Integrating Deep Learning in Domain Science at Exascale (MagmaDNN)

Stan Tomov
Research Assistant Professor
University of Tennessee

Rick Archibald, Eduardo D’Azevedo, Markus Eisenbach, and Junqi Yin
Oak Ridge National Laboratory

Edmond Chow, Georgia Institute of Technology

Jack Dongarra, Rocco Febbo, Florent Lopez, Daniel Nichols, and Kwai Wong
University of Tennessee, Knoxville

DOD HPCMP virtual seminar
December 8, 2020
Dense Linear Algebra

Needed in a wide variety of domain sciences
Can power ML and data analytics too:

• **Linear systems:** \(\text{Solve } Ax = b \)
 - Computational electromagnetics, material science, applications using boundary integral equations, airflow past wings, fluid flow around ship and other offshore constructions, and many more

• **Least squares:** \(\text{Find } x \text{ to minimize } || Ax - b || \)
 - Computational statistics (e.g., linear least squares or ordinary least squares), econometrics, control theory, signal processing, curve fitting, and many more

• **Eigenproblems:** \(\text{Solve } Ax = \lambda x \)
 - Computational chemistry, quantum mechanics, material science, face recognition, PCA, data-mining, marketing, Google Page Rank, spectral clustering, vibrational analysis, compression, and many more

• **SVD:** \(A = U \Sigma V^* \) (\(Au = \sigma v \) and \(A^*v = \sigma u \))
 - Information retrieval, web search, signal processing, big data analytics, low rank matrix approximation, total least squares minimization, pseudo-inverse, and many more

• **Many variations depending on structure of \(A \)**
 - \(A \) can be symmetric, positive definite, tridiagonal, Hessenberg, banded, sparse with dense blocks, etc.

• **DLA is crucial to the development of sparse solvers**
High-performance LA for modern architectures

- Leverage latest numerical algorithms and building blocks
 - MAGMA, PLASMA, SLATE (DOE funded)
 - MAGMA Sparse, POMPEI project*

- Polymorphic approach
 - Use MAGMA sub-packages for various architectures;
 - Provide portability through single templated sources using C++

- Programming model
 - BLAS tasking + scheduling

- Open standards
 - OpenMP4 tasking + MPI

Use of BLAS for portability

<table>
<thead>
<tr>
<th>Software/Algorithms follow hardware evolution in time</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LINPACK (70’s) (Vector operations)</td>
<td>Level 1 BLAS</td>
</tr>
<tr>
<td>LAPACK (80’s) (Blocking, cache friendly)</td>
<td>Level 3 BLAS</td>
</tr>
<tr>
<td>ScaLAPACK (90’s) (Distributed Memory)</td>
<td>PBLAS</td>
</tr>
<tr>
<td>PLASMA (00’s) New Algorithms (many-core friendly)</td>
<td></td>
</tr>
</tbody>
</table>

MAGMA

- Hybrid Algorithms (heterogeneity friendly)

Use of BLAS is in the heart of ML performance and portability too!

Use of BLAS

- Level 1 BLAS
- Level 3 BLAS
- PBLAS

BLAS on tiles + DAG scheduling

BLAS tasking

- (CPU / GPU / Xeon Phi)
- hybrid scheduling
HPC software design – use Level 3 BLAS

Nvidia **P100**, 1.19 GHz, Peak DP = 4700 Gflop/s

- **dgemm** BLAS Level 3
- **dgemv** BLAS Level 2
- **daxpy** BLAS Level 1

Matrix size (N), vector size (NxN)

- 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

Gflop/s

- 0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800

Nvidia P100

The theoretical peak double precision is 4700 Gflop/s

CUDA version 8.0
What other LA is needed for Data Analytics?

• Traditional libraries like MAGMA can be used as backend to accelerate the LA computations in data analytics applications

• Need support for
 1) New data layouts, 2) Acceleration for small matrix computations, 3) Data analytics tools

Need data processing and analysis support for
Data that is multidimensional / relational

Small matrices, tensors, and batched computations

- Fixed-size batches
- Variable-size batches
- Dynamic batches
- Tensors
Data Analytics and LA on many small matrices (Batched LA)

Data Analytics and associated with it Linear Algebra on small LA problems are needed in many applications:

- Machine learning,
- Data mining,
- High-order FEM,
- Numerical LA,
- Graph analysis,
- Neuroscience,
- Astrophysics,
- Quantum chemistry,
- Multi-physics problems,
- Signal processing, etc.

Machine learning

Convolution of Filters F_i (feature detection) and input image D:
- For every filter F_i and every channel, the computation for every pixel value $O_{n,k}$ is a tensor contraction:
 \[O_{n,k} = \sum D_{n,i} F_{i,k} \]
- Plenty of parallelism; small operations that must be batched
- With data "reshape" the computation can be transformed into a batched GEMM (for efficiency; among other approaches)

Applications using high-order FEM

- Matrix-free basis evaluation needs efficient tensor contractions,
 \[C_{i1,i2,i3} = \sum_k A_{k,i1} B_{k,i2,i3} \]
- Within ECP CEED Project, designed MAGMA batched methods to split the computation in many small high-intensity GEMMs, grouped together (batched) for efficient execution:
 \[\text{Batch}_{i3} \{ C_{i3} = A^T B_{i3}, \text{ for range of } i3 \} \]
Programming model: BLAS + scheduling
ML also construct compute graphs and schedule execution

MAGMA Dynamic

Left-looking hybrid Cholesky

MAGMA runtime environment

Execution trace with hybrid task scheduling

4 GPUs + CPU

Time

Note:
- MAGMA and LAPACK look similar
- Difference is lines in red, specifying data transfers and dependencies
- Differences are further hidden in a dynamic scheduler making the top level representation of MAGMA algorithms almost identical to LAPACK
Main Classes of Algorithms in MAGMA

• Hybrid algorithms
 • Use both CPUs and GPUs
• GPU-only algorithms
 • Entirely GPU code
Main Classes of Algorithms in MAGMA

- **Hybrid algorithms**
 - Use both CPUs and GPUs

- **GPU-only algorithms**
 - Entirely GPU code

- **Out-of-GPU memory algorithms**
 - LA that is too large to fit into the main CPU/GPU memory

Yuechao Lu, et al. on out-of-GPU memory GEMMs in RSVD, TASMANIAN, etc.
Main Classes of Algorithms in MAGMA

- **Hybrid algorithms**
 - Use both CPUs and GPUs
- **GPU-only algorithms**
 - Entirely GPU code
- **Out-of-GPU memory algorithms**
 - LA that is too large to fit into the main CPU/GPU memory
- **Mixed-precision LA**
 - Use new hardware features, e.g., Tensor Cores
 - Posters (GTC’18 2nd place, ISC’18 1st place; 11K downloads in a month)
Main Classes of Algorithms in MAGMA

• Hybrid algorithms
 • Use both CPUs and GPUs

• GPU-only algorithms
 • Entirely GPU code

• Out-of-GPU memory algorithms
 • LA that is too large to fit into the main CPU/GPU memory

• Mixed-precision LA
 • Use new hardware features, e.g., Tensor Cores

• Energy efficient
 • Build energy awareness and tradeoff with performance

... and 76 Gflop/Watt using mixed-precision!
Main Classes of Algorithms in MAGMA

• Hybrid algorithms
 • Use both CPUs and GPUs

• GPU-only algorithms
 • Entirely GPU code

• Out-of-GPU memory algorithms
 • LA that is too large to fit into the main CPU/GPU memory

• Mixed-precision LA
 • Use new hardware features, e.g., Tensor Cores

• Energy efficient
 • Build energy awareness and tradeoff with performance

• Batched LA
 • LA on many small matrices
Main Classes of Algorithms in MAGMA

- Hybrid algorithms
 - Use both CPUs and GPUs
- GPU-only algorithms
 - Entirely GPU code
- Out-of-GPU memory algorithms
 - LA that is too large to fit into the main CPU/GPU memory
- Mixed-precision LA
 - Use new hardware features, e.g., Tensor Cores
- Energy efficient
 - Build energy awareness and tradeoff with performance
- Batched LA
 - LA on many small matrices
- FFT
 - FFTs, convolutions, auxiliary routines (transposes, matricizations, etc.)

Strong scalability of 3D FFT on Summit (N = 1024)

Memory bound scalability peak:
- 76 Gflop/s per node
- Assuming max bandwidth
 2 x 2 x 12.5 GB/s = 50 GB/s
- Achieved performance is
 1223/32 = 38 Gflop/s per node
 or ~25 GB/s (this is maximum if there is no duplexing)
AI, ML, NN, DNN, data analytics

Many engineering problems can be solved using data-driven AI-based simulations

✓ **Artificial Intelligence (AI):** science and engineering of making intelligent machines to perform the human tasks (John McCarthy, 1956). AI applications is ubiquitous.

✓ **Machine learning (ML):** A field of study that gives computers the ability to learn without being explicitly programmed (Arthur Samuel, 1959). A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E (Tom Mitchell, 1998).

✓ **Neural Network (NN):** Neural Network modeling, a subfield of ML is algorithm inspired by structure and functions of biological neural nets

✓ **Deep Neural Network (DNN):** (aka deep learning): an extension of NN composed of many layers of functional neurons, is dominating the science of modern AI applications

✓ **Supervised Learning (SL):** A class in ML, dataset has labeled values, use to predict output values associated with new input values.
How to build a NN

1. Define a cost/loss function C, e.g., the mean squared error (MSE).
2. Minimize $C(w, b)$ as a function of the weights (w) and biases (b), casting it as an optimization problem using the gradient descent algorithm.

- Define a NN to compute predictions $f(w, b, x)$ as function of w, b, and data x
- A node in the neural network is a mathematical function or activation function which maps input to output values.
- Weights ($w = w - \lambda \nabla C$) and bias (b) are the sets of parameters to be determined
- Many nodes form a neural layer, links connect layers together, defining a NN model
- Activation function (σ), is generally a nonlinear data operator which facilitates identification of complex features.

- To compute the gradient ∇C we need to compute the gradients ∇C_x separately for each training input, x, and then average them, $\nabla C = 1/n \sum \nabla C_x$. Unfortunately, when the number of training inputs is very large this can take a long time, and learning thus occurs slowly.
- A way is to use stochastic gradient descent to speed up learning. The idea is to estimate the gradient ∇C by computing a small sample of randomly chosen training inputs, refer to as a mini-batch of input (mini-batched SGD).
- By averaging over this small sample it turns out that we can quickly get a good estimate of the true gradient ∇C, and this helps speed up gradient descent, and thus learning.
- Another randomly chosen mini-batch are selected and trained, until all the exhausted the training inputs are used. It is said to complete an epoch (iteration) of training, then more iteration.
How to build a NN

• There are many parameters determining a NN and possible applications
 – How many layers, what type of layers, sizes, connectivity, what computation graph, activations functions, etc. (model hyperparameters)
 – Algorithm hyperparameters – related to training, like learning rate, mini-batch, etc.

• Examples of different NNs and applications
 – Multilayer Perceptron (MLP) and Convolutional NNs (CNNs) have “regular (steady) input and output” (feedforward/no cycles) Mainly used for regression and image classification
 – Recurrent Neural Networks (RNNs) have “time (step) dependent varying size of input” and “irregular” output Used in speech, text, image, video recognition/classification
 – Generative Adversarial Networks (GANs) have a pair of NNs gaming against each other – learning to generate new data with the same statistics as the training set Used in unsupervised learning, semi-supervised learning, fully supervised learning, and reinforcement learning.
 – Reinforcement Learning Software agents take actions in order to maximize the notion of cumulative reward Used in robot control, elevator scheduling, telecommunications, backgammon, checkers and Go
 – ...

• Networks become more complicated, DNNs
LA Operations in DNNs

- **Matrix-matrix (GEMM) multiplications**
 For performance computations must be organized in terms of GEMMs:

\[
A_0 = X \\
Z_1 = W_1 A_0 + b_1 \\
A_1 = \sigma_1 (Z_1) \\
\ldots \\
Z_L = W_L A_{L-1} + b_L \\
A_L = \sigma_L (Z_L)
\]

\[
\frac{dZ}{dW} = A^T / \text{nb} \\
\frac{dZ}{db} = \text{np.sum}(dZ, \text{axis}=1, \text{keepdims}=\text{True}) / \text{nb}
\]
LA Operations in DNNs

- Matrix-matrix (GEMM) multiplications
 For performance computations must be organized in terms of GEMMs
- LA can be sparse, or dense, low-rank matrices, etc.
- Batched LA
- Convolutions in Convolutional NNs (CNNs), with various ways to compute
 - Directly using batched LA
 - Batched GEMMs
 - FFTs – convolutions $f * g$ of images f and filers g can be accelerated through FFT, as shown by the following equality, consequence of the convolution theorem:
 \[
 f * g = \text{FFT}^{-1} \left[\text{FFT}(f) \cdot \text{FFT}(g) \right],
 \]
 where \cdot is the Hadamard (component-wise) product, following the ‘.*’ Matlab notation
 - Winograd
- Use of multi and mixed-precision calculations
MagmaDNN is HP Data Analytics and ML framework built around the MAGMA libraries aimed at providing a modularized and efficient tool for training DNNs.

MagmaDNN makes use of the highly optimized MAGMA libraries giving significant speed boosts over other modern frameworks.
MagmaDNN

Applications

High-performance data analytics and machine learning for many-core CPUs and GPU accelerators

MAGMA Templates

Scalable LA on new architectures
Data abstractions and APIs
Heterogeneous systems portability

SLATE
Tile algorithms
LAPACK++
BLAS++

ScaLAPACK API
MPI

MAGMA (dense) MAGMA Batched MAGMA Sparse

Single Heterogeneous Node

Shared memory

OpenMP MKL ESSL cuBLAS ACML

LA libraries Standard LA APIs Run-time/comm. APIs Vendor Libraries

Speedup vs. Matrix sizes

SVD performance speedup

- MAGMA-2
- MAGMA
- MKL
- EIGEN
Scaling ML AI + HPC simulations to Exascale

- A position paper addressing challenges in integrating ML & traditional compute-intensive HPC simulations

- Many ML/DL frameworks (TensorFlow, PyTorch, MxNet, etc.)
 - developed by industry;
 - often targeting cloud environments for data-driven applications;
 - they are not necessarily suitable for scaling HPC simulations on large-scale supercomputers

- To address the issues, we build a software infrastructure specifically for integrating ML and HPC simulations on petascale to exascale heterogeneous systems: DNN + Workflow

 1) Build a new C++ modular DNN framework, MagmaDNN, which is based on the LA software, MAGMA, for portability and scalability
 2) Provide a parallel workflow system to run combinations of ML & HPC codes
 3) Introduce algorithms for scheduling, auto tuning based and asynchronous solvers
 4) Discuss two DOE applications, materials science and climate data compression
Design process

- Similar to TF or PyTorch
- MagmaDNN is designed/optimized with this training paradigm in mind. However, it is customizable.
Workflow

- **Load Data**: Read-in any CSV, image, or other file necessary for training.
- **Preprocessing**: Shape data and store in tensors.
- **Create/Load Model**: Restore a saved model or create a new one using MagmaDNN’s Model class. Set hyperparameters.
- **Train Model**: Fit the network using SGD.
- **Predict**: Use the fitted weights to predict class based on new input.
- **Export Model**: Save model to be used again.
Neural Network Ideas

Neural Networks are typically composed of layers of linear transformations wrapped by activation functions. The network is represented by some function f.

After optimizing some loss criterion w.r.t. the parameters of f, the function (or “network”) becomes an accurate predictor of highly abstracted data.

Other common, more complicated network types exist: CNN, RNN, GANs, Belief Networks, Boltzmann
Neural Network Ideas (cont.)

- **Layers**
 - Neural Networks are comprised of several layers put together.
 - **Available Layers:**
 - Input, Output (first and last layers of the network)
 - Fully Connected (dense, linear transformation)
 - Activation (activation function)
 - Conv2D, Pooling2D (convolutional layer)
Compute Graph

- All operations/math are put into a compute graph.
- Non-Eager
- Gradient Support, Grad Tables
All Tensor operations are wrapped in an Operation class, which is used in the compute graph. Operations also provide a modular interface for creating and manipulating Tensors. They are created as shown:

```
Operation<float> *var = op::var<float> ("Var Name", {5, 4}, {GLOROT, {0.5, 0.2}}, HOST);
```

- **Var** creates and returns a new variable.
- **Tensor shape**
- **Tensor initializer. Options are:** GLOROT, UNIFORM, CONSTANT, ZERO, ONE, DIAGONAL, IDENTITY, NONE
- **Tensor memory type. Options are:** HOST, DEVICE, MANAGED, CUDA_MANAGED
Variables are Operations that wrap around Tensors. Operations are also used for representing some math operation in the computational graph. For example:

```cpp
Operation<float> *result = op::add(op::matmul(A, x), b);
Tensor<float> *result_tensor = result->eval();
```

This constructs a compute graph and `eval()` evaluates it into a Tensor. Available operations are: Variable, Tanh, Sigmoid, Add, and Matmul. Since all of these are inherited from Operation, it is simple to create/add new operations.
auto A = op::var<float> ("A", {4, 5}, {GLOROT, {1.5, 2.0}}, MANAGED);
auto X = op::var<float> ("X", {5, 4}, {UNIFORM, {0.0, 1.0}}, MANAGED);
auto B = op::var<float> ("B", {4, 4}, {DIAGONAL, {1, 2, 3, 4}}, MANAGED);

/* compute some math operations */
auto result = op::add(op::matmul(A, X), B);
Tensor<float> *result_tensor = result->eval();

/* use results */
delete result; /* only need to delete head of tree */
delete result_tensor;
Memory Manager

- Core Memory Kernel
- 4 memory types:
 - HOST (cpu memory)
 - DEVICE (gpu memory)
 - MANAGED (internal managed)
 - CUDA_MANAGED (cuda managed)
- Supports interactions between all memory types
- Managed memory types must be synced!
Tensors

Data with multiple axes.

Everything in MagmaDNN uses tensors.
Layers

Layers are a set of weights/biases and put a forward-prop function on the compute graph. For instance:

```cpp
layer::FullyConnectedLayer<float> *fc = layer::fullyconnected(input->out(), n_units);
```

This creates a weight, w, and bias, b, tensor and puts \([W*input->out() + b]\) onto the head of the compute graph defined by \(input->out()\).
Layers (Full Example)

```cpp
auto data = op::var<float> ("data", {n_batches, size}, {UNIFORM, {-1.0, 1.0}}, DEVICE);

auto input = layer::input(data);
auto fc1 = layer::fullyconnected(input->out(), n_hidden_units);
auto act1 = layer::activation(fc1->out(), layer::TANH);
auto fc2 = layer::fullyconnected(act1->out(), n_output_classes);
auto act2 = layer::activation(fc2->out(), layer::SIGMOID);
auto output = layer::output(fc2->out());

Tensor<float> *forward_prop_result = output->out()->eval();
```
Training (example)

Tensor<float> data ({60000, 785}, HOST);

io::read_csv_to_tensor(data, "mnist_data_set.csv");

std::vector<Layer<float>> layers_vector;

/* Create Layers in Here as Shown Before... */

Optimizer<float> optimizer = optimizer::DistributedGradientDescentOptimizer(0.05);

Model<float> model (layers_vector, optimizer, batch_size);

model.fit(data, n_epochs);
Distributed Training

- Many node training
- Averages gradients
- Implemented many strategies and optimizations (using CUDA-aware MPI)

Master-worker reduce

Ring Allreduce

MPI_Allreduce

Asynchronous training
Accelerating CNNs in MagmaDNN with FFT

- Convolutions $D_{i,c} \ast G_{k,c}$ of images $D_{i,c}$ and filters $G_{k,c}$ can be accelerated through FFT, as shown by the following equality, consequence of the convolution theorem:

 $$D_{i,c} \ast G_{k,c} = \text{FFT}^{-1} \left[\text{FFT}(D_{i,c}) \ast \text{FFT}(G_{k,c}) \right],$$

 where \ast is the Hadamard (component-wise) product, following the ‘\ast’ Matlab notation

- Developed mixed-precision (FP16-FP32) FFT using the GPU’s Tensor Cores (TC) acceleration
 - Dynamic splitting to increase the FP16 accuracy, while using high-performance TC

 $$X_{\text{FP32}}(:) = s_1 X_{\text{FP16}}(:) + s_2 X_{\text{FP16}}(:)$$

 $$[X1 \ X2] = \text{FFT}([X1 \ X2] \ 	ext{in FP16}+) \ (\text{e.g., go to radix } 4, \text{ where the FFT matrix is exact in FP16})$$

 $$\text{FFT} (X) \approx s_1 X1 + s_2 X2$$
Reduced and Mixed Precision: scaling performance on new hardware

- Recursive Radix-4 or Radix-8 FFT implemented as batched matrix multiplication on tensor cores
- 4x4 Fourier matrices are exactly representable in FP16, rational approximation for 8x8 Fourier matrices
- 2D FFT and 3D FFT implemented as batched 1D FFT
- This approach has much higher accuracy compared to FFT of FP16

Key step is expressing vector in FP32 as scaled sum of FP16 vectors

\[
x_{fp32}(:) = s1_{fp32} \times x_{fp16}(:) + s2_{fp32} \times x_{fp16}(::)
\]

Enhance performance for large scale image data applications.
Accuracy of the mixed-precision (FP16-FP32) FFT

Reference:

https://www.jics.utk.edu/recsem-reu/recsem18
Accelerating CNNs with Winograd’s minimal filtering algorithm

- FFT Convolution is fast for large filters;
 Typical filters are small, e.g., 3x3, where Winograd’s algorithm has been successful;

In 2D, convolution of tile D of size 4x4 with filter F of size 3x3 is computed as

\[
D \ast F = A^T \begin{bmatrix} G & D & G^T \end{bmatrix} \ast \begin{bmatrix} B^T & D & B \end{bmatrix} A
\]

where B, G, and A are given on the right:

\[
B^T = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}
\]

\[
G = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix}
\]

\[
A^T = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & -1 & -1 \end{bmatrix}
\]

- Computing for a number of filters, sliding the tile over a batch of images, each with a number of channels, can be expressed as batched gemms, e.g.,

<table>
<thead>
<tr>
<th>batch</th>
<th>m</th>
<th>n</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>16x64</td>
<td>12544</td>
<td>64</td>
<td>3</td>
</tr>
<tr>
<td>16x64</td>
<td>12544</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>16x16</td>
<td>12544</td>
<td>128</td>
<td>64</td>
</tr>
<tr>
<td>16x16</td>
<td>12544</td>
<td>128</td>
<td>128</td>
</tr>
</tbody>
</table>

(sizes coming from VGG-16 CONVOLUTION LAYERS)
Install and Build

Dependencies:
- Cuda (>9.0)
- CuDNN (>6.0)
- Magma (>2.3.0) (>2.5.0 for half-precision)

Download MagmaDNN from https://bitbucket.org/icl/magmadnn
or clone it using

hg clone https://bitbucket.org/icl/magmadnn

Compiling/Installing: Copy the make.inc file from make.inc-examples/ to MDNN’s root, change any necessary settings in make.inc and then run

sudo make install

Testing: You should now be able to run the below command

make testing && cd testing && sh run_tests.sh

this will run the default testers for the MagmaDNN package.
Hyperparameter optimization

openDIEL is designed to scaling compute and data intensive applications

- www.bitbucket.org/cfdl/opendiel
- An open source light weight parallel workflow framework designed to scale and run inter-disciplinary simulations on large-scale heterogeneous HPC platforms.
- Schedule and run a collection of user’s codes (scripts, serial, and parallel programs) under a single MPI executable, similar to swift-T, is ideal for combining compute-intensive and data-driven applications
- Provide two communication interfaces, a direct one to one communicator and a asynchronous tuple space communicator, for exchanging data among different programs.
- Show workflows for materials sciences and climate applications

OpenDIEL architecture:
(A) GUI launcher creates a configuration file for the workflow, and executive will read this file to set up workflows;
(B) After initial configuration, executive starts all modules;
(C) The modules have access to the communication library, and directly communicate or utilize tuple-space communication.
MagmaDNN training performance (single V100 GPU)

Data: 60,000 images, 28x28 pixels each

<table>
<thead>
<tr>
<th>Parameter/Setting Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPU</td>
<td>Nvidia 1050 Ti</td>
</tr>
<tr>
<td>CPU</td>
<td>Intel Xeon X5650 @ 2.67GHz x 12</td>
</tr>
<tr>
<td>OS</td>
<td>Ubuntu 16.04 LTS</td>
</tr>
<tr>
<td>Epochs</td>
<td>5</td>
</tr>
<tr>
<td>Batch Size</td>
<td>100</td>
</tr>
<tr>
<td>Learning Rate</td>
<td>0.2</td>
</tr>
<tr>
<td>Weight Decay</td>
<td>0.001</td>
</tr>
<tr>
<td>#Hidden Units Layer</td>
<td>528</td>
</tr>
</tbody>
</table>
MagmaDNN scalability and SGD speedup

Asynchronous Stochastic Gradient Descent

Asynchronous SGD compared to the classical synchronous SGD:
- ▲ Little to no synchronization or locking mechanism ⇒ better scalability
- ▼ Delayed gradient update ⇒ slower convergence.

Examples of ASGD algorithms:
- Shared-memory architectures: Hogwild!
- Distributed-memory architectures: Downpour SGD.

ASGD in MagmaDNN:
- Master worker: performs SGD iterations on global parameter.
- Slave workers: Compute local gradients.

Speedup vs. TensorFlow

![Graph showing speedup vs. number of GPUs for MagmaDNN and ASGD Peak]
Applications in Materials Science and Microscopy

Using openDIEL to combine DFT, ML, MC on exascale platform

Tight coupling of first principles statistical mechanics of materials to calculate the temperature dependence of materials - requires the calculations of many possible atomic configurations within these materials using a Monte Carlo approach, where the probability of the individual states would be evaluated using an expensive density functional theory calculation.

Train a surrogate model that can replace the expensive (in the order of multiple node hours per data point) first principles calculation within the Monte Carlo sampling of possible configurations.
Image Compression for Climate Science Simulation

Workflow to perform in-situ DL training for both compressed and original images

- it is possible to train in situ networks (RNNs) to reduce the error in lossy compression—obtaining multiple orders of improvement.
- Going forward, it will be necessary to further improve in situ compression and analysis in order to maximize discovery with HPC simulations.
MagmaDNN benchmarks and testing examples ...

EEG-Based Control of a Computer Cursor Movement with Machine Learning. Part B
Students: Justin Kilmarx (University of Tennessee), David Saffo (Loyola University), Lucin Ng (The Chinese University of Hong Kong)
Mentors: Xiaopeng Zhao (UTK), Stanimire Tomov (UTK), Kwai Wong (UTK)

Unmixing 4-D Ptychographc Image: Part B: Data Approach
Student: Zhen Zhang(CUHK), Huanlin Zhou(CUHK), Michaela D. Schaffner(UTK)
Mentors: R. Archibald(ORNL), S. Tomov(UTK), A. Haidar(UTK), K. Wong(UTK)

Accelerating FFT with half-precision floating point hardware on GPU
Anumeena Sorna (NITT) & Xiaohua Cheng (HKUST)
Mentor: Eduardo D’Azevedo (ORNL) & Kwai Wong (UTK)

Design and Acceleration of Machine-Learning back-ends on modern Architectures
Students: Alex Gessinger(SRU), Sihan Chen(CUHK)
Mentors: Dr. Stanimire Tomov(UTK), Dr. Kwai Wong(UTK)

Abstract
Convolutional Neural Networks are extremely useful in computer vision and many other related fields, but the computation of them tends to be extremely expensive in many cases. The aim of this research project is to accelerate Convolutional Neural Networks, while it is divided into two directions:
- To design a machine-learning back-end on GPU using the MAGMA library to using efficient algorithms;
- To analyze the performance of various machine learning back-ends.
Current work and Future directions

• Development in AI software and tools that scale well on Exascale systems is important, and even more critical for AI frameworks that also work well across the existing spectrum of exascale applications

• Performance portability and unified support on GPUs/CPUs
 – C++ templates w/ polymorphic approach;
 – Parallel programming model based on CUDA, OpenMP task scheduling, and MAGMA APIs.
 – Shows potential; still lacks the arsenal of features present in other popular frameworks

• Hyperparameter optimization
 – Critical for performance to provide optimizations that are application-specific;
 – A lot of work has been done (on certain BLAS kernels and the approach) but still need a simple framework to handle the entire library;
 – Current hyperparameter optimization tool must be further extended in functionalities
 – Add visualization and OpenDIEL to support ease of GPU deployment over large scale heterogeneous systems

• Extend functionality, kernel designs, and algorithmic variants
 – BLAS, Batched BLAS, architecture and energy-aware
 – New algorithms and building blocks, architecture and energy-aware
 – Distribution strategies and (asynchronous) techniques for training DNN on large scale systems

• Use and integration with applications of interest
Collaborators and Support

MAGMA team
http://icl.cs.utk.edu/magma

PLASMA team
http://icl.cs.utk.edu/plasma

Collaborating partners
University of Tennessee, Knoxville
LLNL
ORNL
ANL
SANDIA
University of California, Berkeley
University of Colorado, Denver
TAMU
INRIA, France
KAUST, Saudi Arabia
University of Manchester, UK

CEED: Center for Efficient Exascale Discretizations