The CacheBench Report

Philip J. Mucci
Kevin London
John Thurman
mucci@cs.utk.edu
london@cs.utk.edu
thurman@cs.utk.edu

November 1998

1 Introduction

CacheBench is a benchmark designed to evaluate the performance of the memory hierarchy of computer systems. Its specific focus is to parameterize the performance of possibly multiple levels of cache present on and off the processor. By performance, we mean raw bandwidth in megabytes per second. Of interest to us is the ability of the cache to sustain large, unit-stride, floating point workloads.

1.1 Cache Architecture

Caches are essentially very small, high speed memories designed to speed computation among repeatedly accessed data. They are found on virtually all commercially available processors from small sixteen bit embedded microprocessors to the large, multi-million transistor RISC chips found in today’s workstations and supercomputers. Caches exploit both \textit{spatial} and \textit{temporal} locality. Spatial locality is the concept that data items that are physically located near each other in main memory will likely be accessed together. Temporal locality is the concept that a data item that is frequently accessed will likely be accessed again in the near future.

When the processor wishes to operate on an item from main memory, it issues a load to the cache. If the item is resident in the cache, this is called a cache hit. If not, it is called a
1.2 Goals of CacheBench

The goal of this benchmark is to establish peak computation rate given optimal cache reuse and to verify the effectiveness of high levels of compiler optimization on tuned and untuned codes. Many scientific applications in use have significant resource requirements in terms of memory footprint. High speedups of these applications are often achieved through exploiting the cache. This is especially true given the widening gap between processor speed and main memory. Thus, this benchmark will provide us with a good basis for application performance modeling and prediction for those applications that have already been substantially tuned for cache reuse.

2 How it works

CacheBench currently incorporates eight different benchmarks. Each one performs repeated access to data items on varying vector lengths. Timings are taken for each vector length over a number of iterations. Computing the product of iterations and vector length gives us the total amount of data accessed in bytes. This total is then divided by the total time to compute a bandwidth figure. This figure is in megabytes per second. Here we define a Megabyte as being 1024^2 or 1048576 bytes. In addition to this figure, the average access time in nanoseconds per each data item is computed and reported. The tests are as follows:

- Cache Read
- Cache Write
- Cache Read/Modify/Write
- Hand tuned Cache Read
- Hand tuned Cache Write
- Hand tuned Cache Read/Modify/Write
* memset() from the C library
* memcpy() from the C library

The first six of these tests access their data through arrays of a predefined base type. This type is set at compile time and defaults to `double`. The rationale for this is that some systems perform memory access differently depending on the functional unit that generated the miss. The default data-type can be altered by setting the `USE_<type>` compiler definition in the Makefile. Currently `USE_CHAR`, `USE_INT`, `USE_FLOAT` and `USE_DOUBLE` are supported.

The first three of the tests are intended to provide us with information about how good the compiler is. They are very straightforward consisting of only a few lines of code.

The second three are intended to reflect portable, tuned code as found in production applications. Here, the optimizer has little opportunity to enhance the code, and in fact, the numbers from these three tests often do not change very much given different levels of optimization.

The last two tests are included as points of comparison. These routines are often heavily used in C applications, but vary greatly in efficiency. One would expect high performance out of these benchmarks in terms of memory bandwidth, but more often than not, the results have been disappointing.

All of these benchmarks runs for a fixed amount of time, which is tunable at run-time. The rationale for this is the widely varying performance of processors these days. BLASbench intends to provide the user with relatively quick feedback about the memory performance of the machine in use. However, this timing restriction limits the accuracy with which we can report the results. A faster machine that runs the test for a higher number of iterations has less relative error. This makes accurate, statistical analysis difficult but it will be fixed in the next release.

2.1 Cache Read

This benchmark is designed to provide us with read bandwidth for varying vector lengths in a compiler optimized loop. For the cases where the vector length is less than the cache size, the data will come completely from cache and the resulting bandwidth will be much higher.

The pseudo code for this test is as follows:

```plaintext
for all vector length
    timer start
    for iteration count
```
for I = 0 to vector length
 register += memory[I]
timer stop

2.2 Cache Write

This benchmark is designed to provide us with write bandwidth for varying vector lengths in a compiler optimized loop. This benchmark is greatly affected by architectural peculiarities in the memory subsystem. Replacement policy, associativity, blocking and write buffering all play important factors in the performance of this benchmark. For example, a write-back cache will show a much higher bandwidth because it frequently avoids unnecessary references to main memory. In addition, many systems coalesce and buffer multiple writes to cache/memory. This can hides much of the latency of the underlying hardware.

for all vector length
 timer start
 for iteration count
 for I = 0 to vector length
 memory[I] = register++
 timer stop

2.3 Cache Read/Modify/Write

This benchmark is designed to provide us with read/modify/write bandwidth for varying vector lengths in a compiler optimized loop. This benchmark generates twice as much memory traffic, as each data item must be first read from memory/cache to register and then back to cache. Each direction of transfer is counted in the computation of bandwidth. Bandwidth for this test is often a bit higher than the sum of the previous two tests. The benefit comes from compilers’ ability to better schedule operations and group memory accesses to amortize the cost of the store.

for all vector length
 timer start
 for iteration count
 for I = 0 to vector length
 memory[I]++
 timer stop
2.4 Hand Tuned Versions

A full description of the hand tuned versions of these codes is beyond the needs of this paper. However, to provide some background, the following optimizations were applied:

- Degree eight unrolling. Each loop now references eight memory elements instead of one.
- Dependency analysis. Each operation is independent of the previous seven.
- Register re-use. Registers are allocated to memory locations and reused whenever possible.

The optimizations reflect what a minimally good compiler should be doing on these simple loops. In CacheBench, if we see our compiler loops not reaching the performance of our tuned loops, we can conclude that our compiler is poor. The complexity of these loops is minimal and any compiler should be able to optimize them. It is possible, that our compiler optimized loops will outperform our hand-tuned loops, if the compiler inserts prefetching and coalesces memory operations into block transfers.

2.5 Memory Set

The C library provides us with the function `memset()` to initialize regions of memory. This function is often highly optimized as it is widely used both in and outside of the operating system. Often, this function is either assembly code placed `inline` in the executable from a header file, or it is an intrinsic function that the compiler recognizes and replaces automatically. Some systems have additional hardware on chip to perform this operation, specifically when the value to be set to is zero. This benchmark allows us to compare the numbers from our two formulations of memory write with this version. More often than not, we find that both versions outperform a call to this routine.

```c
for all vector length
  timer start
  for iteration count
    for I = 0 to vector length
      memset(vector1, 0xf0, length)
  timer stop
```
2.6 Memory Copy

The C library also provides us with the function `memcpy()` to copy regions of memory. It is also usually an intrinsic or inline assembler function. This benchmark allows us to compare the numbers from our two versions of memory read/modify/write with this version. Frequently we find that `memcpy()` is not as fast as it should be. While this function may not appear explicitly in Fortran application codes, it is used by many of the supporting libraries, like MPI.

for all vector lengths
 timer start
 for iteration count
 for I = 0 to vector length
 memcpy(dest,src,vector length)
 timer stop

3 Using CacheBench

3.1 Obtain the Distribution

BLASBench is now found in the LLCbench distribution. The latest release of LLCbench can always be found through the original author’s homepage at http://www.cs.utk.edu/~mucci
at its home page at http://www.cs.utk.edu/~thurman/llcbench
or via FTP at ftp://cs.utk.edu/~thurman/pub/llcbench.tar.gz.

Now unpack the installation using gzip and tar.

kiwi> gzip -dc llcbench.tar.gz | tar xvf -
kiwi> cd llcbench
kiwi> ls
Makefile cachebench/ index.html mpbench/ sys.def@
blasbench/ conf/ make.def pix/
3.2 Build the Distribution

First we must configure the build for our machine, OS and BLAS libraries. All configurations support the reference BLAS if available. Before configuration make with no arguments lists the possible targets.

kiwi> make
Please use one of the following targets:

solaris sunos5
sun sunos4
sgi-o2k o2k
linux-mpich
linux-lam
alpha
t3e
ppc ibm-ppc
pow2 ibm-pow2
reconfig (to bring this menu up again)

After configuration, please check the VBLASLIB variable in sys.def and make sure that it is pointing to the vendor BLAS library if one exists.

Configure the build. Here, we are on a Solaris workstation.

kiwi> make solaris
ln -s conf/sys.solaris sys.def

CacheBench’s default runtime variable values are contained in the file make.def and may be modified there.

3.3 Building CacheBench

kiwi> make cache-build
cd cachebench; make cachebench
cc -fast -dalign -DREGISTER -DUSE_DOUBLE -c cachebench.c
cc -DUSE_DOUBLE -o cachebench cachebench.o

3.4 Running CacheBench

While CacheBench can be run from the command line, it is designed executed through use of the Makefile. The resulting datafiles for each of the runs will be left in the file: results/<test>-<HOSTNAME>-<DATATYPE>.dat.

kiwi> make cache-run
 Measuring Read...
 Measuring Write...
 Measuring RMW...
 Measuring Tuned Read...
 Measuring Tuned Write...
 Measuring Tuned RMW...
 Measuring memcpy()...
 Measuring memset()...
 ...
 [commands deleted for brevity].
 ...

3.5 CacheBench results

make cache-graphs will attempt to graph the results. The datafiles will be tarred into a file called cacheperf-<HOSTNAME>-<DATATYPE>.tar. The Makefile will then attempt to graph the results. If GNUPlot is not available on this system, simply copy cacheperf-<HOSTNAME>-<DATATYPE>.tar to another machine that has GNUPlot, extract the tar file and process each GNUPlot script file with gnuplot < <HOSTNAME>.gp > <file>.ps.

kiwi> make cache-graphs
cd cachebench; make graphs
 ...
 ...
 ...
 X='uname -n'; cd results; gnuplot < $X.gp > cacheperf-$X-DOUBLE.ps
If you don't have GNUplot, you can make the graphs on another machine using the cachebench/results/cacheperf-cetus3b-DOUBLE.tar file.

3.6 Arguments to CacheBench

This is the CacheBench argument list from the command line help. The defaults listed are for direct execution of the benchmark (not the defaults for execution through the makefile).

Usage: cachebench -rwbtsp [-x #] [-m #] [-d #] [-e #]
 -r Read benchmark
 -w Write benchmark
 -b Read/Modify/Write benchmark
 -t Use hand tuned versions of the above
 -s memset() benchmark
 -p memcpy() benchmark
 -x Number of measurements to take between powers of 2
 -m Specify the log base 2 of the available physical memory
 -d Number of seconds per iteration
 -e Number of times to repeat test for each vector size

Datatype used is double, 8 bytes
Defaults if tty: -rwbsp -x1 -m24 -d5 -e2
Defaults if file: -b -x1 -m24 -d5 -e1

Note the fact that the defaults are different depending on whether or not the output is directed to a TTY or a file. Again, the best way to run cachebench is with the Makefile.
4 Results on the CEWES MSRC Machines

The following graphs are taken from our runs on each of the CEWES MSRC machines during dedicated time. Those machines are the SGI Origin 2000, the IBM SP and the Cray T3E. The cache size and theoretical peak MFLOPS for each machine are listed as follows. The peak MFLOPS is as reported by the vendor and is simply computed as a product of the clock speed times the number of independent FMA’s that can be computed per cycle.

<table>
<thead>
<tr>
<th>Machine</th>
<th>Cache</th>
<th>Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGI Origin 2000</td>
<td>32K,4MB</td>
<td>390</td>
</tr>
<tr>
<td>IBM SP</td>
<td>128K</td>
<td>240</td>
</tr>
<tr>
<td>Cray T3E</td>
<td>8K,96K</td>
<td>900</td>
</tr>
</tbody>
</table>
4.1 Cache Reads

In figures 1 and 2, we notice that the read performance of the Cray T3E is much lower for the hand-tuned version. For the compiler optimized version, we find a two to threefold improvement for vector sizes that lie in cache. The Cray compiler seems to have a very difficult time recognizing what optimized code is doing. This means that tuned applications ported to the Cray might not perform very well. For the SP2 and the Origin 2000, the only difference we find is the steepness of the portion of the curve lying substantially below the cache size. Here, we are seeing the overhead of the compiler’s code that handles the special cases where the vector length is not a multiple of the degree of unrolling. In the tuned version, this residual code does not exist and thus there are no branches in the underlying assembly language. The SP has a hardware loop capability allowing zero cycle branches. For the hand-tuned version, there is no residual code, so the compiler simply sets up the hardware loop and lets it run with no overhead. Thus, we see no performance falloff at smaller vector lengths.
Figure 2: Performance of Hand-tuned Memory Read
4.2 Cache Writes

![Cache Performance of write at CEWES MSRC](image)

Figure 3: Performance of Compiler Optimized Memory Write

In figures 3 and 4, we can see that the performance of the compiler optimized loop is equal to or greater than that of the hand tuned loop as is the case for reads. The reader will notice that for vectors residing completely in L1 cache, the write bandwidth is equal to or greater than the read bandwidth. On the Origin, the L2 cache is significantly slower to write to than to read from. We infer that the compiler is probably prefetching on the read case and that there is inadequate pipelining between L2 cache and memory. For the T3E, we again notice how poorly the compiler does on the optimized code.
Figure 4: Performance of Hand-tuned Memory Write
4.3 Cache Read/Modify/Write

![Graph showing cache performance of rmw at CEWES MSRC](image)

Figure 5: Performance of Compiler Optimized Memory Read/Modify/Write

Of interest in figure 5 and 6 is the difference in performance of the IBM SP. Note that in the hand-tuned version, performance averages about six hundred megabytes per second better than that of the compiler optimized version. In the tuned version, the compiler is probably scheduling/aggregating memory access into double-word loads and stores, a unique feature of this architecture. This probably happens in the compiler optimized version, but the fact that the compiler must also unroll the loop and optimize register usage seems to complicate its analysis. Also of interest is the better performance on the T3E in level two cache for the untuned version. *Software pipelining*, the mixing instructions from one iteration to another may be aiding this code to hide the latency of the level two cache misses. We are seeing this behavior in the case for reads and writes as well.
Figure 6: Performance of Hand-tuned Memory Read/Modify/Write
4.4 *memset(*)

![Graph: Cache Performance of memset() at CEWES MSRC](image)

Figure 7: Performance of memset()

4.5 *memcpy()*

Figures 7 and 8 are provided as reference. The performance of these two routines, when compared with the write and read-modify-write benchmark, clearly indicates that the user would be better off using a *typed* version coded in C or Fortran rather than these library calls. The reason for this is that they are often coded at the byte level for maximum flexibility, not performance. By knowing the type and the alignment of the data ahead of time, the user could easily write a simple loop, let the compiler optimize it and still see much better performance. The only exception is the case where the vector is smaller than L2 cache on the T3E.
Figure 8: Performance of `memcpy()`
5 Future work

- Provide option for measuring specific vector lengths.
- Use specialized, high-resolution timers where available.
- Add benchmark for pointer traversal to measure latency of cache hit and miss.
- Add parameters to tune the placement and padding of the vectors.
- Change from constant run-time to constant iterations.
- Add unoptimized, untuned case for a baseline.
- Standardize configuration with GNU autoconf.
- Grab machine configuration and store it with each run.
- Standardize data/graph naming scheme with timestamp.

6 References
