The objective of the Software for Linear Algebra Targeting Exascale (SLATE) project is to provide fundamental dense linear algebra capabilities to the US Department of Energy and to the high-performance computing (HPC) community at large. To this end, SLATE provides basic dense matrix operations (e.g., matrix multiplication, rank-k update, triangular solve), norms, linear systems solvers, least square solvers, and singular value and eigenvalue solvers.

The ultimate objective of SLATE is to replace the venerable Scalable Linear Algebra PACKage (ScaLAPACK) library, which has become the industry standard for dense linear algebra operations in distributed-memory environments. However, after two decades of operation, ScaLAPACK is past the end of its lifecycle and overdue for a replacement, as it contains a heavyweight multi-core processor and a number of heavyweight hardware accelerators.

Primarily, SLATE aims to extract the full performance potential and maximum scalability from modern, many-node HPC machines with large numbers of cores and multiple hardware accelerators per node. For typical dense linear algebra workloads, this means getting close to the theoretical peak performance and scaling to the full size of the machine (i.e., thousands to tens of thousands of nodes). This is to be accomplished in a portable manner by relying on standards like MPI and OpenMP.

SLATE HIGHLIGHTS

- Targets Modern Hardware
 such as the upcoming CORAL systems, where
 the number of nodes is large, and each node
 contains a heavyweight multi-core processor
 and a number of heavyweight hardware
 accelerators.

- Guarantees Portability
 by relying on standard computational
 components (e.g., vendor implementations of
 BLAS and LAPACK) and standard parallel
 programming technologies (e.g., MPI, OpenMP)
 or portable runtime systems (e.g., PaRSEC).

- Provides Scalability
 by employing proven techniques of dense linear
 algebra, such as the 2-D block cyclic data
 distribution, as well as modern parallel
 programming approaches, like dynamic
 scheduling and communication overlapping.

- Facilitates Productivity
 by relying on the intuitive single program,
 multiple data (SPMD) programming model and a
 set of simple abstractions to represent dense
 matrices and dense matrix operations.

- Ensures Maintainability
 by employing useful facilities of the C++
 language, such as templates and overloading of
 functions and operators, and focused on
 minimizing code bloat by relying on compact
 representations.

SLATE WORKING NOTES

https://www.icl.utk.edu/publications/series/swans

- SWAN013 Gates, M., A. Charara, J. Kurzak, D. Sukkari, A. Yarkhan, and J. Dongarra
 SLATE Working Note 13: Implementing Singular Value and
 Symmetric Eigenvalue Solvers

- SWAN012 Kurzak, J., M. Gates, A. Charara, A. Yarkhan, and J. Dongarra
 SLATE Working Note 12: Implementing Matrix Inversions

- SWAN009 Gates, M., A. Charara, J. Kurzak, A. Yarkhan, I. Yamazaki, and J. Dongarra
 Least Squares Performance Report

SC19 PRESENTATION

Mark Gates, Jakub Kurzak, Ali Charara, Asim Yarkhan, Jack Dongarra
SLATE: Design of a Modern Distributed and Accelerated Linear Algebra Library
Tuesday, November 19
4:30pm - 5:00pm
Rooms 401-404

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration.