The emerging and continuing use of multi-core architectures and graphics processing units requires changes in the existing software and sometimes even in a redesign of the established algorithms in order to take advantage of now prevailing parallelism. Parallel Linear Algebra Software for Multi-core Architectures (PLASMA) and Matrix Algebra for GPU and Multicore Architectures (MAGMA) are two projects that aim to achieve high performance and portability across a wide range of multi-core architectures and hybrid systems respectively.

THE PARALLEL LINEAR ALGEBRA SOFTWARE FOR MULTICORE ARCHITECTURES (PLASMA) PROJECT

PLASMA aims to create software frameworks that enable programmers to simplify the process of developing applications that can achieve both high performance and portability across a range of new architectures. PLASMA uses a programming model that allows asynchronous, out-of-order scheduling of operations in order to achieve a scalable yet highly efficient software framework for Computational Linear Algebra applications.

PERFORMANCE RESULTS

- **Double Precision**
 - CPU: Intel Xeon E5-2698 v2, 2.2 GHz, 8 cores, s/d gemm peak 128/65 GFlop/s
 - NVIDIA GeForce GTX 1080, 1536 CUDA cores, 11.25 TFlop/s
 - Intel Xeon E5-2698 v2, 2.2 GHz, 8 cores, s/d gemm peak 128/65 GFlop/s
 - NVIDIA GeForce GTX 1080, 1536 CUDA cores, 11.25 TFlop/s

MAGMA

The Matrix Algebra for GPU and Multicore Architectures (MAGMA) project aims to create a new generation of linear algebra libraries that achieve the fastest possible time to an accurate solution on hybrid/multicore architectures, starting with current multicore-aware GPU systems. To address the challenges stemming from the heterogeneity of these systems, the need for parallelism, and the gap in computation vs. CPU-GPU communication speeds, MAGMA research is based on the idea that optimal software solutions with Hybrid/heterogeneous hardware, balancing the strengths of different algorithms within a single framework.

HYBRID ALGORITHMS

- ESSL-based or hybrid algorithms that match algorithms requirements to the architectural strengths of the system and its components.
- Small non-parallelizable tasks, often on the critical path, are scheduled on the CPU, and larger parallelizable algorithms, often Level 3 BLAS, are scheduled on the GPU.

MAGMA BLAS

A complementary to CUBLAS subset of CUDA BLAS that features for MAGMA’s needs.

- **Double Precision**
 - CPU/GPU BLAS
 - CPU/CPU BLAS
 - CPU/CPUs
 - Hybrid algorithms on GPUs

CURRENT RESEARCH

- Symmetry and Positivity: Non-Symmetric Eigenvalue Problems
- Singular Value Decomposition
- Mixed-precision algorithms

- **SINGLE PRECISION**

- **DOUBLE PRECISION**

PERFORMANCE RESULTS

- **CPU**
 - Intel Xeon E5-2698 v2, 2.2 GHz, 8 cores, s/d gemm peak 128/65 GFlop/s
 - NVIDIA GeForce GTX 1080, 1536 CUDA cores, 11.25 TFlop/s
 - Intel Xeon E5-2698 v2, 2.2 GHz, 8 cores, s/d gemm peak 128/65 GFlop/s
 - NVIDIA GeForce GTX 1080, 1536 CUDA cores, 11.25 TFlop/s

- **GPU**
 - NVIDIA GeForce GTX 1080, 1536 CUDA cores, 11.25 TFlop/s
 - Intel Xeon E5-2698 v2, 2.2 GHz, 8 cores, s/d gemm peak 128/65 GFlop/s
 - NVIDIA GeForce GTX 1080, 1536 CUDA cores, 11.25 TFlop/s
 - Intel Xeon E5-2698 v2, 2.2 GHz, 8 cores, s/d gemm peak 128/65 GFlop/s

Matrix algebra for GPU and Multicore Architectures (MAGMA) Project aims to create a new generation of linear algebra libraries that achieve the fastest possible time to an accurate solution on hybrid/multicore architectures, starting with current multicore-aware GPU systems. To address the challenges stemming from the heterogeneity of these systems, the need for parallelism, and the gap in computation vs. CPU-GPU communication speeds, MAGMA research is based on the idea that optimal software solutions with Hybrid/heterogeneous hardware, balancing the strengths of different algorithms within a single framework.

CURRENT RESEARCH

- Symmetry and Positivity: Non-Symmetric Eigenvalue Problems
- Singular Value Decomposition
- Mixed-precision algorithms

PERFORMANCE RESULTS

- **CPU**
 - Intel Xeon E5-2698 v2, 2.2 GHz, 8 cores, s/d gemm peak 128/65 GFlop/s
 - NVIDIA GeForce GTX 1080, 1536 CUDA cores, 11.25 TFlop/s
 - Intel Xeon E5-2698 v2, 2.2 GHz, 8 cores, s/d gemm peak 128/65 GFlop/s
 - NVIDIA GeForce GTX 1080, 1536 CUDA cores, 11.25 TFlop/s

- **GPU**
 - NVIDIA GeForce GTX 1080, 1536 CUDA cores, 11.25 TFlop/s
 - Intel Xeon E5-2698 v2, 2.2 GHz, 8 cores, s/d gemm peak 128/65 GFlop/s
 - NVIDIA GeForce GTX 1080, 1536 CUDA cores, 11.25 TFlop/s
 - Intel Xeon E5-2698 v2, 2.2 GHz, 8 cores, s/d gemm peak 128/65 GFlop/s

PHOTOS

- A “bar-and-board” performance plot for “SSSYR” vs. the number of CUDA cores.
- Reduction in message-passing time for eigenvalue computations (double precision).

DOWNLOAD THE LIBRARY AT

- [http://icl.eecs.utk.edu/magma/]()