FT-LA

As supercomputers grow ever larger in scale, the Mean Time to Failure becomes shorter and shorter, making the complete and successful execution of complex applications more and more difficult. **FT-LA delivers a new approach, utilizing Algorithm-Based Fault Tolerance (ABFT), to help factorization algorithms survive fail-stop failures.** The FT-LA software package extends ScaLAPACK with ABFT routines, and in sharp contrast with legacy checkpoint-based approaches, ABFT does not incur I/O overhead, and promises a much more scalable protection scheme.

ABFT THE IDEA

PROTECTION

Matrix protected by block row checksum

The **algorithm** updates both the **trailing matrix** AND the **checksums**

$$C_i = \sum_j A_{ij}$$

RECOVERY

Missing blocks reconstructed by inverting the checksum operation

$$A_{ij} = C_i - \sum_{k \neq i} A_{ik}$$

Process grid: $p \times q$ F: **simultaneous** failures tolerated

Usually $F \ll q$; Overheads in F/q

Protection against 2 faults on 192x192 processes => 1% overhead

Computation

$$O(\frac{F}{q} \times M^3)$$

Flops for the checksum update

Memory

$$O(\frac{F}{q} \times M \times N)$$

Matrix is extended with 2F columns every q columns

Protection cost is inversely proportional to machine scale!

PERFORMANCE ON KRAKEN

 Cost of ABFT comes only from extra flops (to update checksums) and extra storage Cost decreases with machine scale (divided by Q when using $P \times Q$ processes)

FUNCTIONALITY	COVERAGE
inear Systems of Equations	Cholesky, LU
_east Squares	QR (with protection of the upper and

FEATURES

Covering four precisions: double complex, single complex, double real, single real (ZCDS)

Deploys on MPI FT draft (ULFM), or with "Checkpoint-on-failure"

Allows toleration of permanent crashes

WORK IN PROGRESS

Hessenberg Reduction, Soft (silent) Errors

