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ABSTRACT
The performance of the MPI’s collective communications is
critical in most MPI-based applications. A general algo-
rithm for a given collective communication operation may
not give good performance on all systems due to the differ-
ences in architectures, network parameters and the storage
capacity of the underlying MPI implementation. In this
paper, we discuss an approach in which the collective com-
munications are tuned for a given system by conducting a
series of experiments on the system. We also discuss a dy-
namic topology method that uses the tuned static topology
shape, but re-orders the logical addresses to compensate for
changing run time variations. A series of experiments were
conducted comparing our tuned collective communication
operations to various native vendor MPI implementations.
The use of the tuned collective communications resulted in
about 30%-650% improvement in performance over the na-
tive MPI implelementations.

1. INTRODUCTION
This project developed out of an attempt to build efficient
collective communications for a new fault tolerant MPI im-
plementation known as HARNESS FT-MPI [10]. At least 2
different efforts were made in the past to improve the per-
formance of the MPI collective communications for a given
system. They either dealt with the collective communica-
tions for a specific system or tried to tune the collective
communications for a given system based on mathematical
models or both. Lars Paul Huse’s paper on collective com-
munications [2] studied and compared the performance of
different collective algorithms on SCI based clusters. MAG-
PIE by Thilo Kielman et. al. [1] optimizes collective com-
munications for clustered wide area systems. Though MAG-
PIE tries to find the optimum buffer size and optimum tree
shape for a given collective communication on a given sys-
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tem, these optimum parameters are determined using a per-
formance model called the parametrized LogP model. Math-
ematical models based on few network parameters in the
system do not adequately take into account the overlap in
communication that occurs in collective communications.

In this paper, we discuss an approach in which the opti-
mum algorithm and optimum buffer size for a given collec-
tive communication on a system is determined by conduct-
ing experiments on the system. This approach follows the
strategy that is used in efforts like ATLAS [7] for matrix
operations and FFTW [6] for Fast Fourier Transforms. The
experiments were conducted in several phases. In the first
phase, the best buffer size for a given algorithm for a given
number of processors is determined by evaluating the per-
formance of the algorithm for different buffer sizes. In the
second phase, the best algorithm for a given message size
is chosen by repeating the first phase with a known set of
algorithms and choosing the algorithm that gives the best
result. In the third phase, the first and second phase are
repeated for different number of processors.

The large number of buffer sizes and the large number of
processors significantly increase the time for conducting the
above experiments. Modified hill-descent heuristics to re-
duce the number of experiments to find the optimal buffer
size and optimal algorithm for a given message size for a
given collective communication on a given number of pro-
cessors are developed and tested. These heuristics reduce
the number of experiments by factors of 10-100.

In Section 2, we examine the different algorithms that are
available in our repertoire. In Section 3, we describe the ma-
chines we used, the experiments conducted on the machines,
and analysis of the results. In Section 4, we describe the hill
descent heuristics that are used in reducing the number of
experiments to find the oprimal parameters. In Section 5,
we discuss the dynamic topology method that reorders the
processes within a given toplogy for communication. In Sec-
tion 6, we present some conclusions. Finally in Section 7,
we outline the future direction of the research.

2. ALGORITHMS FOR COLLECTIVE COM-
MUNICATIONS

A crucial step in our effort is to develop a set of competent
algorithms. Table 1 lists the various algorithms used for
different collective communications.



Table 1: Collective communication algorithms

Collective Communications Algorithms

Broadcast Sequential, Chain, Binary and Binomial
Scatter Sequential, Chain and Binary
Gather Sequential, Chain and Binary
Reduce Gather followed by operation, Chain, Binary, Bino-

mial and Rabenseifner
Allreduce Reduce followed by broadcast, Allgather followed by

operation, Chain, Binary, Binomial and Rabenseifner
Allgather Gather followed by broadcast
Allgather Circular
Barrier Extended ring, Distributed binomial and tournament

For algorithms that involve more than one collective com-
munication (e.g., reduce followed by broadcast in allreduce),
the optimized versions of the collective communications are
used. The segmentation of messages is implemented for se-
quential, chain, binary and binomial algorithms for all the
collective communication operations. The following subsec-
tions briefly describe the various algorithms.

2.1 Sequential tree
In this topology, the root sends the messages successively
to all the other processors. If there are n processors, this
algorithm takes n-1 steps to complete. Since the latencies
are not chained, this algorithm gives good performance in
wide-area networks.

2.2 Chain and Ring trees
In the chain and ring trees, the root sends to process 1 and
process N-1 receives from N-2. Process r ∈ [1. . . N-2]
receives from r-1 and sends to r+1. Though process N must
wait for N-1 time steps for the reception of the message, the
pipelined nature of the algorithm gives successive operations
high throughput.

2.3 Binary tree
Each node but the root receives from one node, and all
sends to up to two other nodes. This algorithm takes about
O(log2N) steps to complete.

2.4 Binomial tree
The definition of the binomial tree as given in the paper by
Laurs Paul Huse is ”In s ∈ [1... ln] steps, process 0 in all
groups send to rx = b(2 + maxr)/2c which receive from 0.
All groups with more than two processes are then split in
φ = [0...rx−1] and ψ = [rx...maxr] and new ranks r′ = r−rx

assigned to ψ.”

In most cases, the binomial tree algorithm gives better per-
formance than the binary tree.

2.5 Rabenseifner’s Algorithm
Rabenseifner [4] has implemented a version of reduce and
allreduce which complete in O(N)+O(count) time where N
is the number of processors and count is the message size.
Due to the distribution of computation on all the nodes, the
bandwidth in the algorithm is about 2.7 times better than
the bandwidth in the binary algorithm. But the latency is

worse. Hence the algorithm must be used if the message
size is bigger than a particular limit. This limit varies from
one system to another and has to be found by conducting
experiments on the system.

2.6 Circular Algorithm for Alltoall
In step s ∈ [1 ...N], each process r sends to (r+s)modN and
receives from (r-s+N)modN.

2.7 Distributed binomial for barrier
In step s ∈ [1... ln], process r sends to (r+s)mod N and re-
ceives from (r-s)mod N. At the end of ln steps, each process
is in synchronization with every other process.

2.8 Extended Ring for Barrier
This is similar to the ring algorithm except that after the
completion of a single ring, in which the root receives the
message from process N-1, another communication sequence
is initiated in which the root resends the message to process
1, process 1 to process 2 and so on till the message is finally
received by process N-2.

2.9 Tournament Algorithm for Barrier
In this algorithm[9], barrier is viewed as playing a tourna-
ment in which a process that recieves (wins a game) contin-
ues to wait for the next message (moves to the next game of
the tournament) while a process that sends (loses a game)
exits out of contention. At the end of dlog2 Ne steps, process
0 broadcasts a message to the other processes.

3. EXPERIMENTAL SETUP AND RESULTS
The experiments consist of many phases. In the first phase,
we determine the best segment size for a given message size
for a given algorithm for a collective operation. The segment
sizes are powers of 2, multiples of the basic data type and
less than the message size. Having conducted the first phase
for all the algorithms, we determine the best algorithm for a
collective operation for a given message size. Message sizes
from the size of the basic data type to 1MB were evaluated.
This forms the second phase of the experiments. Though
we have conducted the experiments on only 8 processors,
the third phase of the experiments would be to evaluate
the results on a set of different number of processors. The
number of processors will be power of 2 and less than the
available number of processors. Our current effort is in re-
ducing the search space involved in each of the above phases
and still be able to get valid conclusions.



Figure 1: Different topologies for communications
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The experiments were conducted on 4 different systems. 2
of the systems are named Cetus and Torc, available in our
department.

The Cetus system is composed of 31 workstations connected
by 100 Mbps switched Ethernet. Each workstation is a 143-
MHz UltraSPARC processor, with 256-Mbytes memory, 16
KB on-chip instruction and data cache, 512 KB external
cache, 100 Mbps 100-Base-T Ethernet interface and 2.1-
Gbyte internal fast SCSI-2 disk running Solaris 2.5. The
Torc system is a collection of dual processor (300/450 MHz)
and single processor (450/600 MHz) Linux/NT machines
connected by 100Mbit Ethernet, Giganet and Myrinet in-
terconnections.

Figure 2: Broadcast Results(cetus)
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Figure 2 compares the performance of the algorithms for
broadcast with the mpich1.1.2 algorithm on Cetus machines
with 8 processors. Table 2 shows the optimal algorithm and
the optimal buffer size chosen for the Cetus system. Since
the Cetus machines are workstations connected by Ethernet
links, the optimal algorithm chosen is the binomial algo-
rithm. The mpich’s algorithm for broadcast is a type of
binomial algorithm and hence follows closely with the per-
formance of our algorithms up to message size of 8K. For
message sizes larger than 8K, the underlying network sends
messages in packets of 8K. Hence algorithms that segment
message into 8K packets perform better than mpich algo-
rithm that sends the entire message. Figure 3 shows the
prformance of different broadcast algorithms on cetus ma-

Table 2: Broadcast Results(cetus)

Message Size
(bytes)

Optimal Algo-
rithm

Optimal
Buffer Size
(bytes)

8 binomial 8
16 binomial 16
32 binary 32
64 binomial 64
128 binomial 128
256 binomial 256
512 binomial 512
1K binomial 1K
2K binomial 2K
4K binomial 4K
8K binomial 4K
16K binomial 8K
32K binomial 8K
64K binomial 8K
128K binomial 8K

chines and illustrates that selection of certain algorithms
like pure and chain can result in degradation of performance
over mpich broadcast.

Figure 3: Broadcast Result(cetus)
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Figure 4 and Table 3 show the results on Torc machines
with 8 processors running Linux and interconnected by 100Mbs
Ethernet. Because of the Fast Ethernet link, the overhead



associated with the communication dominates the gap times [3]
for the network on Torc. Since in binary and chain algo-
rithms, a processor communicates with only few other pro-
cessors, these algorithms are able to utilize the gap values
more efficiently than the other algorithms. Hence these algo-
rithms combined with message segmenting help in improving
the performance over mpich’s algorithm . The mpich’s bi-
nomial algorithm does not give a good performance on Torc
since a processor does not immediately send the next seg-
ment of a message to another processor as soon as the first
segment is sent.

Figure 4: Broadcast Results(torc)
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Table 3: Broadcast Results(torc)

Message Size
(bytes)

Optimal Algo-
rithm

Optimal
Buffer Size
(bytes)

8 binomial 8
16 binomial 16
32 binary 32
64 binomial 64
128 binomial 128
256 binomial 256
512 binomial 512
1K sequential 1K
2K binary 2K
4K binary 2K
8K binary 2K
16K binary 4K
32K binary 4K
64K chain 4K
128K chain 4K
256K chain 4K
512K chain 4K
1M binary 4K

Experiments were also conducted on the IBM SP2 system
available in JICS (Joint Institute of Computational Science).
The high performance switch has 150 MB/s peak band-
width. The SP2 has 34 nodes: 2 high nodes and 32 thin
nodes running AIX 4.2. Their configurations are:

High Nodes: POWERPC 604 8-way chips, running at 112

MHz, with 1 GByte of shared memory.

Old Thin Nodes: POWER2 SC chips, running at 120 MHz,
with 256 MBytes of memory and 2.2 GB disk drives each.

New Thin Nodes: POWER2 SC chips, running at 160 MHz,
with 256 MBytes of memory and 4.4 GB disk drives each.

The MPI collective algorithms were implemented on top of
IBM MPI, IBM’s implementation of MPI. The performance
of the collective algorithms was evaluated on the old thin
nodes using 8 processors and on a single high node using all
the 8 processors. The performance was compared with that
of IBM MPI.

Figure 5 and Table 4 show the results on old thin nodes.

Figure 5: Broadcast Results (IBM thin nodes)
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Table 4: Broadcast Results(IBM thin nodes)

Message Size
(bytes)

Optimal Algo-
rithm

Optimal
Buffer Size
(bytes)

8 sequential 8
16 sequential 16
32 sequential 32
64 binomial 64
128 sequential 128
256 sequential 256
512 binomial 512
1K sequential 1K
2K sequential 2K
4K binomial 2K
8K binary 4K
16K binary 4K
32K binomial 4K
64K binomial 4K
128K chain 4K
256K chain 4K
512K chain 4K
1M chain 32

The superior performance of the communication adapter re-
sults in very small gap values. Hence the binary and the



chain algorithms combined with message segmentation give
better performance than the IBM MPI algorithm for mes-
sage sizes larger than 8K bytes.

Figure 6 and Table 5 show the results on high node 8-way
SMPs. IBM MPI sends and receives take place through the
communication adapter. This results in large gap values for
communication between nodes on a SMP. These gap values
are utilized by the overlap in communication in binomial
algorithms. This results in superior performance over IBM
MPI which tries to use the same algorithm for communica-
tion on both thin and high nodes. Thus different algorithms
have to be used on the same system for different memory
models.

Figure 6: Broadcast Results (IBM high nodes)
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Table 5: Broadcast Results(IBM high nodes)

Message Size
(bytes)

Optimal Algo-
rithm

Optimal
Buffer Size
(bytes)

8 binomial 8
16 binomial 16
32 binomial 32
64 binomial 64
128 binomial 128
256 binomial 256
512 binomial 512
1K binomial 1K
2K binomial 2K
4K binomial 4K
8K binomial 4K
16K binomial 4K
32K binomial 4K

Figures 7- 12 and Tables 6- 9 show the results for other
collective communications.

4. REDUCING THE NUMBER OF EXPER-
IMENTS

In the experimental method described in the previous sec-
tions a large number of individual experiments have to be

Figure 7: Scatter
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Figure 8: Gather
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Figure 9: Reduce
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Figure 10: Allreduce
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Figure 11: Allgather
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Figure 12: Alltoall
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Table 6: Barrier(cetus)

procs Distributed
binomial

Tournament Ring mpich

2 1225.7 1368.8 1467.3 1090.2
4 2743.8 3119.2 4250.3 2798.5
8 20499.4 22272.4 39757.6 9094.2
16 31136.2 29162.3 48610.6 32712.9

Table 7: Barrier(torc)

procs Distributed
binomial

Tournament Ring mpich

2 383.7 551.5 501.8 387.0
4 7503.3 1511.6 17200.7 831.8
8 5441.5 9375.0 9457.9 1440.3
16 20126.9 10399.4 17413.3 3400.0

Table 8: Barrier(IBM thin nodes)

procs Distributed
binomial

Tournament IBM MPI

2 1503.3 2076.8 1836.0
4 3637.9 6138.6 3155.1
8 13671.8 13033.8 14323.5

Table 9: Barrier(IBM high nodes)

procs Distributed
binomial

Tournament IBM MPI

2 3836.5 129.3 107.0
4 6561.7 214.0 182.8
8 309.6 336.7 290.0



conducted. Even though this only needs to occur once, the
time taken for all these experiments can be considerable.

The experiments conducted consist of two stages, the pri-
mary set of steps is dependent on message size, number
of processors and MPI collective operation, i.e. the tuple
{message size, processors, operation}. For example 64KBytes
of data, 8 process broadcast. The secondary set of tests is
an optimization at these parameters for the correct method
(topology-algorithm pair) and segmentation size, i.e. the
tuple {method, segment size}.

4.1 Reducing the primary tests
Currently the primary tests are conducted on a fixed set
of parameters, in effect making a discrete 3D grid of points.
For example, varying the message size in powers of two from
8 bytes to 1 MByte, processors from 2 to 32 and the MPI
operations from Broadcast to All2All etc.

This produces an extensive set of results from which accu-
rate decisions will be made at run-time. This however makes
the initial experiments time consuming and also leads to
large lookup tables that have to be referenced at run time,
although simple caching techniques can alleviate this par-
ticular problem.

Currently we are examining three techniques to reduce this
primary set of experimental points.

1. Reduced number of grid points with interpolation. For
example reducing the message size tests from {8, 16,
32, 64.. 1MB} to {8, 1024, 8192.. 1MB}.

2. Using instrumented application runs to build a table
of only those collective operations that are required,
i.e. not tuning operations that will never be called, or
are called infrequently.

3. Using black box solvers with a reduced set of exper-
iments, so that complex non-linear relationships be-
tween points can be correctly predicted.

4.2 Reducing the secondary tests
The secondary set of tests for each {message size, proces-
sors, operation} are where we have to optimize the time
taken, by changing the method used (algorithm/topology)
and the segmentation size (used to increase the bi-sectional
bandwidth of links), i.e. {method, segment size}. Figure 13
shows the performance of four different methods for solving
an 8 processor MPI Scatter of 128KBytes of data. Several
important points can be observed. Firstly, all the meth-
ods have the same basic shape that follows the form of y
= exp(-x). Secondly, the results have multiple local optima,
and that the final result (segment size equal to message size)
is not usually the optimal but is close in magnitude to the
optimal.

The time taken per iteration for each method is not con-
stant, thus many of the commonly used optimization tech-
niques cannot be used without modification. For example in
figure 13, a test near the largest segment size is in the order
of hundreds of microseconds whereas a single test near the

Figure 13: Segment size verse time for various com-
munication methods
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smallest segment size can be in the order of a 100 seconds,
or two to three orders of magnitude larger.

For this reason, we have developed a number of hill decent
algorithms that reduce the search space to only the tests
close to the optimal values. The first is a Modified Gradi-
ent Decent (MGD), and the second is a Scanning Modified
Gradient Decent (SMGD).

The MGD method is a hill decent (negative gradient hill
climber) that searches for the minimum value starting from
the largest segment sizes and working in only one direction.
This algorithm had to be modified to look beyond the first
minimum found so as to avoid multiple local optima.

The SMGD method is a combination linear search and MGD,
where the order of the MGD search is controlled by a sorting
of current optimal values and rates of change of gradients.
The rates of change are used so that we can predict values
and thus prune more intelligently. This was required as in
many cases the absolute values were insufficient to catch re-
sults that interchanged rapidly. This method also includes a
simple threshold mechanism that is used to prune the search
in cases where a few methods were considerably better than
others and thus they can be immediately rejected.

Figure 14 shows the extent of the MGD and SMGD super-
imposed on the initial scatter results. The MGD extent is
marked by thicker lines and the SMGD by individual points.

Table 10 lists the relative performance of the algorithms in
terms of both experimental time required to find an optimal
solution as well as number of iterations. Linear is used to
indicate an exhaustive linear search, and speed up is linear
compared to the SMGD algorithm. As can be seen from the
table, reduction in total time spent finding the optimal can
be reduced by a factor of 10 to over 300. Smaller test sets
yield less speed up as unnecessary results are less expensive
than in larger tests with larger messages.



Table 10: Performance of optimizing algorithms)

Method Linear
Time

Linear
Itera-
tion

MGD
Time

MGD
Itera-
tion

SMGD
Time

SMGD
Itera-
tion

Speed
up

8 proc
1k
bcast

11.4 320 1.3 160 1.3 160 8.8

8 proc
128k
bcast

1324.7 600 21.4 280 10.2 160 130

8 proc
1k
scatter

82.2 320 3.2 160 1.3 100 63

8 proc
128K
scatter

12613.0 600 159.9 220 39.6 90 318
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5. DYNAMIC REORDERING OF TOPOLO-
GIES

Most systems rely on all processes in a communicator or pro-
cess group entering the collective communication call syn-
chronously for good performance, i.e. all processes can start
the operation without forcing others later in the topology to
be delayed. There are some obvious cases where this is not
the case:

1. The application is executed upon heterogeneous com-
puting platforms where the raw CPU power varies (or
load balancing is not optimal).

2. The computational cycle time of the application can be
non-deterministic as is the case in many of the newer
iterative solvers that may converge a t different rates
continuously.

Even when the application executes in a regular pattern, the
physical network characteristics can cause problems with the
simple logP model, such as when running between dispersed
clusters. This problem becomes even more acute when the

system latency is so low, that any buffering, while waiting
for slower nodes, drastically changes performance character-
istics as is the case with BIP-MPI [8].

5.1 Dynamic methodology
This method is a modification of the previous tuned method,
where we use the tuned topology as a starting point, but the
behavior of the method is varied between actual uses of the
collective operations at run-time. The method forces all the
non-root nodes to send a small start-acknowledge (SACK)
message to the root node, which the root uses to builds a
mapping from communicator rank to logical address within
the chosen topology dynamically. Each process, after having
sent its SACK, then receives its own topology information
via the root directly or by piggy backing the information on
a user data message depending on the MPI operation being
performed. This information can be split into multiple mes-
sages such as from whom do they receive from, and whom
do they send to, as the information becomes available. i.e.
a process might not be a leaf node in the tree topology but
still receives all its data before knowing whom to send to.

Figure 15 demonstrates this methodology. Case 1 is where
all processes within the tree are ready to run immediately
and thus performance is optimal. In Case 2, both processes
B and C are delayed and initially the root A can only send
to D. As B and C become available, they are added to the
topology. At this point we have to choose whether to add
the nodes depth first as in Case 2a or breadth first as in
Case 2b. Currently depth first has given us the best re-
sults. Also note that in CASE 1, if process B is not ready
to receive, it effects not only its own sub-tree, but depend-
ing on the message/segment size, it is possible that it would
block any other messages that A might send, such as to Ds
sub-tree etc. Faster network protocols might not implement
non-blocking sends in a manner that could overcome this
limitation without effecting the synchronous static optimal
case, and thus blocking send are often used instead.

Currently we are testing the cost of overhead incurred in us-
ing this technique for different network infrastructures. We
are also exploring the conditions needed for the automatic
use of this technique during the course of the computation.
Initial results have been promising, especially for large mes-



Figure 15: Reordering a tree topology

sages and network interfaces with very low latency, that rely
on the receivers to have already posted receives to allow
DMA message transfers. Worst case results have been equiv-
alent to the overhead for n-1 small message send/receives.
Best case has been within a few percent of optimal where
no re-ordering on the same example has produced multiples
of the optimal wall clock times, although this varies with
the operation, number of processors, data size and level of
initial synchronization.

The re-ording of topologies was tested using an 8 processor 1
MByte broadcast where several of the processes were delayed
on entering the collective operation by 200, 300 and 400 mil-
liseconds. The time for a non-delayed broadcast was around
425 milliseconds. The uncorrected boardcast took 896 mil-
liseconds. The corrected topologies took 702 milliseconds for
breadth first and 673 milliseconds for the depth first, repre-
senting a 22% and 25% improvement over the uncorrected
topology.

6. CONCLUSION
The optimal algorithm and the optimal buffer size for a given
message size depends on a given configuration of the system
including the gap values of the networks, memory models,
the underlying communication layer etc. The optimal pa-
rameters for a system can be best determined by conducting
experiments on the system. Our results show that the opti-
mal parameters obtained from the experiments gave better
performance than some native MPI implementations which
implement a single algorithm irrespective of the system pa-
rameters. The randomness of our results for a given system
also show that a generalized mathematical model will often
not be able to give optimal performance. Also, some mod-
ified hill-descent heuristics to reduce the number of exper-
iments were tested. The heuristics gave good performance
by reducing the number of experiments by factors of 10-300.
We have also shown that during application execution, dy-
namically altering the mapping between rank and position
within a topology can yield additional benefits in terms of
performance.

7. FUTURE WORK
More competent algorithms that give good performance on
some systems have to be implemented. Good heuristics for

conducting less experiments and still being able to obtain
optimal performance for a given message size and number
of processors have yet to be developed.
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