Performance Optimization

Philip J. Mucci
Minimal Metrics

phil@minimalmetrics.com

04/17/2012
Overview

- Background
- Customers
- Observations
 - Expertise
 - Programming models
 - Cloud, Virtualization and HPC
 - Tooling
 - I/O
 - Challenges for modeling
About Me

- Consulting since 1997
 - Software and hardware performance in HPC
 - HPC system software design
 - Parallel algo. opt.
- MS from UTK at ICL under Jack Dongarra
 - PVM, PAPI
- Research Consultant since 1998.

- Software architect, BD and app. Engineering at SiCortex.
 - Application and hardware performance experts for hire.
- Founded Minimal Metrics in 2012.
About Minimal Metrics

- A deep network of the experts.
- Evaluation, optimization and software engineering.
- Architectural evaluation.
- Moving into small-scale strategic consulting.
 - Logistic and process optimization.
 - Data collection and analytics and forecasting.
- Cofounded with Tushar Mohan
Reasons For Services

Our favorites:
- We want to understand the performance of _____.
 - “Predictive vs. Reactive”
- We want to implement _____ using the most experienced talent [that we can’t hire].

Some are preventable:
- We implemented our own _____ solver.
- We wrote this using _____ for ease of maintenance.
- We decided that _____ was the right technology to use.
Services by Customer

- HW Vendor: 30%
- SW Vendor: 15%
- Research: 15%
- Industry: 35%
- Integrator: 5%
Services by Type

- Low Level Code Opt. (15%)
- Algorithm Opt. (10%)
- App. Characterization (10%)
- Research (5%)
- Education (20%)
- Env/SW/Tools (40%)
Expertise

- Lack throughout industry
 - Concentrated in specific verticals, with technology vendors and in research.

- Hiring for a critical task can be impossible.
 - Outsourcing is viable and cost effective.

- Educational curriculum catching up, but latency is long.

Sample qualifications from a job posting:

- Minimum 10 years related experience in a large scale R&D HPC environment.
- Expert knowledge using parallel programming techniques (e.g. MPI, OpenMP, pthreads), parallel programming languages (e.g., C, C++, F90) and scientific simulation and/or data analysis.
- Experience with parallel file systems, common data formats like NetCDF and HDF5, high-performance networking and storage systems.
Parallel Programming Models

- We often propose (limited) library and directive-based programming.
 - Code can be easily reduced, verified and retargeted.
- Low-level technology adopted relatively quickly.
 - A bit of buyers remorse.
- Many abstractions come at a cost:
 - But good compute is available through native methods.
 - Robust data movement remains a bottleneck.
 - Between SW and HW components.
 - Limited tooling support
 - Analysis pipeline can require code transformation.
Options exist for turnkey HPC cloud-based environments.

- Yet plenty of integration work remains for HPC.

Single node performance near parity, including decent I/O.

Communication’s (and thus parallel) performance getting there:

- Per-core network bandwidth is limited.
- Lack of low-latency, high-bandwidth comm. capability through the VM.
Optimization and Virtualization

- Largely environmental.
 - OS and software stack
 - I/O and MPI
- Intra-node MPI still quite good.
- Not so with off-node

• Scaling is lost due to high MPI latencies for un-accelerated comm. in VM's for MPI
Economics of HPC in the Cloud

- Pricing requires very good scaling to be cost effective.
- Scaling’s worth is related to the importance of the problem.
Optimizing ISV Applications

- Code is immutable.
 - And rarely changes.
- System optimization.
 - Uptime
 - System configuration
 - Libraries*
 - Parallel run-time
 - Storage
 - CPU availability
- 80/20 rule.
Performance of GNU/Linux

- Ain’t what you think it is for emerging architectures.
Optimization Tools

- Some excellent commercial and open source tools now available.
 - Some require far more knowledge than others to be effective.
 - Tools for MPI, OpenMP, I/O, GPUs and processors down to the instruction level.
 - Many now include *time* as a dimension of measurement.
 - Focus is on bottom-up view: explain global performance through local observations.
 - Much more robust collection, visualization (and some prediction) capabilities.
- Still lacking full job performance accounting.
Advanced Performance Visualization

Figure 7.2: An annotated screenshot of hpctraceviewer's interface. Given a call path depth, the view shows the color of the currently active procedure at a given time and process rank. If the requested depth is deeper than a particular call path, hpctraceviewer simply displays the deepest procedure frame and, space permitting, overlays an annotation indicating the fact that this frame represents a shallower depth.

hpctraceviewer assigns colors to procedures based on static source code procedures. Although the color assignment is currently random, it is consistent across the different views. Thus, the same color within the Trace and Depth Views refers to the same procedure.

The Trace View has a white crosshair that represents a selected point in time and process space. For this selected point, the Call Path View shows the corresponding call path. The Depth View shows the selected process.

Depth view (left/bottom): This is a call path/time view for the process rank selected by the Trace view's crosshair. Given a process rank, the view shows for each virtual time along the horizontal axis a stylized call path along the vertical axis, where 'main' is at the top and leaves 'samples' are at the bottom. In other words, this view shows for the whole time range, in a qualitative fashion, what the Call Path View shows for a selected point. The horizontal time axis is exactly aligned with the Trace View's time axis; and the colors are consistent across both views. This view has its own crosshair that corresponds to the currently selected time and call path depth.

IPM
Point to point data flow

HPCToolkit
Metric vs. Task vs. Function (and Depth)
Tools Workflow

- Naïve methods:
 - Instrument and recompile.
 - But changes characteristics of original code.
 - Measure time only.
 - But answers “where”, but not “why” and “by how much”

- Methods now are largely passive and in-situ.
 - Instrumentation is inserted in binary form at run-time.
 - Or by the compiler with knowledge that this code is special.
 - Measure application, operating system and hardware performance events that are relevant and actionable.
 - Do so with minimal intrusion.
Performance Monitoring

- **Hardware PMU’s**
 - Logic capable of counting and sampling events of interest.
 - Now both on and off-core and in many devices.

- **Software**
 - System events with significant performance penalties.

- **OS support maturing slowly, often regressing.**
 - Low-latency, non-privileged access.

- **Access often accomplished through PAPI.**
 - Only as good as OS support.
Tools for I/O

- I/O bounds abound.
- Lack of bottom-up tooling.
 - System-level tools provide device level statistics.
 - Good for capacity & fault diagnosis, not tuning.

Access reordering and caching
Challenges Related to Modeling

- How will my application run on a new platform?
- Anything other than a kernel is non-trivial.
 - HW monitoring and tools allow us to precisely analyze and predict execution traces, not arbitrary code segments.
- Application performance is now largely data-set dependent.
 - Problems are often irregular and/or sparse.
 - Algorithms may be highly configurable.
 - Convergence criteria may be different.
- The data-set needs to be part of the input vector for any model.
- PMaC @ SDSC reflects the state of the art.
Software Systems

- Software and knowledge are well behind exploiting what the hardware is capable of.

- Quotes from this morning:
 - “Software hurdles are rising to the top for most users”
 - “Software leadership will become the new battleground”
 - “HPC experts often have a narrow view of a new applied user world”
 - “We require ease of everything and just want it to work”
 - “[Engineers become] too hyped about the tools and not about the problem being solved.”
Thanks Dad.

- **John Francis Mucci**
 - 5/19/1942 – 2/7/2010
 - From Ridgway, PA
 - PhD in High Energy Physics from Carnegie Mellon.
 - Career
 - Director GSG @ Digital
 - VP of Sales, Marketing and Technical Research at Thinking Machines
 - Cofounder and CEO of Topical Net, Links2Go, Continuum Software and SiCortex
 - Married Patricia A. Mucci in 1967. Two sons, Philip and David.
Thank You

phil@minimalmetrics.com