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Abstract. With the number of computing elements spiraling to hun-
dred of thousands in modern HPC systems, failures are common events.
Few applications are nevertheless fault tolerant; most are in need for a
seamless recovery framework. Among the automatic fault tolerant tech-
niques proposed for MPI, message logging is preferable for its scalable
recovery. The major challenge for message logging protocols is the per-
formance penalty on communications during failure-free periods, mostly
coming from the payload copy introduced for each message. In this pa-
per, we investigate different approaches for logging payload and compare
their impact on network performance.

1 Introduction

A general trend in High Performance Computing (HPC), observed in the last
decades, is to aggregate an increasing number of computing elements [1]. This
trend is likely to continue as thermic issues prevent frequency increase to progress
at Moore’s law rate, leaving massive parallelism, with hundred of thousands of
processing units, as the only solution to feed the insatiable demand for com-
puting power. Unfortunately, with the explosion of the number of computing
elements, the hazard of failures impacting a long-living simulation becomes a
major concern. Multiple solutions, integrated to middleware like MPI [2], have
been proposed to allow scientific codes to survive critical failures, i.e. permanent
crash of a computing node. Non-automatic fault tolerant approaches, where the
middleware puts the application in charge of repairing itself, have proven to be,
at the same time, very efficient in term of performance, but extremely expensive
in terms of software engineering time [3]. As a consequence, only a small number
of targeted applications are able to benefit from the capability of modern leader-
ship computing centers; the typical workload of HPC centers suggests that most
scientists still have to scale down their jobs to avoid failures, outlining the need
for a more versatile approach.

Automatic fault tolerant approaches, usually based on rollback-recovery, can
be grouped in two categories: coordinated or uncoordinated checkpointing mech-
anisms. Coordinated checkpointing relies on a synchronization of the checkpoint-
ing wave, an often blocking protocol, and a rollback of every process, even in the



event of a single failure, which leads to a significant overhead at large scale [4].
Uncoordinated checkpointing let individual processes checkpoint at any time. As
a benefit, checkpoint interval can be tailored on a per-node basis, and the recov-
ery procedure effectively sandboxes the impact of failures to the faulty resources,
with limited non disruptive actions from the neighboring processes.

However, the stronger resiliency of uncoordinated checkpointing comes at the
price of more complexity, to solve the problems posed by orphan and in-transit
messages. Historically, research on message logging have mostly focused on han-
dling the costly orphan messages, by introducing different protocols (optimistic,
pessimistic, causal). Recent works have nevertheless tremendously decreased the
importance of the protocol choice [5], leading the once negligible overhead in-
curred by in-transit messages to now dominate. The technique considered as the
most efficient today to replay in-transit messages is called sender-based message
logging: the sender keeps a copy of every outgoing message. Although sender-
based logging requires only a local copy, done in memory, and could theoretically
be overlapped by actual communication over the network, it has appeared ex-
perimentally to remain a significant overhead.

The bandwidth overhead of the sender-based copy is now standing alone in
the path of ubiquitous automatic and efficient fault tolerant software. In this
article, we consider and compare multiple approaches to reduce or overlap this
cost to a non-measurable overhead in the Open MPI implementation of message
logging: Open MPI-V [6]. The rest of the paper is organized as follow: in section 2,
we discuss the other approaches that have been taken, then we present the Open
MPI architecture, and the different approaches to create copy of messages locally
in section 3, that we compare on different experimental platforms in section 4,
to conclude in section 5.

2 Related Works

Most of the existing works on message logging have focused on reducing the
number of events to be logged: [7], the bottleneck of disk I/O was the main chal-
lenge in Message Logging, and the proposed solution consisted in reducing the
generality of the targeted application to accept only behaviors that can be tol-
erated without logging messages. Other works [8, 9] reduced the kind of failures
that can be tolerated to increase the asynchrony of the logging requirements,
thus hoping to recover the I/O time with more computation. However, these
approaches still require logging of messages, and the data can be passed back to
the user application only when it has been copied completely.

To the best of our knowledge, no previous work has studied how the message
payload should be logged by the sender, and how this level could be optimized.
Many works have recently considered the more general issue of copying memory
regions in multicore systems using specific hardware [10, 11], or how the memory
management can play a significant role in the communication performance [12,
13]. However, the interactions between simultaneously transferring the data to



the Network Interface Card and obtaining an additional copy in the application
space has not been addressed.

3 Strategies for Sender-based Copies

Open MPI [14] is an open source implementation of the MPI-2 standard. It
includes a generic message logging framework, called the PML V, that can be
used for debugging [15] and fault tolerance [5]. One of the fault tolerant methods
of the PML V is the pessimist message logging protocol. In this protocol, two
mechanisms are used: event logging and sender-based message logging. The event
logging mechanism defuse the threat on recovery consistency posed by orphan
messages, those who carry a dependency between the non deterministic future of
the recovering processes and the past of the survivors. The outcome of every non
deterministic event is stored on a stable remote server; upon recovery, this list is
used to force the replay to stay in a globally consistent state. In this paper, we
focus our efforts on improving the second mechanism, message payload copy, thus
we do not modify the event logging method. The necessity of the sender-based
message logging comes from in-transit messages, i.e. messages sent in the past of
the survivors but not yet received by the recovering processes. Because only the
failed processes are restarted, messages sent in the past from the survivors can
not be regenerated. The sender-based message logging approach keeps a memory
copy of every outgoing message on the sender, so that any in-transit message is
either regenerated (because the sender also failed and therefore is replaying the
execution as well), or is readily available.

There are mostly two parameters governing the payload logging: 1) the back-
end storage system, and 2) the copy strategy from the user memory to the back-
end storage system. We have designed three backend storages: a) a file that is
mapped in memory, b) heap memory as backend, allocated using memory map-
ping of private anonymous memory, and c) a dummy backend storage, that does
not implement message logging, but provides us a mean to measure the overhead
due only to the copy itself. We have also designed three copy methods: a) a pack
method, that copy the message in one go into the backend space, b) a convertor
method, that chops the copy of the message according to the Open MPI pipeline,
and c) a thread method, that creates an independent thread responsible of doing
the copies. In the following, we describe with more details these strategies.

Backend storage
Memory Mapped file. It should be noted that there is no necessity for the log to
be persistent: if a process crashes, it will restart in its own history, and recreate
the messages that have been logged after the last checkpoint (still, messages
preceding the last checkpoint must be saved with the checkpoint image, because
they are part of the state of the process). However, a file backend is natural,
because the volume of message to be logged can be significant, and this should
not reduce the amount of memory available for the application. Mapping the
backend file into memory is the most convenient way of accessing it.



We designed this backend file as a growing storage space, on which we open
a moving window using the mmap system call. When the window is too small to
accept a new message (we use windows of 256 MB, unless some message exceed
the size of the window), we wait that all messages are logged (depending on the
copying method, described later), make the file grow if necessary, and move the
window entirely to a free area of the file.

Heap Memory. If the amount of memory available on the machine is large
enough to accept at the same time the application and the copy of the messages
payload (up to garbage collection time), then the payload logging can be kept
in memory. This second method uses anonymous private memory allocated with
the mmap system call to create such a backend for our message logging system.

Dummy Storage. In order to measure independently the overhead introduced
by the copy method itself, we also designed a Dummy Storage that does not
really implement message logging: after a message is logged, the pointer to store
the message payload is moved back to the beginning of the same memory area,
reallocated if the size of the message is larger than the largest message seen until
the call. When messages are sent often, the pages related to this area will most
likely be present in the TLB, and for very short messages, it is even possible that
the area itself remains in the CPU cache between two emissions. Though this
storage cannot be considered as a backend storage for message logging, it helps
us evaluate the overheads of the copy methods themselves, without considering
other parameters like TLB misses and pages fault.

Copy method
Pack. The Pack method consists in copying the payload of the message using
the memcpy libc call, from the user space to the backend storage space, when
the PML V intercepts the message emission for the first time. This interception
can happen just after the message has been given to the network card for short
messages, or just after the first bytes of the message have been given to the
network card, and the network card cannot send more without blocking for
longer messages.

Conv. When converting the user data to a serialized form usable by the
network cards, the Open MPI data type engine can introduce a pipeline, to send
multiple messages of a predetermined maximal size on the network cards, instead
of sending a very large single message. Up to four messages can be given to the
network card simultaneously, which will send one after the other. The data type
engine tries to keep this pipeline as filled as possible, to ensure that the network
card has always something to send. Using the Conv method, PML V intercepts
each of these, and introduces the message payload copy at this time. This is what
the Conv (short for convertor) method does: if the pipeline is enabled, each time
a chunk of data is copied from the user data to the network card, the PML V
copies the same amount of bytes from the user data to the backend storage. The
size of the chunks in the pipeline is a parameter of this method.

Thread. The last copying method is based on a thread. A copying thread is
created during the initialization. This thread waits on a queue for copies. When



this queue is not empty, the thread pops the first element of the queue, and
copies the whole user memory onto the backend storage, using the memcpy libc
call. When a message emission is intercepted by the PML V, if the message
is short, it is copied as for the Pack method. If the message is long enough
and could not be sent to the network in one go, a copy request is created and
pushed at the end of the request queue. When the application returns from
the MPI call, it synchronizes with the copy thread, and waits that the related
messages have been entirely logged before returning from the MPI call, to ensure
message integrity. To ensure a fair comparison, at constant hardware resources,
this thread is pinned on the same core as the MPI process that produces the
message.

4 Experimental Evaluation

The Dancer cluster is a small 8 node cluster, each node based on a Intel Q9400
2.5Ghz quad core processor, with 4GB of memory. All nodes are connected using
a dual Gigabit Ethernet links, and four feature an additional Myricom MX10G.
Linux 2.6.31.2 (CAoS NSA 1.29) is deployed. The software is compiled using gcc
4.4 with -O3 flags, and uses the trunk of Open MPI (release 21423) modified to
include the different logging techniques presented in Section 3. For every run, we
forced Open MPI to use only the high-speed Myricom network of dancer using
the MCA parameters: -mca btl mx,self. All latency and bandwidth measure-
ments were obtained using the MPI version of the NetPIPE-3.7 benchmark [16].
NetPIPE evaluates latency and bandwidth by computing three times the aver-
age value on a varying number of iterations, and taking the best value of the
three evaluations.
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Fig. 1. Reference MPI MX NetPIPE performance between two dancer nodes compared
to memcopy

Figure 1 presents the reference latency (Fig. 1(a)) and bandwidth (Fig. 1(b))
of Open MPI on the specified network, and of the memory bus of the machines
used. These figures are presented here as a absolute reference of peak perfor-
mance achievable without message logging. A first observation is that the high
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Fig. 2. NetPIPE MX bandwidth between two dancer nodes, according to the storage
method

memory bandwidth and low latency compared to the High-Speed network card
should enable a logging in memory with little performance impact for messages
of less than 1MB. For larger messages, the bandwidth of the memory bus will
become a bottleneck for the logging, and unless the time taken to transfer the
message on the network can be recovered by the logging mechanism, overheads
are to be expected.

A few characteristics of the underlying network and the Open MPI imple-
mentation can moreover be observed from these two figures: one can clearly see
the gaps in performance for messages of 4KB (default size of the MX frame),
and 32KB (change of communication protocol from eager to rendez-vous in the
Open MPI library). In the rest of the paper, all other measurement will be pre-
sented relative to the bandwidth performance of the high-speed network card,
to highlight the overheads due to message logging.

Each of the first figures grouped under Figure2 consider a specific storage
medium, and compare for a given medium the overheads of the different logging
methods as function of the message size.

First, we consider Figure 2(a) that uses as a storage medium the “Ideal”
Storage. As described in Section 3, the Ideal storage uses a single memory area
to log all the messages (thus overriding existing log with new messages). The goal
of this experiment is to demonstrate the overheads due to the copy itself (and
when it happens) without other effects, like page faults, etc... One can see that
the logging method has no significant impact up to (and excluding) messages of
4KB. At 4KB, the Thread method suffers a huge overhead that decreases the
performance by 80%, while the other methods suffer a lower overhead.

A single MX frame is of 4KB (on this platform). Thus, for messages of 4KB
of payload, or more, multiple MX frames are necessary to send the message (this
is true for messages of 4KB of payload too, since the message header must also
be sent). When the message fits in a single frame, the logging thread can be
scheduled while the message circulates on the network and is handled by the
receiving peer. When the message doesn’t fit in a single MX frame, the Open
MPI engine requires scheduling to ensure the lowest possible latency. Since both
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Fig. 3. NetPIPE MX bandwidth between two dancer nodes, according to the copy
method

threads are bound on the same core, they compete for the core, and the relative
performances decrease.

On one hand, when the number of frames needed for a single message is low,
the MPI thread and the logging thread must alternate with a high frequency
on the core (since the MPI call exits only when the message has been sent
and logged). On the other hand, when the number of frames needed is high,
the thread that is scheduled on the CPU can either log the whole message in
one quantum, or use all available frames in the MX NIC to send as much data
as possible in one go. Thus, when the number of frames increases, the relative
overhead due to the logging thread decreases.

The pack method decreases almost linearly with the message size, since all
copies are made sequentially after the send. Because the network is eventually
saturated, the relative overhead reaches a plateau. The Convertor method uses
a pipeline of 512KB. Thus, until messages are 512KB long, it behaves similarly
as the Pack method. The difference is due to a slightly better cache re-use from
the Pack method that send the message, then logs it, instead of first logging it
during the pack operation, then sending it on the network. When the messages
size is larger than the pipeline threshold, the Convertor method introduces some
parallelism (although not as much as the Thread method), that is used to recover
the communication time with logging time.

The other two figures (2(b) and 2(c)) demonstrate a similar behavior before
4K, although the overheads begin to be notifiable a little sooner for all methods
when logging on a File. This is due to file system overheads (inodes and free
blocks accounting), and memory management (TLB misses) when more pages
are needed to log the messages. When the file system is effectively used (messages
of 4MB and 8MB end up consuming all available buffer caches of the file system),
a high variability in the relative overhead becomes observable (Figure 2(c)).

These phenomenon are more observable on the second group of three figures
under Fig. 3. These figures consider each a specific logging method, and expose
the impact of the medium on the overheads due to a logging method, as function
of the message size. As can be seen, using a mmaped file as a storage space



introduces the highest overhead, significantly higher than the overhead due to in-
memory storage, even when the kernel buffers of the file system are large enough
to hold this amount of data. This is due to accounting in the file system (free
blocks lists, inodes status), forced synchronization of the journaling information,
and a conservative policy for the copy of the data to the file system.

The difference of overhead between an anonymous memory map (in the heap
of the process virtual memory), and the Ideal storage space is mainly due to
TLB misses introducing additional page reclaims. This cost is unavoidable to
effectively log the messages, but it is small for small messages, and amortized
for very large messages. As a consequence, logging should happen in memory
as long as the log can be kept small enough to fit there, and the system should
resort to mmaped files only when necessary.

Figures 2(b) and 2(c) lead us to the conclusion that an hybrid approach, with
different thresholds depending on the storage medium, and on the message size,
should be taken: up to messages of 2KB, the method has little influence, however
after this, the Pack or the convertor methods should be preferred up to messages
of 128KB. For messages higher than 128KB, the use of an asynchronous thread,
even if it must share the core with the application thread, is the preferred method
of logging.

5 Conclusion

In this paper, we studied three techniques to log the payload of messages in a
sender-based approach, in the Open MPI PML V framework that implement
message logging fault-tolerance. Because the copying of the message payload
must be achieved before the corresponding MPI emission is complete (either
when the blocking send function exits, or when the corresponding wait operation
exits), copying this payload is a critical efficiency bottleneck of any message
logging approach.

One of the techniques proposed is to use an additional thread to process
the copying asynchronously with the communication; a second uses the pipeline
installed by the Open MPI communication engine to interlace transmissions
towards the network, and copies in memory; the third simply copy the payload
after it has been sent, and before the completion of the communication at the
application level.

We also demonstrated that the medium used to store the payload has a
significant impact on the performances of the payload logging process. We con-
cluded that depending on the medium for storage, and the message size, different
strategies should be chosen, advocating for a hybrid approach that will have to
be tuned specifically for each hardware.
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