The MMatrix, TEensor, and Deep-learning Optimized Routines (MATEDOR) project seeks to develop software technologies and standard APIs, along with a sustainable and portable library for large-scale computations, the individual parts of which are very small matrix or tensor computations. The main target is the acceleration of science and engineering applications that fit this profile, including deep learning, data mining, astrophysics, image and signal processing, hydrodynamics, and more.

Standard Interface for Batched Routines

Working closely with affected application communities, we will define modular, language-agnostic interfaces that can be implemented to work seamlessly with the compiler and optimized using techniques like code replacement and inlining. This will provide the developers of applications, compilers, and runtime systems with the option of expressing as a single call to a routine from the new batch operation standard and would allow the entire linear algebra (LA) community to collectively attack a wide range of small matrix or tensor problems. Success in such an effort will require innovations in interface design, computational and numerical optimization, as well as packaging and deployment at the user site to trigger final stages of tuning at the moment of execution.

Sustainable and Performance-Portable Software Library

We will demonstrate the power of the MATEDOR interface by delivering a high-performance numerical library for batched LA subroutines autotuned for the modern processor architecture and system designs. The MATEDOR library will include LAPACK routine equivalents for many small dense problems, tensor, and application-specific operations, e.g., for deep learning; these routines will be constructed as much as possible out of calls to batched BLAS routines and their look-alikes required in sparse computation.

Enabling Technologies

MATEDOR will develop enabling technologies for very small matrix and tensor computations, including: (1) autotuning, (2) inlining, (3) code generation, and (4) algorithmic variants. We define the success of the research conducted and the software developed under the MATEDOR project as being able to automate these four aspects to allow for both flexibility and close-to-optimal performance of the final code used by the domain scientist.

Standard APIs (for Batched BLAS and LAPACK)

Proposed API is very similar to the standard BLAS/LAPACK API

```c
void dgemm_batched (
    batched_trans_t transA , batched_trans_t transB ,
    batched_int_t m , batched_int_t n , batched_int_t k ,
    double const * dA_array , batched_int_t lda ,
    double const * dB_array , batched_int_t ldb ,
    double beta ,
    double ** dC_array , batched_int_t ldc ,
    batched_int_t batchCount , batched_queue_t queue
    batched_int_t info );
```

PUBLICATIONS

A. Abdelfattah, A. Haidar, S. Tomov, and J. Dongarra
Tensor Contractions using Optimized Batch GEMM Routines
March 26-29 2018, GPU Technology Conference (GTC), Poster, San Jose, CA
http://icl.cs.utk.edu/magma/software/

D. Nichols, N-S. Tomov, F. Betancourt, S. Tomov, K. Wong, and J. Dongarra,
MagmaDNN: Towards High-Performance Data Analytics and Machine Learning for Data-Driven Scientific Computing
ISC High Performance, Frankfurt, Germany, Springer International Publishing, June 2019

Masliah, I., A. Abdelfattah, A. Haidar, S. Tomov, M. Baboulin, J. Falcou, and J. Dongarra
Algorithms and Optimization Techniques for High-Performance Matrix-Matrix Multiplications of Very Small Matrices
Parallel Computing, vol. 81, pp. 1–21, January 2019

A. Abdelfattah, A. Haidar, S. Tomov, and J. Dongarra
Batched One-Sided Factorizations of Tiny Matrices Using GPUs: Challenges and Countermeasures
Journal of Computational Science, 2018

T. Dong, A. Haidar, S. Tomov, and J. Dongarra
Accelerating the SVD Bi–diagonalization of a Batch of Small Matrices using GPUs
Journal of Computational Science, 2018

Performance of Hierarchical-Matrix BiCGStab Solver on GPU clusters
2018 IEEE International Parallel & Distributed Processing Symposium

FIND OUT MORE AT

https://icl.utk.edu/matedor/

WITH SUPPORT FROM

Batched DGEMM acceleration on V100 GPU in DNN computational backends

Sparse/Dense Solvers & Preconditioners
Batch Matrix Factorization, 100k matrices, double precision, Tesla V100 GPU

Hierarchical Linear Solvers on GPU clusters
DRMGG++ Acceleration using MATEDOR Batched computations

Density Matrix Renormalization Group DMRGG++
Hierarchical Linear Solver, 2 P100 GPUs per node

Deep Neural Networks and Data Analytics
Batched DGEMM acceleration on V100 GPU in DNN computational backends

This work is partially supported by NSF Grant No. OAC-1742550 and CSR 1514286, NVidia, and the Department of Energy under the Exascale Computing Project (17-SC-20-SC and LLNL subcontract under DOE contract DE-AC52-07NA27344).