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Abstract—Ever since accelerators and coprocessors became
the mainstream hardware for throughput-oriented HPC work-
loads, various programming techniques have been proposed to
increase productivity in terms of both the performance and ease-
of-use. We evaluate these aspects of OpenCL on a number of
hardware platforms for an important subset of dense linear
algebra operations that are relevant to a wide range of scientific
applications. Our findings indicate that OpenCL portability
has improved since our previous publication and many new
and surprising usage scenarios are possible that rival those
available after decades of software development on the CPUs.
The combined performance-portability metric, even though not
promised by the OpenCL standard, reflects the need for tuning
performance-critical operations during the porting process and
we show how a large portion of the available efficiency is lost if
the tuning is not done correctly.

I. INTRODUCTORY REMARKS

In this paper, we use OpenCL to implement a set of dense
linear algebra operations that are relevant to a wide range of
scientific applications, and evaluate two main aspects:

e Static versus dynamic scheduling of tasks;

e Cross-device portability in relation to performance portability
for AMD GPUs, NVIDIA GPUs, Intel Xeon Phi (MICs), and
many-core x86 CPUs.

It is a challenge to exploit the extreme level of parallelism
and heterogeneity available on a modern computer. One way
to tackle this programming challenge is to redesign and divide
the algorithm of interest into carefully chosen computational
tasks and then to schedule these tasks for execution on the
computational components of the heterogeneous system using
either static or dynamic scheduling. The latest release of
MAGMA (version 1.4.1) [2], an extension of the popular LA-
PACK for heterogeneous systems, uses static scheduling. New
results presented in this paper, on the other hand, use dynamic
scheduling and show similar performance, while enabling
the expression of parallelism through otherwise sequential
code. Ideas to consider include dynamic code development
that focuses on device-oriented development, emphasis on
asynchronous execution, and straight-forward expression of
algorithmic variants that enables fast selection of optimally
tuned implementations — all taken into account here.

Our goal is to unify our numerical software for AMD
and NVIDIA GPUs and Xeon Phi by using OpenCL pro-
gramming that targets cross-platform portability. We show that
obtaining high-performance still depends on hardware-specific
optimizations. Our primary focus here is to study the extent
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of these non-portable optimizations within the framework of
well understood and studied body of knowledge relating to
the numerical dense linear algebra. The case of compari-
son is made through the AMD’s clMath library (formerly
APPML) [1], which currently is the only available complete
BLAS implementation for OpenCL.

We note the draft release of OpenCL 2 [16] and its
possible effect on our current and future work. Especially, the
set of new features such as shared virtual memory, dynamic
parallelism, generic address space, and C11 atomics will allow
further strides in both portable and performance-efficient code
development.

II. OPENCL LAPACK FOR HETEROGENEOUS SYSTEMS
Over the last decade GPUs emerged as a viable hardware
platform offered as discrete compute cards by the major
vendors and system integrators. The success of the hardware
resulted in an unfortunate proliferation of software solutions
for easing the programming burden that accelerators bring
to bear. Even with the recent coalescing of the plethora of
products around major standardization themes, the end user
is still left with the choice of one of the open specifications:
OpenCL [15], OpenMP 4 [22], and OpenACC 2 [21]. From the
very specific perspective of library development, only OpenCL
offers a sufficient breadth of features essential for performance,
portability, and maintainability, without the burden of extrane-
ous software dependencies. An additional consideration is the
fact that many algorithms, and in particular, the ones in the
area of dense linear algebra, are designed to use the BLAS
standard but there is no fully compliant BLAS implementation
in OpenACC. Because of the aforementioned circumstances,
we use OpenCL [15] to provide portability across a variety of
accelerators and coprocessors. OpenCL is an open standard
for off-loading computations to accelerators, coprocessors,
and many-core processors that we use along with our task
scheduling mechanisms such as runtime environments, auto-
tuning frameworks, and coding techniques. The algorithms
described here are being incorporated into our ccMAGMA [7]
library, which is a redesign and enhancement of the popular
LAPACK for heterogeneous systems with OpenCL as the API
to interface with various hardware accelerators.

For completeness, we would also like to mention C++
AMP [8], [11] — a standard that targets Microsoft’s DirectX and
DirectCompute frameworks. The recent porting efforts might
make AMP much more relevant outside of the Windows and
Visual Studio ecosystems as a port to LLVM is ongoing by
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MultiCoreWare and overseen by the HSA Foundation'.

The rest of the paper is organized as follows. After
surveying related work in Section III, we first review, in
Section IV, the one-sided factorization algorithms — LU, QR,
and Cholesky of dense matrices — that are the focus of this
paper. Then, in Section V, we present our implementations
of the algorithms for multiple accelerators/coprocessors using
OpenCL. Finally, in Section VI, we present the performance of
our implementation on various architectures. We provide our
final remarks in Section VII.

III. RELATED WORK

Synthetic benchmarks of GPUs have been used extensively
to understand graphics accelerators when technical details of
the hardware remain an industrial secret [23]. In the context of
scientific applications, such benchmarking efforts lead to algo-
rithms that provide significant performance improvements [27].

The Ocelot [14] project did a performance-oriented study
of NVIDIA’s PTX (Parallel Thread eXecution) architec-
ture [20]. Another project, MCUDA [26], applied code trans-
formations to CUDA kernels, enabling them to run efficiently
on multicore CPUs. Unforunately for legacy code maintainers,
the reverse operation — porting multicore code to GPUs —
proved difficult [14].

Work on optimizing CUDA implementations of basic linear
algebra kernels has demonstrated that the performance of a
GPU is sensitive to the formulation of a kernel [30] and
that an enormous amount of well-thought experimentation and
benchmarking [27], [30] is needed in order to optimize the
performance. Tuning OpenCL applications for a particular
architecture faces the same challenges. Optimizing a fixed
OpenCL code for several architectures is very difficult, perhaps
impossible, and naturally, many authors claim that OpenCL
does not provide performance portability. This, along with the
fact that GPUs are quickly evolving in complexity, has made
tuning numerical libraries for them challenging. One approach
(that we explore) to systematically resolve these issues is the
use of auto-tuning, a technique that in the context of OpenCL
would involve collecting and generating multiple kernel ver-
sions, implementing the same algorithm optimized for different
architectures, and heuristically selecting the best performing
one. Auto-tuning has been used intensively on CPUs in the
past to address these challenges to automatically generate
near optimal numerical libraries, e.g., ATLAS [29], [9] and
PHiPAC [4] used it to generate highly optimized BLAS. Work
on auto-tuning CUDA kernels for NVIDIA GPUs [18], [19]
has shown that the technique is a very practical solution to
port existing algorithmic solutions on quickly evolving GPU
architectures and to substantially speed up even highly tuned
hand-written kernels. The challenge of providing performance
portability is by no means limited to linear algebra.

Performance portability of OpenCL in applications was
studied before [28] and the authors compared CUDA and
OpenCL implementations of a Monte Carlo Chemistry applica-
tion running on an NVIDIA GTX285. They also compared the
same application written in ATT’s now defunct Brook+ to an
OpenCL version on a Firestream 9170 and Radeon 4870. They
compared OpenCL to a C++ implementation running on multi-
core Intel processors. The paper showed OpenCL providing
code portability but not necessarily providing performance

portability. Furthermore, they showed that platform-specific
languages often, but not always, outperformed OpenCL.

In our previous work [10], OpenCL was evaluated as a
programming tool for developing performance-portable appli-
cations for GPGPU on BLAS kernels, in particular on the
GEMM and TRSM operations. Higher level OpenCL-based
routines for a single AMD GPU were presented in [6].

Compiling OpenCL kernels at runtime from source code
introduces a significant amount of overhead. By caching to disk
the Intermediate Representation (IR) resulting from clGetPro-
gramlInfo, and loading it at runtime, overhead can be effectively
reduced [10]. AMD and NVIDIA’s OpenCL implementations
both allow such a maneuver, which is essential for the per-
formance of cIMAGMA since GPU kernels can be repeatedly
called in different routines. An efficient way to handle the
kernel compiling and caching is required. In cIMAGMA, a
runtime system is implemented to fulfill this task. On the Intel
Xeon Phi, though, the hardware design is different than the
one on traditional GPUs, and therefore optimizations for the
two architectures require different techniques [13].

IV. ONE-SIDED FACTORIZATIONS

A. Right-looking LU and QR

The LU factorization of an m-by-n matrix A with partial
pivoting has the form PA = LU, where P is an m-by-m row
permutation matrix, L is an m-by-n lower-triangular matrix
with unitary diagonal, and U is an n-by-n upper-triangular
matrix. The LAPACK routine XxGETRF computes this LU
factorization, where x can either be S, D, C, or Z denoting
either single, double, single-complex, or double-complex pre-
cision used for computing. LAPACK stores all the matrices in
column-major order.

xGETREF first computes the partial factorization,

Ay Al
PA=P ! 2
! ! ( Avm ) Az 2img )
_( Lix r Ui Uiy, )
L2:m,,1 1 A 1 ’

where Py is an m-by-m permutation matrix for the partial
pivoting of the first n, columns of A; Ay, L1, and U
are the leading ny,-by-by, blocks of A, L, and U, respectively;
and m; and n, are the respective numbers of block rows
and columns of A (ie., m =™ and n, i).z GETRF
computes factorization (1) in the following two phases, where
the corresponding LAPACK/BLAS routines are shown in bold:
e 1) Panel factorization. xGETF2 computes the LU factor-
ization of the first m-by-n;, block column A.; of A: PIA; . =
Ly Uy, where A.; is referred to as the j-th panel of the
factorization.

e 2) Trailing submatrix update. The transformation computed
by xGETF2 is applied to the rest of the matrix, A. 5.,

1y

xLASWP applies the pivoting P; to the submatrix:
A:,Z:n, = P]A:.Z:n,-

2) xTRSM computes the off-diagonal blocks U 5.,, of
U: Uy o, = L1 A1 2m,-
3) xGEMM updates the trailing submatrix As.,, 2.5,

A= Aoy 2:np — Loom 1 UL 22, -
The LU factorization of A is then computed by recursively
applying the above algorithm to the trailing submatrix A. This

Uhttp://www.hsafoundation.com/bringing-camp-beyond-windows- via-clang-1lvm/ 2To simplify the exposition, we assume that m and n are multiples of ;.
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is referred to as a right-looking algorithm since at each step,
the panel is used to update the trailing submatrix, which is on
the right of the panel. The upper-triangular part of U and the
strictly lower-triangular part of L are stored in the correspond-
ing parts of A. An additional min(n,m) length integer array is
required to store the pivots P compactly as a sequence of row
interchanges rather than a full m-by-n permutation matrix. To
properly account for the row interchanges performed during
the factorization of the trailing submatrix, another call to
xLASWP follows each trailing matrix factorization.

The QR factorization of the matrix A is of the form A = OR,
where Q is an m-by-m orthonormal matrix, and R is an m-
by-n upper-triangular matrix. The LAPACK routine xGEQRF
implements a right-looking QR factorization algorithm, whose
first step consists of the following two phases:

e 1) Panel factorization. The first panel A.; is transformed
into an upper-triangular matrix.

1)  xGEQR2 computes an m-by-m Householder matrix
H, such that HTA.; = R(l)’l ) , and Ry is an np-
by-n;, upper-triangular matrix.

2) xLARFT computes a block representation of the

transformation Hi, i.e., Hyj =1—V T1V1H , where V;
is an m-by-n;, matrix and 77 is an np-by-n, upper-
triangular matrix.
e 2) Trailing submatrix update. XLARFB applies the transfor-
mation computed by XLARFT to the submatrix A. .,

(5 )=o-wmm( £, )

Then, the QR factorization of A is computed by recursively
applying the same transformation to the submatrix A. The
transformations V; are stored in the lower-triangular part of
A, while R is stored in the upper-triangular part. Additional
m-by-n;, storage is required to store 7;.

B. Left-looking Cholesky

The Cholesky factorization of a Hermitian positive-definite
matrix A is of the form A = RR¥, where R is an n-by-n lower-
triangular matrix with positive real diagonals. The LAPACK
routine XPOTRF computes the Cholesky factor R, whose j-
th step computes the j-th block column Rj,, ; of R in the
following two phases:
e 1) Panel update. The j-th panel is updated using the
previously-computed columns of R,

Rl,/Z\:n;
A

A,
AZ:m,,2:n,

1) xSYRK updates the diagonal block Aj;;, A;; :=
H
A = Rin(i-) R -1y
2) xGEMM updates the off-diagonal  blocks,
— H
A(etym,j = A ym,) ~ Riem 1:G-0R 1)

e 2) Panel factorization. The j-th panel is factorized.

1)  xPOTRF2 computes the Cholesky factor R; ; of A; ;,
Ajj=Rj;RY;. .
2)  xTRSM computes the off-diagonal blocks R 1), »

R(j1mj = R jAG 1)+
This is known as a left-looking algorithm since at each step,
the panel is updated using the previous columns, which are
on the left of the panel. The above algorithm references only
the lower-triangular part of A, which is overwritten by R.
Alternatively, given the upper-triangular part of A, XPOTRF
can compute R by block rows.

63

Critical
Path

Ilustration of hybrid programming.

Fig. 1.
V. IMPLEMENTATION

A. Hybrid Programming

We extend in cIMAGMA the LAPACK routines to utilize
the computing power of CPUs, GPUs, and coprocessors as
available in modern heterogeneous architectures. The algo-
rithms design and implementation are based on hybrid pro-
gramming and scheduling to match the different characteristics
of the algorithm at the different phases of the factorization
with the different performance strengths of the CPUs and
GPUs available. For instance, during one-sided factorizations,
the submatrix updates based on BLAS-3 exhibit high data
parallelism and are ideal for running on a GPU. On the other
hand, panel and diagonal factorizations are based on BLAS-
1 and BLAS-2, and are often faster on a CPU. Hence, in
cIMAGMA we distribute the whole matrix A among the GPUs
and use the GPUs to update their corresponding submatrices,
while the panels and diagonal blocks are copied to and
factorized on the multicore CPUs using a threaded version
of LAPACK (see Figure 1).

B. Static Scheduling

To utilize the multiple GPUs for submatrix update, the
matrix A is distributed in a 1D block column format for the
LU and QR factorization, while it is distributed in a 1D block
row or column format for the Cholesky factorization in the
lower and upper triangular forms, respectively. Figure 2 shows
the pseudocodes of our multi-GPU one-sided factorization
algorithms. Note that the scheduling of the tasks in these
algorithms is done statically. This is the default scheduling
in the latest ccMAGMA 1.1 release.

To effectively use the CPU for the panel factorization, we
use a technique commonly-known as lookahead: as soon as
the next panel is updated on the GPU, it is copied to the
CPU so that the panel can be factorized on the CPU, while
the GPUs continue updating the rest of the submatrix. Hence,
for a large enough matrix, the BLAS-1 and BLAS-2 based
panel factorization on the CPU can be hidden behind the
BLAS-3 based submatrix update on the GPU. As a result,
the lookahead brings the potential of having factorizations
running at the speed of the BLAS-3 GPU kernels. We also
use a separate queue for asynchronous data transfer between
the CPU and GPU such that it can be overlapped with the
computation either on the CPU or GPU. For instance, by using
a separate queue, the transfer of the panel between the CPU
and the GPU can be overlapped with the submatrix update. In
addition, the transfer of the factor back to the CPU can be also
overlapped with the computation (U-factor, R-factor, and off-
diagonal blocks in the LU, QR, and Cholesky factorization,
respectively). These techniques are easily implemented with
static scheduling, where the main CPU thread goes through the



Algonthm 3.1
distribute A from CPU to GPUs.
2. for j=1,2,...,n, do
a. use XGETREF to factorize panel on CPU.
b. broadcast the panel from CPU to GPUs.
c. apply pivoting to L on GPUs.
d. use magma_xTRSM to
compute Uj (j, 1), on GPUs.
e. use magma_xGEMM to
update trailing submatrix on GPUs.
f. copy next panel from GPU to CPU.
end for
3. gather U-factor from GPUs to CPU.

(a) Right-lIooking LU algorithm.

Algorithm 3.2
1. distribute A from CPU to GPUs.
2. for j=1,2,...,n do
a. use XGEQREF to factorize the panel on CPU.
b. use XLARFT to compute 7; and V;.
c. copy T; and V; from CPU to GPU.
d. use magma_xLARFB to
apply the transformation on GPU.
e. copy next panel A, ; from GPU to CPU.
end for
3. gather R-factor from GPUs to CPU.

(b) Right-Tooking QR algorithm.

Algomhm 33
distribute lower-triangular of A from CPU to GPUs.
2. for j=1,2,...,n, do
a. use magma_xSYRK to
update A; ; on GPU.
b. copy A ; from GPU to CPU.
c. use magma_xGEMM to
update A(j1).,,,; on GPUs.
d. use xPOTREF to compute R;; on CPU.
e. broadcast R;; from CPU to GPUs.
f. use magma_xTRSM to
compute R; (j.1).,, on GPU.
end for
3. gather off-diagonal blocks of R from GPUs to CPU.

(c) Left-Iooking Cholesky algorithm (lower triangular).

Algorithm 3.3
1. distribute lower-triangular of A from CPU to GPUs.
2. for j=1,2,..., n; do
a. use XPOTRF to compute R; ; on CPU.
b. broadcast R ; from CPU to GPUs.
c. use magma_xTRSM to
compute R; . 1).,, on GPU.
d. use magma_xSYRK to
update trailing submatrix on GPU.
e. copy A;; from GPU to CPU.
end for
3. gather off-diagonal blocks of R from GPUs to CPU.

d) Right-Tooking Cholesky algorithm (Tower triangular).

Fig. 2. MAGMA one-sided factorization algorithms.

algorithm, first queuing large task/work requests to the GPUs
through OpenCL queues, while second, performing tasks on
the critical part.

C. Dynamic Scheduling

The use of multiple heterogeneous devices complicates
the development using static scheduling. Instead, the use of
a light-weight runtime system may be preferred as it can keep
scheduling overhead low, while enabling the expression of
parallelism through sequential-like code. The runtime system
relieves the developer from keeping track of the computational
activities that, in the case of heterogeneous systems, are
further exacerbated by the separation between the address
spaces of the main memory of the CPUs, GPU accelera-
tors, and coprocessors. Our runtime model is build on the
QUARK [31] superscalar execution environment that has been
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cl_mem clCreateBuffer( cl_context context,
cl_mem_flags flags, size_t size, void xhost_ptr,
cl_int xerrcode_ret)

creates a buffer object with the following arguments:

context (input) : valid OpenCL context,

flags (input) : bit-field to specify allocation and usage
information,

size (input) : size in bytes of the buffer memory object to be
allocated,

host_ptr(input) : pointer to a buffer that has been allocated
by the application,

errcode (output): error code.

void * clEnqueueMapBuffer ( cl_command_gqueue queue,
cl_mem buffer, cl_bool blocking,
cl_map_flags maping, size_t offset, size_t cb,
cl_uint num_events, const cl_event xevent_list,
cl_event xevent, cl_int xerrcode_ret)

maps a region of buffer into host address space with the following

arguments:
queue (input) : valid command-queue,
buffer (input) : valid buffer object,
blocking (input) : flag to indicate if this operation is blocking
or non-blocking,
maping (input) : bit-field to indicate if buffer is for reading

or/and writing,

: offset in bytes and size of region in the buffer
object that is being mapped,

: number of events in enent_list,

: events that must be completed before executing
this command,

offset, cb (input)

num_eventdginput)
event_list{input)

event (output): event object that identifies this command, and
errcode (output): error code.
Fig. 3. OpenCL interfaces to map CPU memory.

originally used with great success for linear algebra software
on multicore platforms [17]. The conceptual work though
could be replicated within other models such as StarPU [3],
OmpSS [24], Cilk [5], and Jade [25], to mention just a few.

Compared to static scheduling, the dynamic approach al-
lows us to unroll and pipeline for execution a larger part of an
algorithm, which creates more opportunities for minimizing
CPU-GPU synchronizations and CPU-GPU communication
latencies. Static scheduling on the other hand does not have
scheduling overheads but is more susceptible to cause CPU
or GPU idle time. For example, GPU idle time will occur if
insufficient work is queued to the GPU before the CPU is
dedicated to execution of the next CPU task.

D. Mapped memory for CPU-GPU data transfer.

Mapping the CPU memory to the GPU allows us to get a
higher data transfer throughput between the CPU and GPU. In
OpenCL, c1CreateBuffer and clEnqueueMapBuffer
provide the required interfaces to map the CPU memory
(see Figure 3 for their interfaces). In order to map mem-
ory for multiple GPUs, we first conducted experiments to
verify if clEnqueueMapBuffer must be called either per
gContext that includes multiple GPUs, or per device spec-
ified by queue, or for each queue that uses the mapped
memory. For example, Figure 4(a) compares the data transfer
rates of cyclically distributing the block columns of 11,008-by-
11,008 double-precision upper-triangular matrix among two
GPUs with the block size nj, = 256, when the CPU memory
that stores the matrix is mapped to GPU-0, to GPU-1, or
to both GPU-0 and GPU-1. The figure clearly indicates that
the memory must be mapped to both GPUs by invoking
clEnqueueMapBuffer with each queue associated with the
GPU. For instance, the following piece of the code maps the
memory to multiple GPUs, where queue [2+d] is associated
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Fig. 4. Effects of mapping on the data transfer rate (n = 11,008,n;, = 256).
with GPU-d:

cl_mem buffer =
CL_MEM_READ_WRITE |
sizeof (magmaDoubleComplex)
NULL, NULL);
d < num_pinned; d++)

clCreateBuffer (gContext,
CL_MEM_ALLOC_HOST_PTR,
* sizePanel x
(1+num_gpus),
(d=0;

work =

for
(magmaDoubleComplexx)
clEnqueueMapBuffer ( queues[2xd], buffer,

CL_TRUE, CL_MAP_READ | CL_MAP_WRITE, 0,

sizeof (magmaDoubleComplex) x sizePanel x

(l+num_gpus), 0, NULL, NULL, NULL);
We have also verified that the memory is mapped to the device
that is associated with the queue, and we can use the mapped
memory with a queue that is associated with the same device
but is different from the one used to map the memory. Finally,
to use the mapped memory for data transfer, the pointer to the
beginning of the mapped memory should be used.

Figure 4(b) compares the data transfer rates from the CPU
to the GPU with those from the GPU to the CPU, and also
shows the transfer rates of cyclically distributing the block
rows of the lower triangular matrix.

E. Multiple buffer to utilize GPU memory.

The current OpenCL driver limits the amount of the device
memory that can be allocated per c1CreateBuffer call. To
overcome this limitation and utilize the whole device memory
for factorizing a large matrix, we could run our multi-GPU
factorization routine on one GPU. However, this requires
redundant communication between the CPU and the GPU,
which can be expensive. To avoid this overhead, we developed
a multi-buffer implementation, where the local submatrix on
each GPU is stored in multiple buffers. As shown in Figure 5,
this not only allows us to factorize a large matrix, but it also
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Fig. 5. Performance of LU factorization with multiple buffers.
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(c) Two GPUs.
Fig. 6. Execution trace of dgetrf_msub on one AMD GPU (n = 8,000).

avoids the additional communication required when running
the multi-GPU algorithm on a single GPU. The trace from
Fig. 6 could offer additional inside into this issue.

VI. EXPERIMENTAL RESULTS

A. Hardware Description and Setup

Our experiments were performed on a number of shared-
memory systems. They are representative of a vast class of
servers and workstations commonly used for computationally
intensive workloads. We conducted our experiments on three
different systems:
e System A was six-core AMD Phenom™ II X6 1055T
Processor, running at 2.8 GHz with 8 GiB of main memory. It
featured two AMD HD7970 cards with 3 GB per card running
at 1000 MHz
e System B was composed of an four-socket AMD Opteron™
6380 with 16 cores each and sharing two FPU units per core
for the total of 64 cores running at 1.4 GHz with 128 GiB of
main memory. It was equipped with a single AMD HD7970
card with 3 GiB of main GPU memory and running at 1 GHz.
e System C was an Intel multicore system with dual-socket,
8-core Intel Xeon E5-2670 (Sandy Bridge) processor running
at 2.6 GHz. Each socket had 24 MiB of shared Level 3
cache, and each core had a private 256 KiB Level 2 and 64
KB Level 1 cache. The system was equipped with 52 GB
of memory and the theoretical peak in double precision was
20.8 Gflop/s per core. System C also featured three NVIDIA
K40c cards with 11.5 GB per card running at 875 MHz,
connected to the host via two PCle I/O hubs measured at
10 GB/s of achievable bandwidth. In terms of software, on
the CPU side, we used the MKL (Math Kernel Library) [12]
and the Intel compiler 13.1.1 20130313, which comes with
the Composer XE 2013.4.183 suite. On the AMD HD7970
GPU side, we used OpenCL implementation for version 1.2 of
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the standard and the driver version 1348.5. On NVIDIA K40c
GPU, OpenCL version 1.1 used with the driver version 331.22.
And finally, as BLAS implementation, we used the open-
source cIBLAS library which provides code for the OpenCL
BLAS portion of cIMath.

B. Performance results

Getting good performance across multiple accelerators
remains a challenging problem that we address with the algo-
rithmic and programming techniques described in this paper.
The efficient strategies used to schedule and exploit parallelism
across multiple devices will be highlighted in this subsection
through the extensive set of experiments that we performed.

Figures 7 show the performance scalability of the Cholesky
factorization in double precision on either a single GPU or
two GPUs of System A. The curves show performance in
terms of Gflop/s. We note that this also directly reflects the
elapsed time: performance that is two times higher corre-
sponds to an elapsed time that is two times shorter. Our
heterogeneous implementation shows very good scalability.
For example for a 24,000 matrix, the Cholesky factorization
achieves around 800 Gflop/s when using the 2 AMD HD7970
GPUs. Note that both the dynamic and the static version of
our implementation achieves the same trend of performance
curves. We observed similar performance trends for both the
LU factorization and the QR decomposition. Figures 8 and 9
illustrate the scalability performance obtained on system A.
The three amigos achieves very good scalability with the
respect to the performance of the system. This was expected
from the analysis of the tracing figures depicted above. The
trace is compact and shows that the GPU is always busy, which
means that the algorithm reaches close to the peak of the
Level 3 BLAS routine performance on the GPU. The difference
in performance between the three amigos can be explained by
a detailed examination of the algorithm. The trailing matrix
update of the LU factorization consists mainly of gemm’s
kernel which provides the highest performance on GPU. We
can thus expect that a good implementation of LU trend to be
asymptotically close to thegemm’s peak. However, for the QR
algorithm the trailing matrix update consists of a call to larfb.
The larfb is composed of one inner-product and one outer-
product gemm and a small trmm of size nb, where nb is the
blocking factor (or the width of the panel). We note that in the
current implementation of BLAS for AMD GPUs, the inner-
product gemm as well as trmm do not perform at the same
speed as the classical square or outer-product gemm. For this
reason, the performance of QR trails by a bit the LU code.
Due to a related reason, the Cholesky trailing matrix update
does not perform well either, as it consists of syrk not gemm.

C. Programming Model Across Multiple Devices

In this section, we discuss the programming model that
raises the level of abstraction above the hardware and its
accompanying software stack to offer a uniform approach for
algorithmic development. GPU accelerators and coprocessors
have different capabilities, which makes it challenging to
develop an algorithm that can achieve high performance and
reach good scalability. The key features of OpenCL allow us
to develop stable implementation across many different archi-
tectures. We ported our implementation with little effort to run
on NVIDIA devices. We used the open source AMD cIBLAS
library and compiled it on System C. We first evaluated the
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Nvidia Tesla K40c GPUs.

performance of the gemm kernel which is supposed to reach
the highest fraction of the peak performance of the device.
Our experiments showed that the double precision dgemm
kernel from AMD cIBLAS library achieves about 100 Gflop/s
on NVIDIA M2090 and about 260 Gflop/s on NVIDIA K40c
(System C) while cuBLAS dgemm reaches 1250 Gflop/s on
the faster card. From a programming model point of view, it
is nearly impossible to hide the distinction between the two
devices (AMD GPU and NVIDIA K40c). Also, the BLAS
library was designed for older of GPU architecture and by
a different vendor. In particular, cIBLAS does not map well
to the architectural features of NVIDIA hardware such as
the shared memory, register file, and cache structure. But the
undeniable advantage of such a model is portability, even
though, an effort was still required to make the kernel scalable.
We have performed a set of LU factorization experiments
using our System C on either one, two or three NVIDIA
GPUs. Figure 10 shows the performance obtained by this
implementation. It is able to reach close to the performance
of AMD cIBLAS’ dgemm on this architecture and also it
is able to scale on up to three available GPUs. Our LU
factorization reaches around 230 Gflop/s on a single NVIDIA
K40c and about 700 Gflop/s on three of them. We also tried
to install the AMD cIBLAS library and our code on the Intel
Xeon Phi coprocessor. However, the portability of AMD’s
cIBLAS was not paired with good performance. The Intel card
reached less than 30 Gflop/s — an unacceptable level. This
result, however, is to be expected due to much more drastic
differences between the two architectures than was the case for
the AMD and NVIDIA comparison. To get better performance
on Phi, significant architecture-specific optimizations must be
applied [13].

D. Heterogeneous-Device Computation

In this section, we propose to optimize our implementation
to benefit from all the available resources on the platform.
When using a platform composed of many kinds of GPUs or
a GPU and a number of multicore processors, our implemen-
tation can run on all of them simultaneously. We force the data
layout distribution to be hardware-guided, so that the data will
either be distributed in a manner that allows each device to
receive an appropriate volume of data to match its capabilities.
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Fig. 11. LU factorization trace on multicore CPU and one accelerator AMD
HD7970 GPU, using the Heterogeneous-Device Computation to achieve higher
hardware usage.
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Fig. 12.  Performance of double precision LU factorization on one AMD

HD7970 GPU and one AMD Opteron(tm) 6380 CPU.

Figure 11 shows the trace of the LU factorization for a matrix
of size 20K on System A while using the Heterogeneous
Device Computation Strategy (HDCS). It is clear that the
execution trace is more compact — all of the heterogeneous
hardware is fully occupied with useful work and one can
expect an increase in the total performance. This is shown to be
the case in Figure 12 and the performance curves of the LU
factorization for either CPU-only or GPU-only or using our
HDCS method. The curves in green show the performance
obtained on one AMD HD7970 GPU and 32 CPU cores of
System A. The blue line corresponds to our implementation
using only the 32 CPU cores, while the red line illustrates the
performance using the AMD GPU without taking advantage
of the CPUs to factorize the panel of each factorization step.
We observe that we can reach an improvement of about 20%
when using the HDCS technique.

Figure 13 shows the execution trace of the lower-triangular
Cholesky factorization. As observed on other traces from this
hardware, we see gaps between the useful computation or
between the data transfers which indicate idle periods that are
a sign of the sub-optimal performance mentioned earlier.

Figure 14 shows the performance of the Level 3 BLAS
kernels used for the Cholesky factorization. It is worth noting
that this performance profile is quite typical of CPU-only
implementations on either shared or distributed memory. The
slow decay in performance of dgemm is characteristic for the
decreasing size of the input parameters for the routine. And
the somewhat periodic nature of the performance is indicative
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of the internal blocking factors of the BLAS implementation.
Finally, the drastic performance difference between dgemm
and ditrsm is the testimony of the latter routine’s more de-
manding loop dependence pattern that poses a challenge on
latency-sensitive accelerators.

VII. CONCLUSIONS AND FUTURE WORK

We have presented algorithms, their implementation, and
performance for common dense linear algebra factorizations
on top of the OpenCL implementations from major hardware
accelerator vendors. At this point in time we can safely
conclude that OpenCL does meet the cross-platform portability
requirements, albeit with a need for some architecture-specific
tuning and possibly performance penalty. With these limita-
tions in mind, it could be considered a viable alternative for
library development challenging industry or de-facto standards.

Our goal is to continue to monitor the quality of OpenCL
implmenations across the hardware spectrum and broaden
the algorithm choice of our implementation efforts of to
the so-called “two-sided” factorizations that aim at eigen-
value-preserving transformations. The challenge for this other
important class of linear algebra factorizations is the available
memory bandwidth and this may pose additional challenges
with respect to the OpenCL software stack.
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