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MORSE

Matrices Over Runtime Systems at Exascale

=⇒ Mission statement: "Design dense and sparse linear algebra
methods that achieve the fastest possible time to an accurate
solution on large-scale Hybrid systems".

=⇒ Separation of concerns:
Algorithmic challenges to exploit the hardware capabilities
at most.
Runtime challenges due to the ever growing hardware
complexity.

=⇒ MORSE Algorithms: MORSE-Dense (PLASMA, MAGMA, tile
algorithms), MORSE-Sparse (PaStiX, MaPHyS), MORSE-Stencil,
MORSE-FMM

=⇒ MORSE Runtimes: QUARK, StarPU, DAGuE
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Motivation Time Breakdowns

Time Breakdown for TRD and Just Eig-Values (QR)
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Motivation Time Breakdowns

Time Breakdown for TRD and Just Eig-Vals (D&C)
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Motivation Time Breakdowns

Time Breakdown: TRD, Eig-Values, and Eig-Vectors
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Block and Tile Algorithms Block Algorithms

Block Algorithms

Panel-Update Sequence
Transformations are blocked/accumulated within the Panel
(Level 2 BLAS)
Transformations applied at once on the trailing submatrix
(Level 3 BLAS)
Parallelism hidden inside the BLAS
Fork-join Model
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Block Algorithms
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Block and Tile Algorithms Block Algorithms

Block Algorithms
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Figure: Performance evaluation and TLB miss analysis of the one-stage
LAPACK TRD algorithm with optimized Intel MKL BLAS, on a dual-socket
quad-core Intel Xeon (8 cores total).
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Block and Tile Algorithms Block Algorithms

Block Algorithms

Panel computation involves the entire trailing submatrix
Performance are impeded by memory-bound nature of the
panel
Reductions achieved through one-stage approach
2-sided reductions (TRD, BRD, HRD) more challenging than
1-sided factorizations (QR, LU, Cholesky)
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Block and Tile Algorithms Tile Algorithms

Tile Algorithms

Parallelism is brought to the fore
Tile data layout translation
May require the redesign of linear algebra algorithms
Remove unnecessary synchronization points between
Panel-Update sequences
DAG execution where nodes represent tasks and edges
define dependencies between them
Dynamic runtime system environment
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Block and Tile Algorithms Tile Algorithms

Tile Algorithms

Figure: Translation from LAPACK Layout (column-major) to Tile Data
Layout
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Two-Stage Approach Stage I: Band Reduction

Stage I: Band Reduction

Tile algorithm running on top of tile data layout
Rely on high performant compute-intensive kernels
Composed by successive calls to Level 3 BLAS operations
Derived from QR factorization kernels
Handle cautiously the symmetric structure of the matrix
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Two-Stage Approach Stage II: Bulge Chasing

Stage II: Bulge Chasing

Further reduce the band tridiagonal matrix to the final
tridiagonal form
Algorithm proceeds by column-wise annihilation
Each column annihilation (or sweep) creates a bulge, which
needs to be chased down to the bottom right corner of the
matrix
If N is the matrix size, (N-2) sweeps are required to achieve
the tridiagonal structure.
Rely on Level 2 BLAS kernels
Highly memory-bound operations: the whole matrix needs
to be traversed to annihilate a single column.
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Two-Stage Approach Stage II: Bulge Chasing

Stage II: Bulge Chasing
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Two-Stage Approach Stage II: Bulge Chasing

Stage II: Bulge Chasing ZigZag
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Two-Stage Approach Stage II: Bulge Chasing

Runtime Translation from Column-major to Tile: DTL
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Two-Stage Approach Stage II: Bulge Chasing

Stage II: Bulge Chasing

Column-major algorithm running on top of column-major
data layout
Data layout mismatch between both stages
Need an abstraction layer to reconcile both stage layouts.
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Data Translation Layer

Data Translation Layer

Pro:
Allows writing algorithm using column-major layout

Especially important for bulge chasing which has “shift by
column” data access

Tracks and relays dependences automatically to the
runtime scheduler.

Con:
Still requires the user to minimize data access area for each
kernel call.

Minimizing dependences minimizes scheduling overhead and
enables more parallelism.
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Tuning the Tile Size
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Tuning the Tile Size

More Detailed Look at Tile Size (NB) Influence
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Dynamic Scheduling: QUARK
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Dynamic Scheduling: QUARK

Dynamic Scheduling: QUARK

Conceptually similar to out-of-order processor scheduling

because it has:
Dynamic runtime DAG scheduler
Out-of-order execution flow of tasks
Task scheduling as soon as dependencies are satisfied
Overlapping of operations from both stages
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Dynamic Scheduling: QUARK

Dynamic Scheduling: QUARK
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Performance Results
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Performance Results

TRD Performance Results
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Performance Results

Speedup: TRD + Eigenvalue
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Performance Results

Speedup: TRD + Eigenvalue + Eigenvector
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Future Work

Future Work

Evaluating the performance in the case where only an
eigenvalue subset is needed.
Extension to the Hessenberg reduction (matrix sign function)
Algorithm favorable for running on heterogeneous
hardwares (e.g., StarPU w/ multiple GPUs)
Implementation on Distributed Environment (DAGuE)
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Thank you!

Thank you!

شكرا !
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