

COSC 530: Semester Project

Dalvik Virtual Machine

By

Laxman Nathawat

Yuping Lu

Chunyan Tang

Ye Sun

Date

December 3, 2013

COSC530 DVM Project Report 1

Table of Contents

1. Introduction --- 2

2. Virtual Machine Types -- 3

3. JVM vs. DVM -- 6

4. Dalvik Instruction Set --- 9

5. Dalvik Performance Analysis --- 13

6. Conclusion -- 17

7. References -- 18

COSC530 DVM Project Report 2

1. Introduction

The concept of Virtual Machines (VMs) is very old in the field of computing and in the broadest

sense encompasses all emulation techniques to provide a standard software interface. In recent

years, virtualization has gained momentum because of multiple factors such as security failures

in standard operating systems, increased importance of security and reliability, and increasing

use of cloud computing where unrelated users may share same hardware. Another factor that

contributed to popularity of VMs is substantial increase in processor speeds, improvements in

memory hierarchies and improvements in VM software stack to make VM overheads reasonable.

The operating system (OS) running on virtual machine is known as guest OS. The OS over all

virtual machines is called host OS. Multiple VMs each run their own OS (guest OS). This is

often used in server combination, which allows different server services to run in separate VMs

on the same physical machine without interference instead of running them each in individual

physical machine. Compared to the conventional platform where a single OS utilizes all the

hardware resources, multiple virtual machines run on a single physical machine, all share the

hardware resources, and run their own OS individually.

The VM supporting software is called Virtual machine monitor (VMM) or hypervisor. It

manages the mapping of virtual resources to physical resources, which may be time-shared,

partitioned, or emulated in software. The software enhances the performance of the VM's guest

OS and provides much more control over the VM interface. The following images illustrate three

applications running in a regular computer versus in a virtualized computer.

The hypervisor is the most important part in VM.

COSC530 DVM Project Report 3

2. Virtual Machine Types

Increased use of virtualization at the desktop, server, data center and cloud computing level has

led to development new VMs and improvement of existing VMs. Some of these VMs are open-

source based whereas others are closed-source and proprietary in nature. VMs can also differ in

terms of their instruction set design and the level of software interface provided through different

emulation techniques.

The virtual machines which have similar instruction set architecture as the underlying hardware

are known as system-level virtual machines. A system VM (also known as hardware VM) is a

software designed for hardware virtualization. It provides a system platform at the binary

instruction set architecture (ISA) that supports the execution of a complete operating system. It

allows the sharing of the underlying physical machine resources among different virtual

machines, whereas each VM has its own operating system.

The advantages of using a system VM are: (1) Improved stability and security. It provides

multiple operating system environments that can co-exist on the same computer in strong

isolation from each other. Single operating system is independent from configurations of other

operating systems. This feature increases isolation and security in modern systems. (2)

Consolidation. It provides a platform to run programs where the real hardware is not available

for use or provide a more efficient use of computing resource including energy consumption and

cost effectiveness by time-sharing a single computer between several single-tasking operating

systems. (3) Flexibility. A virtualized machine can host numerous versions of an operating

system, which allows developers to test their programs in different OS environments on the same

machine and crashing in one virtual machine will not bring down the whole system. In addition,

VM is relatively easy to move from one server to another to balance the workload, migrate to

faster hardware, and recover from hardware failure. Examples of available system VMs are IBM

VM/370, VMware ESX server, and Xen.

Xen is open-source virtualization software that started as a research project at the University of

Cambridge. It is widely supported by most of the leading computer vendors such as IBM, Citrix,

COSC530 DVM Project Report 4

Red Hat, HP and Intel. Over the years it has included several modifications and features to

improve overall performance of the virtualization software. Some of the improvements are:

 Use of paravirtualization

 Mapping itself to upper 64 MB address space of VM (to avoid TLB flushing)

 Allows guest OS to allocate pages

 Uses four levels of 80x86 protection levels. VMM runs at the highest level (0) and the

guest OS running at the next level (1).

 Uses driver domains and guest domains to simplify IO handling.

VMWare ESX Server virtualization software is based on VMWare ESX hypervisor. The ESX

based virtualization runs on bare-metal by using its own kernel, called vmkernel (microkernel)

on the top of Linux kernel. The Linux kernel is started at the boot time and serves as the service

console. The ESXi variant of ESX does not use Linux kernel as the service console but solely

depends on vmkernel which provides three interfaces – hardware, guest OS and service console

to interact with entities outside virtual environment.

In addition to system VMs there is another categories of VMs called process VMs (also known

as application VMs). Process VM run as a normal application inside an operating system and

supports a single process. It is created when the process is started and destroyed when it exits. It

provides a platform-independent programming environment that abstracts underlying hardware

or operating system, and allows a program to execute in the same way on any platform.

Therefore, process VM provides a higher level abstraction than the low-level instruction set

architecture abstraction of the system VM. Process VMs are implemented using an interpreter

and achieve performance comparable to compiled programming languages using just-in-time

compilation. Examples of process VM include Java VM, Dalvik VM and Microsoft .net

Framework.

The Java VM is stack-based virtual machine. Once Java compiler translates Java source code

into .class (byte code), the JVM runtime environment executes byte code or .jar files emulating

JVM instruction set by interpreting or by Just-in Time (JIT) compiling.

COSC530 DVM Project Report 5

As shown in the following picture, the byte code generated by the compiler can be used by

multiple Java virtual machines running on different operating systems. For example, byte code

generated on Windows OS can be fed to JVM running on Linux OS without the need to

recompile.

Dalvik Virtual Machine (DVM) is register-based and the use of registers instead of stack is

mostly due to use of DVM for mobile devices. Android is an open source mobile platform from

Google and is based on Linux kernel with DVM as the process or application VM. Unlike

regular desktop computing, mobile devices have special design constrains such as:

 Limited memory

 Limited processor speed

 Variety of screen sizes and resolutions

 No swap space

 Battery power

The DVM architecture design takes into account most the above mentioned constraints making it

different from JVM. The next section of the report exclusively talks about key differences in the

design of DVM and JVM.

COSC530 DVM Project Report 6

3. JVM vs. DVM

Java Virtual Machines and Dalvik Virtual Machines have significant differences in the

architecture design and functionality. We present comparison of two VMs using memory usage,

architecture design, compilation techniques, and library support as parameters.

Memory Usage Comparison

Java Virtual machine (JVM) uses heap memory for its application. It has a built-in garbage

collector that manages the internal memory. When a java program needs memory, it requests

memory from JVM. In case there is no memory left, JVM automatically reclaims memory for

reuse using garbage collector without memory allocation and deallocation. This feature

eliminates memory leaks and other memory-related problems. However, JVM uses most of its

resources on garbage collection, which leads to serious performance problem. For example, JVM

has trouble releasing more of its memory when an “out of memory” exception is thrown. JVM

uses big proportion of its memory for runtime libraries created in shared memory. On the

contrary, in Dalvik VM, programs are commonly written in Java, compiled to byte code, and

then converted from JVM-compatible .class files to Dalvik Executable files, which can be

executed directly. The compact Dalvik Executable format has low memory requirement, which is

suitable for systems with limited memory and processor speed, i.e. mobile phones, tablet

computers, embedded devices such as smart TVs.

Architecture Comparison

The JVM architecture is designed to support most of the popular operating systems whereas

DVM architecture is specifically targeted for the Android platform. Since mobile devices run in

a constraint environment, they must make efficient use of storage, memory, battery power, and

processor power. Dalvik’s register-based architecture allows Android to be more efficient and

faster compared to the stack-based design of the JVM. Also, Android platform is designed to run

apps from thousands of users and vendors; it must provide a high-level of security for individual

apps as well as for the platform itself. Android provides security by giving each app its own

virtual machine which is different than the JVM approach where all applications share same

virtual machine.

COSC530 DVM Project Report 7

The following picture shows a dex file which combines multiple .class files into a single file.

Different items such as constants, variables, methods, and classes are grouped into separate

sections in the dex file and then are accessed by respective classes through pool indexing.

Because each app in Android runs in its own process with its own instance of the Dalvik virtual

machine, a device can run multiple VMs efficiently with minimum memory. This feature in part

possible due to use of Dalvik Executable (.DEX) file format on DVM.

Multiple Instance and JIT Comparison

JVM runtime executes .class or .jar files using a just-in-time compiler (JIT). JIT causes delay in

initial execution of an application due to the time it takes to load and compile the byte code. In

the worst case, it may crash the system if resources become unavailable for applications. These

become an obvious disadvantage when it is used in limited system resources such as tablets and

cell phones. Dalvik uses ahead-of-time optimization that involves the instruction modification.

Therefore, it allows multiple instances of VM to run simultaneous with low memory

requirement.

COSC530 DVM Project Report 8

Reliability Comparison

In current standard Java runtime systems, the failure of a single component can have significant

impacts on other components. In the worst case, a malicious or erroneous component may crash

the whole system. On the other hand, Dalvik runs every instance of VM in its own separate

process. Separate processes prevent all applications from crashing in case if the VM for a

specific app crashes.

Supported Libraries Comparison

The Dalvik VM like JVM has built-in support for core java programming packages. In addition

to core packages, Dalvik has its own set of packages such as com.google.* and android.*. The

following table lists subset of packages for Dalvik and standard Java.

Libraries Dalvik Standard Java

java.io Yes Yes

java.net Yes Yes

android.* Yes no

com.google.* Yes No

javax.swing.* No Yes

COSC530 DVM Project Report 9

4. Dalvik Instruction Set

Dalvik instructions are longer and more complex than the JVM instructions. Dalvik VM can use

up to 256 registers and currently has 226 instructions. The following conventions are used for

Dalvik instruction format:

 Arguments which name a register have the form "vX".

 Arguments which indicate a literal value have the form "#+X".

 Arguments which indicate a relative instruction address offset have the form "+X".

 Arguments which indicate a literal constant pool index have the form "kind@X", where

"kind" indicates which constant pool is being referred to. Each opcode that uses such a

format explicitly allows only one kind of constant.

 Registers are 32 bits wide. For 64-bit values adjacent registers are used.

 Bitwise data is represented in-line in the instruction stream.

 Pseudo instructions are used for variable length data. For example, fill-array-data,

represents a pseudo instruction.

 Type specific opcodes are suffixed with their types. For example, add-int.

 Type general opcodes for 64-bit data are suffixed with –wide.

The following table summarizes opcode mnemonics, their bit sizes and brief description.

Mnemonic Bit Size Description

b 8 immediate signed byte

c 16, 32 constant pool index

f 16 interface constants (only used in statically linked formats)

h 16
immediate signed hat (high-order bits of a 32- or 64-bit

value; low-order bits are all 0)

i 32 immediate signed int, or 32-bit float

l 64 immediate signed long, or 64-bit double

m 16 method constants (only used in statically linked formats)

n 4 immediate signed nibble

s 16 immediate signed short

t 8, 16, 32 branch target

x 0 no additional data

COSC530 DVM Project Report 10

In the table below, we summarize some of the instructions that are available in Dalvik VM.

Instruction

Type

Instruction Format Instruction Description

Copy move-wide/16 vAAAA, vBBBB Copy contents of register A into register

B. Both registers are of size 16 bits.

Move move-result-wide vAA Move the double-word result of the most

recent invoke-kind into the indicated

register pair A (8 bits). This must be done

as the instruction immediately after an

invoke-kind whose (double-word) result

is not to be ignored; anywhere else is

invalid.

Move move-result-object vAA Move the object result of the most recent

invoke-kind into the indicated register A

(8 bits). This must be done as the

instruction immediately after an invoke-

kind or filled-new-array whose (object)

result is not to be ignored; anywhere else

is invalid.

Write move-exception vAA Save a just-caught exception into the

given register A (8 bits). This should be

the first instruction of any exception

handler, whose caught exception is not to

be ignored, and this instruction may only

ever occur as the first instruction of an

exception handler; anywhere else is

invalid.

Read return-object vAA Return from an object-returning method.

A is the return value register (8 bits)

Read return-wide vAA Return from a double-width (64-bit)

value-returning method. A is the return

value register-pair (8 bits).

Move const/16 vAA, #+BBBB Move the given literal value (sign-

extended to 32 bits) from register B (16

bits) into the specified register A (8 bits).

Write new-instance vAA, type@BBBB Construct a new instance of the indicated

type, storing a reference to it in the

destination register A (8 bits). The type

must refer to a non-array class. B: type

index

Write new-array vA, vB, type@CCCC Construct a new array of the indicated

COSC530 DVM Project Report 11

type and size. The type must be an array

type.

A: destination register (8 bits)

B: size register

C: type index

Write fill-array-data vAA, +BBBBBBBB Fill the given array with the indicated

data. The reference must be to an array of

primitives, and the data table must match

it in type and size.

A: array reference (8 bits)

B: signed "branch" offset to table data (32

bits)

Branch goto +AA Unconditionally jump to the indicated

instruction.

A: signed branch offset (8 bits)

Branch packed-switch vAA, +BBBBBBBB Jump to a new instruction based on the

value in the given register, using a table of

offsets corresponding to each value in a

particular integral range, or fall through to

the next instruction if there is no match.

A: register to test

B: signed "branch" offset to table data (32

bits)

Branch sparse-switch vAA, +BBBBBBBB Jump to a new instruction based on the

value in the given register, using an

ordered table of value-offset pairs, or fall

through to the next instruction if there is

no match.

A: register to test

B: signed "branch" offset to table data (32

bits)

Branch cmpl-float (lt bias) vAA, vBB, vCC

cmpl-float (gt bias) vAA, vBB, vCC

Perform the indicated floating point,

storing 0 if the two arguments are equal, 1

if the second argument is larger, or -1 if

the first argument is larger. The "bias"

listed for the floating point operations

indicates how NaN comparisons are

treated: "gt bias" instructions return 1 for

NaN comparisons, and "lt bias"

instructions return -1.

A: destination register (8 bits)

COSC530 DVM Project Report 12

B: first source register or pair

C: second source register or pair

Conditional

branch

if-eq vA, vB, +CCCC

if-ne vA, vB, +CCCC

Branch to the given destination if the

given two registers' values compare as

specified.

A: first register to test (4 bits)

B: second register to test (4 bits)

C: signed branch offset (16 bits)

Indirectly

branch

invoke-virtural {vD, vE, vF, vG, vA},

meth@CCCC

Call the indicated method. The result (if

any) may be stored with an appropriate

move-result* variant as the immediately

subsequent instruction.

B: argument word count (4 bits)

C: method index (16 bits)

D..G, A: argument registers (4 bits each)

Unary

operation

int-to-long vA, vB

int-to-float vA, vB

int-to-double vA, vB

int-to-byte vA, vB

Perform the identified unary operation on

the source register, storing the result in

the destination register.

A: destination register or pair (4 bits)

B: source register or pair (4 bits)

Binary

operation

add-int vAA, vBB, vCC

sub-int vAA, vBB, vCC

mul-int vAA, vBB, vCC

div-int vAA, vBB, vCC

Perform the identified binary operation on

the two source registers (register B and

C), storing the result in the destination

register.

A: destination register or pair (8 bits)

B: first source register or pair (8 bits)

C: second source register or pair (8 bits)

COSC530 DVM Project Report 13

5. Dalvik Performance Analysis

Dalvik VM includes several features for performance optimization, verification, and monitoring.

We discuss subset of performance parameters in this report.

 Dalvik Executable (DEX)

 Byte code optimization

 Byte code verification

 Execution modes

 Dalvik Debug Monitor ("DDM")

Dalvik Executable (.DEX)

Java source code is compiled by the Java compiler into .class files. Then the dx (dexer) tool, part

of the Android SDK processes the .class files into a file format called DEX that contains Dalvik

byte code. The dx tool eliminates all the redundant information that is present in the classes. In

DEX all the classes of the application are packed into one file. The following table provides

comparison between code sizes for JVM jar files and the files processed by the dex tool. The

table compares code sizes for system libraries, web browser applications, and a general purpose

application (alarm clock app). In all cases dex tool reduced size of the code by more than 50%.

Code Uncompressed JAR

file

Compressed JAR

file

Uncompressed dex file

Common System

Libraries

100% 50% 48%

Web Browser App 100% 49% 44%

Alarm Clock App 100% 52% 44%

In standard Java environments each class in Java code results in one .class file. That means, if the

Java source code file has one public class and two anonymous classes, let’s say for event

handling, then the java compiler will create total three .class files.

COSC530 DVM Project Report 14

The compilation step is same on the Android platform, thus resulting in multiple .class files. But

after .class files are generated, the “dx” tool is used to convert all .class files into a single .dex, or

Dalvik Executable, file. It is the .dex file that is executed on the Dalvik VM. The .dex file has

been optimized for memory usage and the design is primarily driven by sharing of data. The

following diagram contrasts the .class file format used by the JVM with the .dex file format used

by the Dalvik VM.

COSC530 DVM Project Report 15

Byte Code Optimization

Since mobile devices have limited RAM and disk storage capacities, every attempt should be

made to reduce the size of application code and related data. Some of the optimization goals

addressed in Dalvik VM are:

 The overhead in launching a new app must be minimized to keep the device responsive.

 Class data must be shared between multiple processes to minimize total system memory

usage.

 Storing class data in individual files results in a lot of redundancy, especially with respect

to strings. To conserve disk space we need to factor this out.

 Parsing class data fields adds unnecessary overhead during class loading. Accessing data

values (e.g. integers and strings) directly as C types is better.

 Byte code optimization is important for speed and battery life.

 For security reasons, processes may not edit shared code.

The typical VM implementation uncompresses individual classes from a compressed archive and

stores them on the heap. This implies a separate copy of each class in every process, and slows

application startup because the code must be uncompressed (or at least read off from disk in

many small pieces). On the other hand, having the byte code on the local heap makes it easy to

rewrite instructions on first use, facilitating a number of different optimizations.

These goals led to following optimization decisions:

 Multiple classes are aggregated into a single "DEX" file.

 DEX files are mapped read-only and shared between processes.

 Byte ordering and word alignment are adjusted to suit the local system.

 Byte code verification is mandatory for all classes but “pre-verify” is preferred.

 Optimizations that require rewriting byte code must be done ahead of time.

One way to optimize classes is to load them all into the VM and verify them for optimization but

this approach can lead to difficulty in allocation of resources associated with native shared

libraries. Instead dexopt tool is used for optimization which performs abbreviated VM

initialization and loads zero or more dex files from the bootstrap class path for optimization.

After process completion, dexopt tool releases all resources. File locking mechanism is used to

prevent multiple VMs invoking dexopt tool simultaneously on same set of files.

COSC530 DVM Project Report 16

Byte Code Verification

Byte code verification can be can be enabled for all classes, disabled for all, or enabled only for

"remote" (non-bootstrap) classes. It should be performed for any class that will be processed with

the DEX optimizer, and in fact the default VM behavior is to only optimize verified classes.

Once the verified and optimized DEX files have been prepared, verification incurs no additional

overhead except when loading classes that failed to pre-verify. If DEX files are processed with

verification disabled, and the verifier is turned on later, application loading will be noticeably

slower (perhaps 40% or more). There are certain types of checks that verifier does not perform.

For example,

 Operand stack size is not verified.

 Type restrictions on constant pool are not verified.

 Since VM does not support subroutines, limits on JSR and ret do not apply during

verification.

Execution Mode

The Dalvik VM supports multiple (three) execution modes to optimize performance for different

types of tasks. The three execution modes are – fast, portable and debug. The fast mode is

optimized for the current platform of the Android and may consist of hand optimized assembly

code. The portable mode is used to target multiple platforms and is not specifically optimized for

single platform. The debug mode is a variation of the portable mode. It allows profiling and

single-stepping. Command line options can be given to the zygote process of the VM to switch

between different modes.

Dalvik Debug Monitor

The Dalvik Debug Monitor (DDM) tool allows monitoring live states of the Dalvik VM. It works

on the client-server architecture and can be used to monitor multiple VMs running on a device

connected through wireless network connection or through USB. DDM can be used to monitor

thread states and overall heap status for VMs. It can also be used to monitor app logcat, load

averages and virtual memory usage for a VM. DDM server is written in Java language for

portability and uses Java Debug Wire Protocol (JDWP).

COSC530 DVM Project Report 17

6. Conclusion

Increased security concerns and improvements in processor speeds and memory hierarchies have

led to popularization of virtual machines on almost all types of computing devices – mobile,

desktop, and servers. Virtual machines can be categories into two groups – system-level and

application-level. System-level virtual machines emulate entire operating system and the user

gets the illusion of having entire machine to himself/herself. On the other hand, application-level

or process-level virtual machine runs as an application of a process within an operating system.

Java Virtual Machine differs from Dalvik Virtual Machine is many ways. One, JVM is stack-

based whereas DVM is register-based. Two, JVM keeps byte code files separate whereas DVM

uses DEX tool to combine multiple byte code files into a single file. Three, JVM does not

perform optimization on byte code files whereas DVM uses dexopt tool to optimize byte code to

make it suitable for memory, storage and battery power constraint mobile devices.

In terms of architecture, DVM supports up to 256 registers and provides about 226 opcodes for

different types of instructions. Registers in Dalvik VM are 32-bit wide and follow destination-

then-source ordering for instruction arguments. The Dalvik architecture also supports multiple

instructions for variety of tasks such as arithmetic operations, branching and data copying.

Dalvik VM incorporates series of features for performance optimization, verification and

monitoring. Some of the critical performance features included are Dalvik executable file format,

byte code optimization, byte code verification, multiple execution modes, and the use of the

Dalvik Debug Monitor (DDM).

The work in this report can be extended by doing performance analysis of an actual Java

application and by comparing byte code size and execution times on DVM and JVM. Another

possible suggestion for further work is to compare DVM with ART (Android Runtime VM).

ART is currently in experimental phase and uses Ahead-of-time (AOT) compilation to pre-

compile the byte code into machine language at the time of app installation. It is expected to drop

the runtime to half but the running process will occupy 10-20% more storage space.

COSC530 DVM Project Report 18

7. References

1) John L. Hennessy and David A. Patterson. Computer Architecture – A Quantitative Approach, 5th

edition, Morgan Kaufmann Publishing, 107 - 111.

2) http://source.android.com/devices/tech/dalvik/instruction-formats.html

3) http://imsciences.edu.pk/serg/wp-content/uploads/2010/10/1st_Analysis-of-Dalvik-VM.pdf

4) http://jawadmanzoor.files.wordpress.com/2012/01/android-report1.pdf

5) http://en.wikipedia.org/wiki/Dalvik_(software)

6) http://www.netmite.com/android/mydroid/dalvik/docs/dalvik-bytecode.html

7) http://davidehringer.com/software/android/The_Dalvik_Virtual_Machine.pdf

8) http://www.netmite.com/android/mydroid/dalvik/docs/dex-format.html

9) http://androidaio.com/google-introduces-artandroid-runtime-in-kitkat/

10) http://xenproject.org/

11) http://www.vm.ibm.com/

12) http://docs.oracle.com/javase/tutorial/

13) http://www.pcmag.com/encyclopedia/term/53927/virtual-machine

14) www.vmware.com

http://source.android.com/devices/tech/dalvik/instruction-formats.html
http://imsciences.edu.pk/serg/wp-content/uploads/2010/10/1st_Analysis-of-Dalvik-VM.pdf
http://jawadmanzoor.files.wordpress.com/2012/01/android-report1.pdf
http://en.wikipedia.org/wiki/Dalvik_(software)
http://www.netmite.com/android/mydroid/dalvik/docs/dalvik-bytecode.html
http://www.netmite.com/android/mydroid/dalvik/docs/dex-format.html
http://androidaio.com/google-introduces-artandroid-runtime-in-kitkat/
http://xenproject.org/
http://www.vm.ibm.com/
http://docs.oracle.com/javase/tutorial/
http://www.pcmag.com/encyclopedia/term/53927/virtual-machine

