local communicator structure based on
the CID, and finally the sparsity of the storage methods.

CID allocation stress benchmark. We designed a syn-
thetic benchmark to stress the allocation algorithms. The
main routine invokes CID allocation through the MPI_COMM_-
SPLIT operation, which is one of the most complex communi-
cator creation procedures, and reflects typical communicator
creations in response to a failure in ULFM. For a given num-
ber of iterations, a communicator among the existing one is
selected according to a selection criterion. All processes be-
longing to that selected communicator participate together
in an MPI_COMM_SPLIT operation, where the order of ranks
is preserved, and the participation is chosen randomly using
a participation criterion. The benchmark keeps individual
times of the split operation for each operation and for each
process that participates in one. Some communication time
is then measured, both on a default communicator, and on
the newly created communicator to evaluate the impact of
the data structure used to store the communicators associa-
tive array.

In both cases, the selection criterion requires that the se-
lected communicator be at least as large as the target com-
municator size. We consider two participation criteria: in
LargeComm, a random number of ranks (0 to 8) are elimi-
nated from participating; these ranks are selected using uni-
form random; in SmallComm, the created communicator
has a size between 8 and 16.

Latency. Another interesting metric describes the impact
of the communication retrieval cost on the MPI communica-
tions. Here, we focus the study on latency of point-to-point
communications, as the expected overhead will be mainly
due to communicator lookup in sparse storage data struc-
tures. We measure, independently, the latency between two
processes on the same node (ranks 0 and 1 of MPI_COMM_-

WORLD) and two processes on different nodes (ranks 0 and

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

Duration (ms)

0.0

0.2

0.4

0.6

0.8

1.0
Fr

e
q
u
e
n
cy

MPI_Comm_split time

Open MPI Vanilla Algorithm (avg: 1.91ms)

Highest-CID Algorithm (avg: 0.151ms)

Multidimension Dynamic Array (avg: 0.202ms)

MVAPICH2 (avg: 0.297ms)

Red-Black Tree (avg: 0.194ms)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

Duration (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
e
q
u
e
n
cy

MPI_Comm_split time

Open MPI Vanilla Algorithm (avg: 1ms)

Highest-CID Algorithm (avg: 0.407ms)

Multidimension Dynamic Array (avg: 0.531ms)

MVAPICH2 (avg: 0.673ms)

Red-Black Tree (avg: 0.53ms)

Figure 2: Repartition of durations for
MPI_COMM_SPLIT (SmallComm)

Figure 3: Repartition of durations for
MPI_COMM_SPLIT (LargeComm)

��

����

����

����

����

��

������������������

������������

������������������

���������

������������������

������������

������������������

�����������

�
��
�
��
�
�
�

Figure 4: Duration of specific collective operations
for Open MPI and MVAPICH2 on the experimental
platform

np− 1 on MPI_COMM_WORLD) over the default communicator,
and the latency between ranks 0 and size− 1 on the newly
created communicator (where size is the size of the newly
created communicator). That latency averages a thousands
ping-pong exchanges between the processes described above.

Sparsity. In addition to latency, we also measure the spar-
sity of the allocated CID in both scenarios. We define the
sparsity as the number of empty allocated cells in the data
structure divided by the total number of cells that structure
can store at a given time. After each communicator identi-
fier allocation, each rank reports the local sparsity, and we
consider the average sparsity for every process in MPI_COM-

M_WORLD independently.

4.2 Performance Evaluation
All performance evaluations were conducted on a 16-node,
8 core / node, cluster. All nodes are equipped with two
2.27GHz quad-core Intel E5520 CPUs with a 20GB/s Infini-
band interconnect. We used the release r32795 of the Open
MPI trunk for the Open MPI Vanilla implementation, and
the different proposed algorithms were implemented inside

a fork of this version. To take advantage of the Infiniband
cards and compare with the MPICH algorithm, we used
MVAPICH version 2.0rc1 that implements the CID allo-
cation algorithm described in Section 3.2 (with a limit of
2,048 communicators). When using Open MPI based im-
plementations, the benchmark allocated 10,000 communica-
tors, while we restricted the number of communicators to
allocate to the maximum allowed for MVAPICH2. All runs
used all 128 cores available, with one MPI process per core,
and processes were mapped onto the cores by putting con-
secutive ranks on a same node until the node was full. All
runs of the benchmark start with the same pseudo-random
seed, to guarantee that all experiments create the same com-
municators in the same order. We report the average times,
and the time distribution, for each allocation in the following
figures.

Figure 4 presents the duration and variability of the MPI_-

ALLGATHER and MPI_ALLREDUCE operations over 128 processes
at different message sizes for the two implementations we
consider. These operations at the given size are the basic
building blocks used in the MPI_COMM_SPLIT operation, and
we will use them to explain some of the performance mea-
surement. The figure shows a box around the first and third
quartiles of the measurements, with a horizontal line at the
median value. Outliers outside the first and third quartiles
are plotted, showing a larger variability of the measurement
for MVAPICH2 on this platform.

Figures 2 and 3 present the duration of the MPI_COMM_SPLIT

operation, in the SmallComm and the LargeComm cases.
The figures represent the duration distributions: the x-axis
shows intervals of measured durations, and the y-axis shows
the frequency of a duration falling in this interval. Figures
also report the average duration over the whole set of runs.

Both figures highlight an issue with the Open MPI Vanilla
Algorithm: the duration of the MPI_COMM_SPLIT operation is
distributed over a large interval, more clearly in the case of
SmallComm, but still evident in the case of LargeComm.
This is due to the conservative algorithm of Open MPI:
when the set of available CIDs is sparse and fragmented

SmallComm LargeComm

IB
2
0
G

3.
90

4.
11

4.
32

4.
53

4.
74

4.
95

5.
16

5.
37

5.
58

5.
79

6.
00

6.
21

6.
42

Duration (us)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
e
q
u
e
n
cy

Latency on MPI_COMM_WORLD (IB20G)

Open MPI Vanilla Algorithm (avg: 4.22us)

Highest-CID Algorithm (avg: 4.28us)

Multidimension Dynamic Array (avg: 4.24us)

Red-Black Tree (avg: 4.17us)

3.
90

4.
11

4.
32

4.
53

4.
74

4.
95

5.
16

5.
37

5.
58

5.
79

6.
00

6.
21

6.
42

Duration (us)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
e
q
u
e
n
cy

Latency on MPI_COMM_WORLD (IB20G)

Open MPI Vanilla Algorithm (avg: 4.4us)

Highest-CID Algorithm (avg: 4.43us)

Multidimension Dynamic Array (avg: 4.32us)

Red-Black Tree (avg: 4.42us)

sh
a
re

d
m

em
o
ry

0.
90

0

0.
93

7

0.
97

4

1.
01

1

1.
04

8

1.
08

5

1.
12

2

1.
15

9

1.
19

6

1.
23

3

1.
27

0

1.
30

7

1.
34

4

1.
38

1

Duration (us)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
e
q
u
e
n
cy

Latency on MPI_COMM_WORLD (shared memory)

Open MPI Vanilla Algorithm (avg: 0.982us)

Highest-CID Algorithm (avg: 0.957us)

Multidimension Dynamic Array (avg: 1.01us)

Red-Black Tree (avg: 1.04us)

0.
90

0

0.
93

7

0.
97

4

1.
01

1

1.
04

8

1.
08

5

1.
12

2

1.
15

9

1.
19

6

1.
23

3

1.
27

0

1.
30

7

1.
34

4

1.
38

1

Duration (us)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
e
q
u
e
n
cy

Latency on MPI_COMM_WORLD (shared memory)

Open MPI Vanilla Algorithm (avg: 1.05us)

Highest-CID Algorithm (avg: 1us)

Multidimension Dynamic Array (avg: 1.06us)

Red-Black Tree (avg: 1.08us)

Figure 5: Latency on MPI_COMM_WORLD

between the processes that participate in the operation, the
algorithm starts with a low candidate, and needs multiple
phases to converge to a globally available CID. These succe-
sive MPI_ALLREDUCE operations cannot be pipelined and take
significant time to complete. With a higher fragmentation
(SmallComm), durations are distributed over a larger in-
terval. With a more symmetrical situation (LargeComm),
durations are distributed over a smaller interval.

A similar phenomenon is observable with MVAPICH2, to
a lesser extent: most of the durations (70% to 80%) fall
between 0.298ms and 0.533ms for LargeComm. This small
variation in the distribution, however, is due to a different
reason: the MPICH algorithm, which is the one used in the
MVAPICH2 implementation does a single MPI_ALLGATHER

of 2 integers per rank at the beginning of the split (as does
all Open MPI implementations), then a single MPI_ALLRE-

DUCE of 64 integers (to represent the 2,048 bits that each
represent a possible communicator Identifier). As illustrated
in Figure 4, MVAPICH2 MPI_ALLGATHER operation at 1,024
bytes (256 integers) exhibits a variability that explains this
distribution of durations for the MPI_COMM_SPLIT operation.

The three proposed algorithms replace the conservative loop
of MPI_ALLREDUCE calls in theOpen MPI Vanilla implemen-
tation with a single MPI_ALLREDUCE of a single integer, to
decide on the highest available CID. Compared to the pre-
vious implementations, they all feature faster performance:
compared to Open MPI Vanilla Implementation, the benefit
of removing the MPI_ALLREDUCE loop is obvious; compared

to the MVAPICH2 implementation, the reduction in size for
the MPI_ALLREDUCE call is still significant. Durations are dis-
tributed over a small interval, with more than 90% of the
durations in the first interval of Figure 2, and in the first
two intervals of Figure 3.

In both cases, the Highest-CID Algorithm runs faster, as in-
sertion and lookup are a single operation, once the associa-
tive array storage is dimensioned to the right size. Average
performance of the Multidimension Dynamic Array and the
Red-Black Tree are similar.

4.3 Latency Overheads
For this section, we focus on the overheads introduced by
the proposed algorithms. As we will discuss internal man-
agement of data structures, we will compare the four Open
MPI-based implementations in a homogeneous environment
and under strictly identical conditions: all runs produce the
same number of communicators, in the same order, and in-
volving the same processes.

In the experiment represented in the first row of Figure 5,
the two processes that communicate are always the rank 0
and the rank 127 of MPI_COMM_WORLD. Based on the process
map, these processes always reside on different nodes and
therefore use the Infiniband network to exchange messages.

One observes that the latency is not significantly impacted in
both cases: all four algorithms present a similar duration dis-
tribution, with an average corresponding to the mean value

given by a traditional latency measurement like NetPIPE.

Figure 5’s second row does the same measurement, but be-
tween ranks 0 and 1 of the MPI_COMM_WORLD communicator.
Processes are collocated on the same node – by the processes
map –, in which case all communications between them hap-
pen on shared memory. It is interesting to include these
results as the shared memory latency is extremely sensitive
to all external factors, and will be quickly impacted by any
overhead related to the CID usage.

In both cases (LargeComm and SmallComm), the different
implementations provide significantly different latency dis-
tributions: Highest-CID obtains the best performance, then
Open MPI Vanilla, the Multidimension Dynamic Array im-
plementation, and then the Red-Black Tree implementation.
The Highest-CID Algorithm, and the Open MPI Vanilla Al-
gorithm use a single memory reference to find the commu-
nicator associated with a message upon reception. The two
other algorithms use a series of lookup (4 in the case of the
Multidimension Dynamic Array, up to 2 log2(n), where n
is the number of local communicators, for the Red-Black
Tree), and these lookups (and the corresponding memory
loads that they imply) explain this behavior.

4.4 Memory Overheads
Figures 6, and 7 present the average density of the associa-
tive array used to store the communicators objects in three
cases: for the Open MPI Vanilla Algorithm, the Highest-
CID Algorithm and the Multidimension Dynamic Array Al-
gorithm. It is unnecessary to evaluate the Red-Black Tree
algorithm, because it maintains its structure density at all
times, since single elements are added or removed from the
tree as communicators are allocated or freed. In contrast,
the three variants under investigation use a sparse struc-
ture to build the association, so they introduce a memory
overhead that we evaluate in this experiment.

The Open MPI Vanilla Algorithm and Highest-CID Algo-
rithm both use a linear array that is extended when a new
CID is outside the bounds of the array. These arrays are not
shrunk in size when CIDs are freed. The Multidimension
Dynamica Array algorithm allocates new arrays by chunks
of 256 elements when a CID that falls in a new chunk is
allocated. They are also freed when chunks become empty.

The density represented in these figures is the number of ele-
ments that are occupied, divided by the number of elements
allocated. A density of 1 means that no extra memory is
used (as is the case with the Red-Black Tree approach). In
both cases (SmallComm and LargeComm), the Open MPI
Vanilla Algorithm allocates the smallest available CID, thus
minimizing the size of its array. This is well represented in
Figure 6, where, for most ranks, the density of the Open
MPI Vanilla Algorithm is the highest. SmallComm cre-
ates small communicators, thus favors the cases when the
same CID can be used in two non-overlapping groups, re-
ducing the size of its linear array compared to the Highest-
CID Algorithm, and thus increasing the density. In the case
of the LargeComm, by contrast, communicators are large
and the probability of having two communicators with the
same CID on non-overlapping groups is negligible. As a re-
sult, the Highest-CID Algorithm and the Open MPI Vanilla

Algorithm allocate the same CIDs and present exactly the
same density.

The Multidimension Dynamic Array storage strategy of free-
ing empty chunks allows for obtaining a slightly higher den-
sity in this case: when communicators are freed, the asso-
ciative array releases the empty chunks and decreases the
memory overheads. In the case of SmallComm, however,
this strategy is not fruitful as the average density remains
rather low. For a large number of small communicators, only
the Red-Black Tree allows a high memory utilization.

5. RELATED WORK
The impact of dynamic process management on communi-
cators creation is evaluated in [8]. The context ID allocation
we address in this work, as well as its improvement, will ben-
efit all MPI routines that create communicators, and thus
also benefits the dynamic process management routines.

In [11], the authors focus on the group-related memory scal-
ability issues in communicators: different data structures
are proposed to internally represent the groups connected
to different communicators, and especially techniques to re-
duce the redundancy of information of such groups within
a manycore shared memory machine. The same issue of
group representation and storage is addressed in [4], and [2]
demonstrate how this issue is critical for scalability. Their
contributions can be combined with ours to provide a better
usage of memory as well as accelerate the allocation algo-
rithm itself.

In [7], the authors note that if the user provides enough
information, the existing communicator creation functions
within the current MPI Standard allow for creating the com-
municator by communicating only between the processes of
the target group, avoiding the traditional collective meaning
of the MPI communicator creation functions over the group
of the parent process. They proposed an API that provides
the target group, allows such an implementation, and they
evaluate the performance of this approach. Since then, the
proposed API was integrated in the MPI Standard. In this
work, the authors do not address the challenge of improving
the efficiency of Context Identifier Allocation.

Inside the MPI Forum, and in the literature, ideas on en-
hancing the communicator concept are discussed. In [5],
the authors propose generalization of the communicator in-
terface to enable a finer grain of parallelism in MPI. In [10],
the authors consider the specific case of handling failures and
its impact on communicators management. The approach
presented would allow for dynamically changing the groups
of communicators to remove the failed processes. [3] argues
that providing an interface based on new communicator cre-
ation provides a better abstraction to the user, by clearly
separating communications that happened before and after
a failure, if the user needs to enter a global recovery and fix
the existing communicators. This is partly the reason why
communicator creation must become more efficient.

[1] looked at optimizing many collectives during communi-
cator creation for the BlueGene platform. Depending on the
shape of the communicator, collectives, including the ones
involved in communicator creation routines, are optimized

��

����

����

����

����

��

�� ��� ��� ��� ��� ���� ����

�
�
�
�
���
��
��
��
�
��
�
�
�
�
��
���
�
��
��
�
�

����

��������������������������
���������������������

����������������������������

��

����

����

����

����

��

�� ��� ��� ��� ��� ���� ����

�
�
�
�
���
��
��
��
�
��
�
�
�
�
��
���
�
��
��
�
�

����

��������������������������
���������������������

����������������������������

Figure 6: Associative Array Density
(SmallComm)

Figure 7: Associative Array Density
(LargeComm)

to take advantage of the underlying Torus network topology.
However, in the general case, the implementation resorts to
the MPICH algorithm, and communicator identifier alloca-
tion is not specifically targeted in this work.

In [9], the authors present the Open MPI Implementation
and its CID allocation algorithm. In [6], the authors present
the multithreaded CID allocation in MPICH3 (see Section 3).
We compared the algorithms we propose with both imple-
mentations. The benefit over the Open MPI Algorithm lies
in the drastic reduction of the number of collective calls to al-
locate a new CID. While the MPICH3 algorithm is efficient,
it relies on a fixed bound in the number of communicators,
and we show in this paper that better performance in the
communicator allocation can be achieved at the price of us-
ing sparse data structures to store the associative array of
the communicator objects.

6. CONCLUSIONS
Communicator creation is an essential part of an MPI appli-
cation that is taken out of the sole initialization phase by the
use of dynamic process management and fault tolerance. In
this work, we considered three sources of cost linked to com-
municator creation and management: the time to assign a
unique identifier (the Communicator IDentifier) for the new
communicator; the time overhead to find a communicator
from its CID in an associative array; and the memory over-
head of storing this associative array.

We proposed three new variants in Open MPI, and com-
pared the features and performance of these three variants
with the algorithm implemented in MVAPICH2 (Section 3.2).
By releasing the constraints of density in the search for a
CID, we were able to significantly improve the performance
of CID allocation in Open MPI. The proposed approach re-
quires a single MPI_ALLREDUCE of a single integer, allowing
for taking advantage of the hardware accelerated implemen-
tation of such collective. Our implementation achieved the
same level of performance as MVAPICH2, but without en-
forcing an extremely low limit on the number of potential
CIDs.

However, as the set of CIDs will become less dense, we con-

sidered a few options to store these CIDs without sacrificing
a significant part of the memory, or increasing the overhead
for the lookup of communicators from their CIDs. As of-
ten is the case, a trade-off arises between computation and
memory, and the most efficient solutions – in terms of stor-
age – are also the ones that introduce the highest timing
overheads.

These overheads were measured at approximately 10%, and
can be considered as acceptable under certain circumstances:
the user may be inclined to chose one approach or another
depending on if memory consumption, latency, or frequent
communicator creation is the critical metric of performance.
Thanks to the modular nature of Open MPI, all approaches
can co-exist in the code base, under the Modular Architec-
ture Component, providing control to the user to choose, at
runtime, the fittest approach for the application.

We plan to pursue this work by integrating other perfor-
mance improvements into the communicator creation rou-
tines, like the reduction of redundant information shared by
other processes in the same node.

7. ACKNOWLEDGMENTS
This work was supported in part by the NSF through the
Award #1339763“SI2-SSE: Collaborative Research: ADAPT:
Next Generation Message Passing Interface (MPI) Library -
Open MPI”, and by the CREST project of the Japan Science
and Technology Agency (JST).

8. REFERENCES
[1] G. Almási, P. Heidelberger, C. J. Archer,

X. Martorell, C. C. Erway, J. E. Moreira,
B. Steinmacher-Burow, and Y. Zheng. Optimization of
MPI collective communication on BlueGene/L
systems. In Proceedings of the 19th Annual
International Conference on Supercomputing, ICS ’05,
pages 253–262, New York, NY, USA, 2005. ACM.

[2] P. Balaji, D. Buntinas, D. Goodell, W. Gropp,
T. Hoefler, S. Kumar, E. Lusk, R. Thakur, and J. L.
Traff. MPI on millions of cores. Parallel Processing
Letters, 21(01):45–60, 2011.

[3] W. Bland, A. Bouteiller, T. Hérault, G. Bosilca, and

J. Dongarra. Post-failure recovery of MPI
communication capability: Design and rationale.
IJHPCA, 27(3):244–254, 2013.

[4] M. Chaarawi and E. Gabriel. Evaluating sparse data
storage techniques for MPI groups and
communicators. In M. Bubak, G. van Albada,
J. Dongarra, and P. M. Sloot, editors, Computational
Science - ICCS 2008, volume 5101 of Lecture Notes in
Computer Science, pages 297–306. Springer Berlin
Heidelberg, 2008.

[5] E. Demaine, I. Foster, C. Kesselman, and M. Snir.
Generalized Communicators in the Message Passing
Interface. Parallel and Distributed Systems, IEEE
Transactions on, 12(6):610–616, Jun 2001.

[6] J. Dinan, D. Goodell, W. Gropp, R. Thakur, and
P. Balaji. Efficient multithreaded context ID
allocation in MPI. In Recent Advances in the Message
Passing Interface - 19th European MPI Users’ Group
Meeting, EuroMPI 2012, Vienna, Austria, September
23-26, 2012. Proceedings, pages 57–66, 2012.

[7] J. Dinan, S. Krishnamoorthy, P. Balaji, J. Hammond,
M. Krishnan, V. Tipparaju, and A. Vishnu.
Noncollective communicator creation in MPI. In
Y. Cotronis, A. Danalis, D. Nikolopoulos, and
J. Dongarra, editors, Recent Advances in the Message
Passing Interface, volume 6960 of Lecture Notes in
Computer Science, pages 282–291. Springer Berlin
Heidelberg, 2011.

[8] E. Gabriel, G. Fagg, and J. Dongarra. Evaluating the
performance of MPI-2 dynamic communicators and
one-sided communication. In J. Dongarra,
D. Laforenza, and S. Orlando, editors, Recent
Advances in Parallel Virtual Machine and Message
Passing Interface, volume 2840 of Lecture Notes in
Computer Science, pages 88–97. Springer Berlin
Heidelberg, 2003.

[9] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J.
Dongarra, J. M. Squyres, V. Sahay, P. Kambadur,
B. Barrett, A. Lumsdaine, R. H. Castain, D. J.
Daniel, R. L. Graham, and T. S. Woodall. Open MPI:
Goals, concept, and design of a next generation MPI
implementation. In D. Kranzlmuller, P. Kacsuk, and
J. Dongarra, editors, Recent Advances in Parallel
Virtual Machine and Message Passing Interface,
volume 3241 of Lecture Notes in Computer Science,
pages 97–104. Springer Berlin Heidelberg, 2004.

[10] R. Graham and R. Keller. Dynamic communicators in
MPI. In M. Ropo, J. Westerholm, and J. Dongarra,
editors, Recent Advances in Parallel Virtual Machine
and Message Passing Interface, volume 5759 of
Lecture Notes in Computer Science, pages 116–123.
Springer Berlin Heidelberg, 2009.

[11] H. Kamal, S. M. Mirtaheri, and A. Wagner. Scalability
of communicators and groups in MPI. In Proceedings
of the 19th ACM International Symposium on High
Performance Distributed Computing, HPDC ’10, pages
264–275, New York, NY, USA, 2010. ACM.

[12] H. Park and K. Park. Parallel algorithms for red-black
trees. Theor. Comput. Sci., 262(1-2):415–435, July
2001.

