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The HPL-AI benchmark seeks to highlight ;.

the emerging convergence of

high-performance computing (HPC) and «
artificial intelligence (AI) workloads. While

traditional HPC focused on simulation runs

for modeling phenomena in physics,

chemistry, biology, and so on, the mathematical models that drive
these computations require, for the most part, 64-bit accuracy. On
the other hand, the machine learning methods that fuel advances in
Al achieve desired results at 32-bit and even lower floating-point
precision formats. This lesser demand for accuracy fueled a
resurgence of interest in new hardware platforms that deliver a mix
of unprecedented performance levels and energy savings to achieve
the classification and recognition fidelity afforded by
higher-accuracy formats.

HPL-AI strives to unite these two realms by delivering a blend of
modern algorithms and contemporary hardware while
simultaneously connecting to the solver formulation of the
decades-old HPL framework of benchmarking the largest
supercomputing installations in the world. The solver method of
choice is a combination of LU factorization and iterative refinement
performed afterwards to bring the solution back to 64-bit accuracy.
The innovation of HPL-Al lies in dropping the requirement of 64-bit
computation throughout the entire solution process and instead
opting for low-precision (likely 16-bit) accuracy for LU, and a
sophisticated iteration to recover the accuracy lost in factorization.
The iterative method guaranteed to be numerically stable is the
generalized minimal residual method (GMRES), which uses
application of the L and U factors to serve as a preconditioner. The
combination of these algorithms is demonstrably sufficient for high
accuracy and may be implemented in a way that takes advantage of
the current and upcoming devices for accelerating Al workloads.
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The idea for the benchmark is to solve a system of linear equations to 64-bit floating point accuracy by doing a
mixed-precision factorization of a matrix and compute an approximate solution from the low-precision
factorization (LU decomposition), and then use an iterative method like GMRES in 64-bit precision to iterate
with the approximate low-precision solution to compute a final solution obtaining the accuracy one would have
achieved by LU decomposition in 64-bit floating point arithmetic. The low-precision LU factors should be used
as a preconditioner in the iterative algorithm.

The benchmark should use the HPL benchmark harness (https://www.netlib.org/benchmark/hpl/) with a *
modification of the matrix generator. The generator will produce a non-symmetric matrix with the diagonal u IR
entries being the sum of the off-diagonal rows, this will force the matrix to be diagonally dominant. L R
A Lo
2 5 In an attempt to obtain uniformity across all computers in performance reporting, the algorithm used in solving
5 n the low-precision system of equations in the benchmark procedure must numerically conform ;o an LU
- factorization with partial pivoting. In particular, the operation count for the algorithm must be gnl +0(n2) double
o0
n-e Ttot precision floating point operations even though double-precision arithmetic is not required.
ax=pl, (nxe)”

The HPL harness computes a backward-error: | 4] [Ix]_+[»l , Where € is the machine precision in
64-bit floating point arithmetic (on IEEE machines this is ¢ =27") and 7 is the size of the problem. There is no

- : Ax—b]|
restriction on the problem size. FP64(”4°° ~ £60 (l’l)
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The implementation is allowed to do balancing to get the numbers within range of the floating point format, but
the time to do the balancing must be included in the time to solution.
16 bits The factorization can use mixed precision during its construction, e.g., the panel factorization and triangular

solves can be done in 32-bit arithmetic and the Schur complement (matrix-matrix multiply) can be computed in
16-bit arithmetic with 32-bit accumulation.

The computation rate is based on the time to solve the problem: factor the matrix in lower precision, perhaps 1 2 50
balance the matrix to prevent overflow, perform GMRES in 64-bit floating point arithmetic using the LU factors

as a preconditioner. If the implementation takes more than 50 iterations, the method should trigger a failure span { . . . }
and the run is not valid.
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In computing a rate of execution, 5"3 +5”Z operations ( 5"3*5"2 accounts for LU factorization and 27n°

for the subsequent back- and forward-solves) will be divided by the complete time to solution to achieve
operations per second.

As part of the submission of results we expect the submitter to provide a detailed explanation of the algorithm

for i = 1..50 used in the submission.

- -1
x;= (LU) We have provided a reference implementation whose purpose is to show how the benchmark could be

implemented. We do not expect this to be used in actually running of the benchmark. Optimizations should be
applied to achieve higher performance than the reference implementation could achieve. The reference
implementation can be found here on Bitbucket (https://bitbucket.org/icl/hpl-ai/)
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