Who Am I?

2002 - B.S. Computer Science - Furman University

2005 - M.S. Computer Science - UT Knoxville
 - 2002 - Graduate Teaching Assistant
 - 2005 - Graduate Research Assistant (ICL)

2005 - 2013 - Cray, Inc
 - Worked on porting & optimizing HPC apps @ ORNL, User Training

2013 - Present - NVIDIA Corp.
 - Porting & optimizing HPC apps @ ORNL, User Training,
 - Representative to OpenACC & OpenMP
AGENDA

GPU Architecture
Speed v. Throughput
Latency Hiding
Memory Coalescing
SIMD v. SIMT
GPU Architecture

Two Main Components

Global memory
- Analogous to RAM in a CPU server
- Accessible by both GPU and CPU
- Currently up to 16 GB in Tesla products

Streaming Multiprocessors (SM)
- Perform the actual computation
- Each SM has its own: Control units, registers, execution pipelines, caches
GPU Architecture

Streaming Multiprocessor (SM)

- Many CUDA Cores per SM
 - Architecture dependent
- Special-function units
 - \(\cos, \sin, \tan \), etc.
- Shared memory + L1 cache
- Thousands of 32-bit registers
GPU Architecture

CUDA Core

- Floating point & Integer unit
 - IEEE 754-2008 floating-point standard
 - Fused multiply-add (FMA) instruction for both single and double precision
- Logic unit
- Move, compare unit
- Branch unit
Threads are executed by scalar processors

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can reside on one multiprocessor - limited by multiprocessor resources (shared memory and register file)

A kernel is launched as a grid of thread blocks
Warps

A thread block consists of 32-thread warps.

A warp is executed physically in parallel (SIMT) on a multiprocessor.
GPU Architecture

Memory System on each SM

Extremely fast, but small, i.e., 10s of Kb

Programmer chooses whether to use cache as L1 or Shared Mem

L1

Hardware-managed—used for things like register spilling

Should NOT attempt to utilize like CPU caches

Shared Memory—programmer MUST synchronize data accesses!!!

User-managed scratch pad

Repeated access to same data or multiple threads with same data
GPU Architecture

Memory system on each GPU board

Unified L2 cache (100s of Kb)

Fast, coherent data sharing across all cores in the GPU

Unified/Managed Memory

Since CUDA6 it’s possible to allocate 1 pointer (virtual address) whose physical location will be managed by the runtime.

Pre-Pascal GPUs - managed by software, limited to GPU memory size

Pascal & Beyond - Hardware can page fault to manage location, can oversubscribe GPU memory.
Speed v. Throughput

Speed

Throughput

Which is better depends on your needs...

Images from Wikimedia Commons via Creative Commons
Low Latency or High Throughput?

CPU
- Optimized for low-latency access to cached data sets
- Control logic for out-of-order and speculative execution
- 10’s of threads

GPU
- Optimized for data-parallel, throughput computation
- Tolerant of memory latency
- More transistors dedicated to computation
- 10,000’s of threads
Low Latency or High Throughput?

CPU architecture must **minimize latency** within each thread
GPU architecture **hides latency** with computation from other thread warps

CPU core – Low Latency Processor

- T_1
- T_2
- T_3
- T_4

GPU Stream Multiprocessor – High Throughput Processor

- W_1
- W_2
- W_3
- W_4

Computation Thread/Warp

- T_n
 - Processing
 - Waiting for data
 - Ready to be processed
 - Context switch
Memory Coalescing

Global memory access happens in transactions of 32 or 128 bytes.
The hardware will try to reduce to as few transactions as possible.

Coalesced access:
- A group of 32 contiguous threads ("warp") accessing adjacent words.
- Few transactions and high utilization.

Uncoalesced access:
- A warp of 32 threads accessing scattered words.
- Many transactions and low utilization.
SIMD and SIMT

Single Instruction Multiple Data (SIMD)
- *Vector instructions* perform the same operation on multiple data elements.
- Data must be loaded and stored in contiguous buffers.

Single Instruction Multiple Thread (SIMT)
- *Scalar instructions* execute simultaneously by multiple hardware threads.
- Contiguous data not required.
SIMD and SIMT

Single Instruction Multiple Data (SIMD)
- *Vector instructions* perform the same operation on multiple data elements.
- Data must be loaded and stored in contiguous buffers.

Single Instruction Multiple Thread (SIMT)
- *Scalar instructions* execute simultaneously by multiple hardware threads.
- Contiguous data not required.
- So if something can run in SIMD, it can run in SIMT, but not necessarily the reverse.
- SIMT can better handle indirection.
SIMD and SIMT

<table>
<thead>
<tr>
<th>LD.128b</th>
<th>LD.128b</th>
<th>AD.128b</th>
<th>ST.128b</th>
</tr>
</thead>
</table>

Single Instruction Multiple Data (SIMD)
- **Vector instructions** perform the same operation on multiple data elements.
- Data must be loaded and stored in contiguous buffers.
- Either the programmer or the compiler must generate vector instructions.

Single Instruction Multiple Thread (SIMT)
- **Scalar instructions** execute simultaneously by multiple hardware threads.
- Contiguous data not required.
- So if something can run in SIMD, it can run in SIMT, but not necessarily the reverse.
- SIMT can better handle indirection.
- The hardware enables parallel execution of scalar instructions.

```plaintext
+ + + +
LD. 1 1 1 1
AD. 1 1 1 1
ST. 1 1 1 1
```
SIMD and SIMT Branching

SIMD

1. Execute converged instructions
2. Generate vector mask for true
3. Execute masked vector instruction
4. Generate vector mask for false
5. Execute masked vector instruction
6. Continue to execute converged instructions

Divergence (hopefully) handled by compiler through masks and/or gather/scatter operations.

SIMT

1. Execute converged instructions
2. Executed true branch
3. Execute false branch
4. Continue to execute converged instructions

Divergence handle by hardware through predicated instructions.
Next 2 Lectures

Wednesday - OpenACC Basics

Friday - More OpenACC?