
BlackjackBench: Portable Hardware Characterization

Anthony Danalis
∗

University of Tennessee
Knoxville, TN, USA

adanalis@eecs.utk.edu

Piotr Luszczek
University of Tennessee

Knoxville, TN, USA
luszczek@eecs.utk.edu

Gabriel Marin
Oak Ridge National Lab.

Oak Ridge, TN, USA

maring@ornl.gov

Jeffrey S. Vetter
†

Oak Ridge National Lab.
Oak Ridge, TN, USA

vetter@ornl.gov

Jack Dongarra
‡

University of Tennessee
Knoxville, TN, USA

dongarra@eecs.utk.edu

ABSTRACT
DARPA’s AACE project aimed to develop Architecture Aware Com-
piler Environments that automatically characterizes the hardware
and optimizes the application codes accordingly. We present the
BlackjackBench – a suite of portable benchmarks that automate
system characterization, plus statistical analysis techniques for in-
terpreting the results. The BlackjackBench discovers the effective
sizes and speeds of the hardware environment rather than the of-
ten unattainable peak values. We aim at hardware characteristics
that can be observed by running standard C codes. We characterize
the memory hierarchy, including cache sharing and NUMA char-
acteristics of the system, properties of the processing cores affect-
ing instruction execution speed, and the length of the OS scheduler
time slot. We show how they all could potentially interfere with
each other and how established classification and statistical analy-
sis techniques reduce experimental noise and aid automatic inter-
pretation of results.

1. INTRODUCTION
Automatic detection of hardware characteristics is necessary given

the dramatic changes undergone by computer hardware. Several
system benchmarks exist in the literature [14, 13, 3, 9, 4, 6, 10,
8]. As hardware becomes more complex, new features need to be
characterized and assumptions revised or completely redesigned.

In this paper, we present BlackjackBench, a system characteriza-
tion benchmark suite. The contribution of this work is twofold:
• Portable micro-benchmarks that can probe the hardware and record
its behavior while control variables are varied.
• A statistical analysis methodology, implemented as a collection
of scripts for result parsing, that examines the output of the micro-
benchmarks and produces the desired system characterization in-
formation, e.g. effective speeds and sizes.

Important performance related decisions take into account effec-
tive values of hardware features, rather than their peak values. An
effective value of a hardware feature affects the user level applica-
tion written in C running on that hardware. This is in contrast with
values that can be found in vendor documents, or through assem-
bler benchmarks, or specialized instructions and system-calls.

BlackjackBench goes beyond the state of the art in system bench-
marking by characterizing features of modern multicore systems,
∗Also with Oak Ridge National Laboratory (ORNL).
†Also with Georgia Institute of Technology
‡Also with ORNL and the University of Manchester

taking into account contemporary hardware characteristics such as
modern cache prefetchers, and the interaction between the cache
and TLB hierarchies, etc. BlackjackBench combines established
classification and statistical analysis techniques with heuristics tai-
lored to specific benchmarks, to reduce experimental noise and aid
automatic interpretation of the results.

2. RELATED WORK
Some benchmarks, such as those described by Molka et. al [7],

aim to analyze the micro-architecture of a specific platform in great
detail and thus sacrifice portability and generality. Others [2] sacri-
fice portability and generality by depending upon specialized soft-
ware such as PAPI [1]. Autotuning libraries such as ATLAS [12]
rely on micro-benchmarking for accurate system characterization
for a very specific set of routines which need tuning. These libraries
also develop their own characterization techniques [11], that need
to be subsumed to target a much broader feature spectrum.

CacheBench [8], or lmbench [6, 10] are higher level, portable,
and use similar techniques to those we use – such as pointer chasing
– but output large data sets or graphs that need human interpretation
instead of values that characterize the hardware platform.

X-Ray [14, 13] is a suite that discovers only some of the features
that we chose. There are also differences in methodology which
we mention throughout. One important distinguishing feature is X-
Ray’s emphasis on code generation – we give more emphasis on
analyzing the resulting data.

P-Ray [3] is a micro-benchmark suite that complements X-Ray
by characterizing multicore hardware features such as cache shar-
ing and processor interconnect topology. We extend the P-Ray con-
tribution with new tests and measurement techniques as well as a
larger set of tested hardware architectures.

Servet [4] attempts to subsume X-Ray and P-Ray. It adds mea-
surements of interconnect parameters for communication that oc-
curs in a distributed memory. The methodology and measurement
techniques in Servet complement those of X-Ray and P-Ray and re-
main in sharp contrast with our work. We do not focus on the actual
hardware parameters. Rather, we seek the observable parameters
that often are below vendors’ specifications. Servet’s portability
extends only Intel Xeon and Itanium clusters.

3. BENCHMARKS
We assert that, by observing variations in the performance of

benchmarks, all hardware characteristics that can significantly af-
fect the performance of applications can be discovered. Conversely,

if a hardware characteristic cannot be discovered through perfor-
mance measurements, it is probably not very important.

The memory hierarchy in modern architectures is complex, with
hardware prefetchers, victim caches, etc. Unlike benchmarks [4,
9] that use constant strides when accessing their buffers, we use a
technique known as pointer chasing (or pointer chaining) [3, 6, 14].
To achieve this, we use a buffer that holds pointers (uintptr t) in-
stead of integers, or characters. We initialize the buffer so that each
element points to the element that should be accessed next, and then
we traverse the buffer in a loop that reads an element and derefer-
ences the value read to access the next element: ptr=(uintptr t
*)*ptr. The benefits of pointer chasing are threefold. A) The ini-
tialization of the buffer is not part of the timed code. Therefore,
it does not cause noise in the performance measurement loop even
when sophisticated pseudo-random number generators are used; B)
it eliminates the possibility that a compiler could alter the loop
that traverses the buffer, since the addresses used in the loop de-
pend on program data (the pointers stored in the buffer itself); C)
it eliminates the possibility that the even sophisticated hardware
prefetcher(s) can guess the address of the next element.

Cache Hierarchy Improved cache utilization is one of the most
performance critical optimizations in modern hardware. As a result
of the increasing gap between processor and memory speed, most
modern processor designs incorporate complex, multi-level cache
hierarchies that include both shared and non-shared caches between
the processing elements.

Cache Line Size We assume that upon a cache miss the cache
fetches a whole line (A1). Two consecutive accesses to memory
addresses that are mapped to the same cache line will result in, at
most, one cache miss. In contrast, two accesses to memory ad-
dresses that are farther apart than a cache line may result in two
cache misses.

We allocate a buffer large enough to exceed the cache, and per-
form memory accesses in pairs. The buffer is aligned to 512 bytes,
which is larger than the cache line size. Each access is to an ele-
ment of size equal to the size of a pointer (uintptr t). Each pair
of accesses touches the first and the last elements of a memory
segment with extent D of a random buffer location. The pairs are
chosen such that every odd access, starting with the first one, is at
a random memory address within the buffer and every even access
is D− sizeo f (uint ptr t) bytes away from the previous one. The
random nature of the access pattern and the large size of the buffer
guarantees, statistically, that the vast majority of the odd accesses
will result in cache misses. However, the even accesses can result
in either cache hits or misses depending on the extent D. If D is
smaller than the cache line, each even access will be in the same
line. If D is larger than the cache line size, the two addresses will
map to different cache lines.

An access that results in a cache hit is served at the latency of
the cache, while a cache miss is served at the latency of lower-level
caches, which leads to significantly higher latency. Our benchmark
forces this behavior by varying the value of D, expecting a signifi-
cant increase in average access latency when D becomes larger than
the cache line size. A sample run of this benchmark can be seen in
Figure 1(a).

Cache Size and Latency Using the cache line size, we detect the
number of cache levels, their sizes, and access latencies. The en-
abling assumption is that performing multiple accesses to a buffer
that fully resides in the cache is faster than performing the same
accesses to a buffer that does not fully reside in the cache (A2).

The benchmark allocates a buffer that is expected to fit in the
smallest cache of the system. The buffer has only a few cache lines.
Then we access the whole buffer with a stride equal to the cache

line size. We estimate the average latency per access by making the
access pattern random to avoid prefetching effects. And by contin-
uously accessing the buffer until every element has been accessed
multiple times we amortize start-up and cold misses overhead.

The benchmark varies the buffer size and performs the same ran-
dom access traversal for each new buffer size, recording the average
access latency at each step. Due to assumption A2, we expect that
the average access latency will be constant for all buffers that fit in
a particular cache of the hierarchy, but there will be a significant
access latency difference for larger buffers. By varying the buffer
size, we expect to generate a set of Access Latency vs. Buffer Size
data that looks like a step function with multiple steps. A step in
the data set should occur when the buffer size exceeds the size of a
cache. The number of steps will be the number of caches plus one
for the main memory. The Y value at the apex of each step will be
the access latency of each cache.

In order to eliminate false steps, the cache benchmarks minimize
the effects of the TLB by accessesing the buffer in a not uniformly
random manner. Instead, the buffer is split into segments equal to
a page size. The benchmark accesses the elements of each segment
in random order, but exhausts all the addresses in a segment before
proceeding to the next segment. This approach guarantees that,
in a system with a cache line size SL and a page size SP, there
are at least SP/SL cache misses for each TLB miss, which in a
typical modern architecture is around 64. Figure 1(b) show how
this approach enables us to infer the characteristics of the cache
hierarchy from data sets gathered from real hardware.

Cache Associativity We assume is that in a system with a cache
of size Sc, two memory addresses A1 and A2, such that A1%Sc =
A2%Sc, map to the same set of an N-way associative cache (A3).

We allocate a buffer many times larger than the cache size, M×
Sc. Next, the benchmark starts accessing a part of the buffer that
is K × Sc large (with K ≤ M), repeating the experiment for differ-
ent, integral values of K. For every value of K the access pattern
consists of randomly accessing addresses that are Sc bytes apart;
this process is repeated a sufficient number of times. Since all such
addresses will map into the same cache set, as soon as K becomes
larger than N, the cache will start evicting elements to store the new
ones, and therefore some of the accesses will result in cache misses.
Consequently, the average access time should be significantly lower
for K ≤ N than for K > N. The output from a sample run of this
benchmark on an Itanium processor is shown in Figure 1(c).

We note that a victim cache may cause the benchmark to detect
an associativity value higher than the real one. Thus, our bench-
mark accesses elements in multiple sets, instead of just one.

Asymmetries in the Memory Hierarchy Shared caches and in-
tegrated memory controllers have become the norm. Both of these
hardware features can potentially create asymmetries in the mem-
ory system. The cores may communicate faster with other cores
from the same subset than with cores from another subset. For
NUMA, data allocated on one NUMA node is accessed faster by
the local cores than by cores from a different node.

We use a multi-threaded benchmark whereby two threads access
a shared memory block. One thread allocates and then initializes
the memory block. The benchmarks assume that a NUMA sys-
tem implements the first-touch page allocation policy. Next, the
two threads take turns incrementing all the locations in the mem-
ory block. One thread reads, and then modifies the entire memory
block before the other thread. The two threads synchronize using
busy waiting on a volatile variable. We use padding to ensure that
the locking variable is allocated in a separate cache line, to avoid
false sharing. This approach causes the two threads to act both as
producers and consumers, switching roles after each complete up-

 4

 4.5

 5

 5.5

 6

 6.5

 7

 8 16 32 64 128 256 512

A
v
e

ra
g

e
 A

c
c
e

s
s
 L

a
te

n
c
y

Access Pair Extent: D

Intel Core 2 Duo 2.8 GHz

(a) Line Size Characterization on Core 2 Duo

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90

 1 2 4 8 1
6

 3
2

 6
4

 1
2
8

 2
5
6

 5
1
2

 1
0
2

4

 2
0
4

8

 4
0
9

6

 8
1
9

2

A
c
c
e
s
s
 L

a
te

n
c
y
 (

n
s
)

Buffer Size (KiB)

ATOM Cache Discovery

(b) Cache Characterization on Atom

 0

 1

 2

 3

 4

 5

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
c
c
e

s
s
 L

a
te

n
c
y
 (

n
s
)

Buffer Size (x Cache-Size)

Itanium

(c) Cache Associativity on Itanium II

Figure 1: Cache characterization on different platforms.

date of the block. We repeat this process many times to minimize
noise and we compute the achieved bandwidth for different block
sizes. We use a range of block sizes, from a size smaller than the L1
cache to a size larger than the last level of cache. We test all pairs
of cores. To be OS independent, we must assume that a thread is
executed on the same core. We control the placement of the threads
using an OS specific API for pinning threads to cores. The com-
munication profiles are analyzed in decreasing order of the memory
block size, to detect any potential cliques of cores that are close to
each other. The algorithm starts with a large clique that includes all
the cores. At each step, the data for the next smaller memory block
is processed. The communication data between all cores of a clique
identified at a previous step is analyzed to identify any sub-cliques
of cores that communicate faster for a smaller block.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 16 64 256 1024 4096 16384

L1 L2 L3

O
ne

 w
ay

 b
an

dw
id

th
 (

M
B

/s
)

Block size (KB)

Inter-node
Intra-node

Figure 2: One-way, inter-core communication bandwidth on a
dual-socket Intel Gainestown with Hyper-Threading disabled.

In Figure 2, the x axis represents the block size, and the y axis
represents the single thread bandwidth. The bandwidth is computed
as number updated lines × cache line size / time, where the num-
ber of cache lines updated by the first thread is number updated lines.
Since the two threads update an equal number of lines, the val-
ues shown in the figure represent only half of the actual two-way
bandwidth. As expected for such a system, the benchmark captures
two distinct communication patterns: (1) cores reside on different
NUMA nodes, curve labeled inter-node; and (2) cores are on the
same NUMA node, curve labeled intra-node.

When the data for the largest memory block size is analyzed, the
algorithm divides the initial set of eight cores into two cliques of
size four, corresponding to the two NUMA nodes in the system.
The cores in each of these two cliques communicate among them-
selves at the speed shown by the intra-node point, while the com-

munication speed between cores in distinct cliques corresponds to
the inter-node point. The algorithm continues by processing the
data for the smaller memory block sizes, but no additional asym-
metries are uncovered in the following steps. The locality tree for
this system has just two levels, with the root node corresponding to
the entire system at the top, and two nodes of four cores at the next
level corresponding to the two NUMA nodes in the system.

3.1 TLB Hierarchy

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30

 0 5000 10000 15000 20000 25000 30000

A
cc

es
s

La
te

nc
y

(µ
s)

Stride for memory accesses

ARM OMAP3
Intel Itanium 2

Intel Nehalem EP

Figure 3: Timing results for discovering the TLB page size.
TLB hierarchy is an important part of the memory system that

bears some resemblance to the cache hierarchy. However, TLB is
sufficiently different to warrant its own characterization method.

Crucially, we ensure that our TLB benchmarks alleviate cache
effects on the measurements. We chose for the effects of data
cache misses to be filtered out during the analysis of the results.
An added benefit is capturing the rare events when the TLB and the
data cache are inherently interconnected, such as when TLB fits the
same number of pages as there are data cache lines.

To determine the page size, our benchmark maximizes the penalty
coming from the TLB misses. We do it by traversing a large array
multiple times with a given stride. The array is large enough to ex-
ceed the span of any TLB level – this guarantees a high miss rate if
the stride is larger or equal to the page size. If the stride is less than
the page size, some of the accesses to the array will be contained in
the same page, and thus, will decrease the number of misses and the
overall benchmark execution time. The false positives stemming
from interference of data cache misses are naturally eliminated by
the high cost of a TLB miss in the last level of TLB. Typical timing
curves for this benchmark are shown in Figure 3. The figure shows
results from three very different processors: ARM OMAP3, Intel
Itanium 2, and Intel Nehalem EP. The graph line for each system

has the same shape; for strides smaller than the page size, the line
raises as the number of misses increases because fewer memory ac-
cesses hit the same page. And for strides that exceed the page size,
the graph line is flat because each array access touches a different
page so the per-access overhead remains the same. The page size is
determined as the inflection point in the graph line: 4KB for both
ARM and Nehalem and 16KB for Itanium.

Once the actual TLB page is known, it is possible to proceed
with Discovering the sizes of the levels of the TLB hierarchy in-
volves minimizing the impact of the data caches. The common and
portable technique is to perform repeated accesses to a large mem-
ory buffer at strides equal to the TLB page size. This technique is
prone to creating as many false positives as there are data cache lev-
els and a slight modification to this technique is required [9]. On
each visited TLB page, our benchmark chooses a different cache
line to access, thus, maximizing the use of any level of data cache.
As a side note, choosing a random cache line within a page uti-
lizes only half of the data cache on average. Figure 4 shows the
timing graphs where both Level 1 and Level 2 TLBs are identified
accurately. We aim at the observable parameters and even if the
TLB size is 512 entries, some of these entries will not contain user
data. Specifically, there is a need for the function stack and the
code segment which will use one TLB page each, thus reducing the
observable TLB size by two.

3.2 Arithmetic Operations
Instruction latencies The latency L (O,T) of an operation O,

with operands of type T , is calculated as the number of cycles it
takes from the time one such operation is issued until its result be-
comes available to subsequent dependent operations. Blackjack-
Bench reports all operation latencies relative to the latency of a
32-bit integer addition, since the CPU frequency is not directly de-
tected. For each combination of operation type O and operand type
T , our code generator outputs a micro-benchmark that executes in
a loop a large number of chained operations of the given type. The
loop is executed twice, using the same number of iterations but with
different unroll factors. The difference of the two execution times
is divided by the difference in operation counts between the two
loops. This approach eliminates the effect of the loop overhead,
while keeping the unroll factors small. To account for run-time
variability, each benchmark is executed six times, and the second
lowest result is selected.

Instruction throughputs The throughput T (O,T) of an oper-
ation O, with operands of type T , represents the rate at which one
thread can issue and retire independent operations of a given type.
Throughput is reported as the number of operations that can be is-

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

 4.0

 4.5

 5.0

 50 100 150 200 250 300 350 400 450 500

A
cc

es
s

La
te

nc
y

(n
s)

Working set size (number of visited TLB pages)

Intel Penryn (Core 2 Duo)
AMD Opteron K10 (Istanbul)

IBM POWER7

Figure 4: TLB characterization on three platforms.

sued in the time it takes to execute a 32-bit integer addition.
To determine the maximum rate at which operations are issued,

micro-benchmarks must include many independent operations as
opposed to chained ones. At the same time, using too many paral-
lel operations increases register pressure, causing unnecessary de-
lays due to register spills/unspills. For each operation type O and
operand type T , multiple micro-benchmarks are generated each
with a different number of independent streams. The number of
parallel operations is varied between 1 and 20, and the minimum
time per operation across all versions, Lmin, is recorded. Through-
put is computed as the ratio between the latency of a 32-bit integer
addition and Lmin.

Operations in flight The number of operations in flight F (O,T)
for an operation O, with operands of type T , measures how many
such operations can be outstanding at any given time in a single
thread. This measure is a function of both the issue rate and the
pipeline depth of the target processor, and is a unitless quantity.

For each operation type O and operand type T , multiple micro-
benchmarks, with different numbers of independent streams of op-
erations, are generated and executed. To find the number of opera-
tions in flight, we are looking at the cost per loop iteration. Each in-
dependent stream has the same number of chained operations, and
the total number of operations in one loop iteration grows linearly
with the number of streams. When we increase the number of in-
dependent streams in the loop, the cost per iteration should remain
constant as long as the processor can pipeline all the independent
operations. Thus, the number of operations in flight supported by
one thread of control is given by the inflection point where the cost
per iteration starts to increase.

3.3 Execution Contexts
We use the term “Execution Context” to refer to the minimum

hardware necessary to effect the execution of a compute thread.
Several modern architectures implementing virtual hardware threads
exhibit selective preference over different resources. For example,
a processor could have private integer units for each virtual hard-
ware thread, but only a shared floating point unit for all hardware
threads residing on a physical core. The Blackjack benchmarks at-
tempt to discover the maximum number of: a) floating point, b)
integer and c) memory intensive execution contexts.

Intuitively, we are interested in the maximum number of com-
pute threads that could perform floating point computations, integer
computations, or intense memory accesses, without having to com-
pete with one another, or wait for the completion of one another.
Thus the assumption is that in a system with N execution contexts,
there should be no delay in the execution of each thread for M ≤ N
threads, but for M > N at least one should be delayed (A4).

To utilize this assumption, our benchmark instantiates M threads
that do identical work (floating point, integer, or memory intensive,
depending on what we are measuring) and records the total execu-
tion time, normalized to the time of the case where M = 1. The ex-
periment is repeated for different values of M until the normalized
time exceeds some small predetermined threshold, typically 2 or 3.
Due to assumption A4, the normalized total execution time will be
constant and equal to 1 (with some possible noise) for M ≤ N and
greater than one for M > N.

To avoid erroneous results due to memory limitations, our bench-
mark limits memory accesses of each thread to a small memory
block that fits in the level 1 cache and uses pointer chasing to tra-
verse it. For the case of the integer and floating point contexts, the
corresponding benchmarks execute a tight compute loop with divi-
sions, which are among the most demanding arithmetic operations.
An output of this benchmark on Power7 is shown in Figure 5(a).

 0

 0.5

 1

 1.5

 2

 2.5

 2 4 6 8 10 12 14 16 18 20 22 24 26 28

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

Number of threads

Floating Point
Integer

Memory

(a) Execution Contexts on Power7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

A
v
e
ra

g
e
 O

p
e
ra

ti
o
n
 L

a
te

n
c
y
 (

n
s
)

Number of Variables

Integer 32bit
Integer 64bit

Float 32bit
Float 64bit

(b) Live Ranges Characterization on Power7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

A
v
e
ra

g
e
 O

p
e
ra

ti
o
n
 L

a
te

n
c
y
 (

n
s
)

Number of Variables

Integer 64bit relative dY
Integer 32bit relative dY

(c) Live Ranges and Relative dY

Figure 5: Execution contexts and live ranges characterization.

3.4 Live Ranges
We use the term “Live Ranges” to describe the maximum num-

ber of concurrently usable registers by a user code which could be
different from the actual hardware registers, for example, either the
stack pointer or the frame pointer may need to occupy a register
and prevent from being used for application variable.

The compiler has to introduce a piece of code that “spills” the
extraneous variables to memory when out of registers. This incurs
a delay because: 1) memory (even the L1 cache) is slower than the
register file and 2) the extra instructions needed to transfer the vari-
able and calculate the appropriate memory location consume CPU
resources. Thus, the enabling assumption of this benchmark is that
in a machine with N Live Ranges, a program using K > N registers
will experience higher latency per operation than a program using
K ≤ N registers (A5). To measure this effect, our benchmark runs
a large number of small tests (130), each executing a loop with K
live variables (involved in K additions) with K ranging from 3 to
132. By executing all these tests and measuring the average time
per operation, we detect the maximum number of usable registers
by detecting the step in the resulting data.

The structure of the loop is similar to the one used by X-Ray [14],
but is modified in two ways.
• The switch statement inside the loop is unnecessary and detri-
mental. It is unnecessary as the chained dependences of the oper-
ations are sufficient to prohibit the compiler from aggressive op-
timizions. On some architectures, compilers choose to implement
the switch with a jump determined by a register value – one less
register could be reported by the benchmark.
• The simple dependence chain suggested in X-Ray: Pi%N =Pi%N +
P(i+N−1)%N can lead to inconclusive results in architectures with
deep pipelines and sophisticated ALUs with spare resources. To
reduce the impact of this effect we used the pattern: Pi%N = Pi%N +
P(i+N− N

2)%N for the loop body. This pattern enables ⌊N/2⌋ opera-
tions to be pipelined provided sufficient pipeline depth. As a result,
the execution of the operations in the loop puts much more pressure
on the CPU and makes it harder to hide the memory overheads.

Hand optimizations of the code, such as loop unrolling, were
used to amortize the loop overhead and reduce the importance of
the induction variable for register allocation. An example run of
this benchmark, on a Power7 processor, can be seen in Figure 5(b).

The actual output data of this benchmark shows that for very
small number of variables the average operation latency is higher
than the minimum operation latency achieved. However, since a
register spill can only increase latency, the curves shown in the
Figure and used to extract the Live Ranges information, were ob-
tained after applying monotonicity enforcement to the data. This

technique is discussed in Section 4.

3.5 OS Scheduler time slot
The time duration during which a thread will run on the CPU un-

interrupted is called a scheduler time slot. We rely on the assump-
tion that when a program is executed on a CPU with frequency F,
the latency between instructions should be on the order of 1/F,
where two instructions that execute in different time slots are sepa-
rated by a time interval on the order of the OS Scheduler time slot,
Ts, which will be several orders of magnitude larger than 1/F (A6).

Our benchmark consists of several threads. Each thread executes
a loop that performs a small number of arithmetic operations, takes
a timestamp, and records the elapsed time since the previous times-
tamp, Ti, if it was larger than a predefined threshold. The threshold
is chosen such that it is much longer than the time the few opera-
tions and the timestamp function take to execute, but shorter than
the expected value of the scheduler time slot, Ts. A handful of arith-
metic operations and a call to a timestamp function, commonly take
less than a microsecond. The scheduler time slot is typically in the
order of, or larger than, a millisecond. A threshold of 20µsec safely
satisfies our criteria. Since we do not record the duration, Ti, of any
loop iteration with Ti < threshold, the only values recorded will
be from iterations whose execution was interrupted by the OS and
spanned more than one scheduler time slot.

The benchmark assumes knowledge of the number of execution
contexts on the machine and oversubscribes them by a factor of two
by generating twice as many threads as there are execution con-
texts. Since all threads are compute-bound, perform identical com-
putation, and share an execution context with some other thread, we
expect that, statistically, each thread will run for one time slot and
wait during another. Regardless of scheduling fairness decisions
and esoteric OS details, the mode of the output data distribution
(i.e., the most common measurement taken) is the duration of the
scheduler time slot, Ts which was confirmed on several hardware
platforms and OSes.

4. STATISTICAL ANALYSIS
Monotonicity enforcement In all our benchmarks, except for

the micro-benchmark that detects asymmetries in the memory hier-
archy, the output curve is expected to be monotonically increasing.
If any data points violate this expectation, it is due to random noise,
or esoteric hardware details that are beyond the scope of this bench-
mark suite. Therefore, as a first post-processing step we enforce
monotonic increase using the formula: ∀i : Xi = min j≥i X j

Gradient Analysis Most of our benchmarks result in data that
resemble step functions. Therefore the challenge is to detect the

location of the step, or steps, that contain the useful information.
First Step The Execution Contexts benchmark produces curves

that start flat (when the number of threads is less than the available
resources), then exhibit a large jump (when the demand exceeds the
resources), and then continue with noisy behavior and potentially
additional steps as can be seen in Figure 5(a).

To extract the number of Execution Contexts, we are we locate
the first jump from the straight line to the noisy part. To eliminate
influence of small jumps in the flat part, we systematically define
the difference between a small and large jumps. We first calculate
the relative value increase in every step dY r

n = (Yn+1 −Yn)/Yn and
then compute the average relative increase ⟨dY r⟩. The data point
that corresponds to the jump we seek is the first data point i for
which dY r

i > ⟨dY r⟩. The rationale is that the average of a large
number of very small values and a few much larger values will be a
value higher than the noise, but smaller than the steps. Thus ⟨dY r⟩
gives us a good threshold between small and large values.

Biggest Step The Live Ranges benchmark produces curves that
start flat then potentially grow slightly, then exhibit a large step
when the first spill to memory occurs, and then continue growing
in a non-regular way, see Figure 5(b). Due to the increase in la-
tency before the first spill, the previous approach for detecting the
first step is not appropriate here. However, the steps caused by the
additional spills will be no larger than the step caused by the first
spill. Furthermore, since the additional steps have higher starting
values than the first step, the relative increase (Yn+1−Yn)

Yn
for every n

higher than the first spill will be lower than the relative increase of
the first spill. To demonstrate this point, Figure 5(c) shows the data
curves for the integer live ranges along with the relative dY r values.

The biggest relative step technique can also be used for process-
ing the results of the cache line size benchmark and the cache as-
sociativity benchmark. For the TLB page size, where the desired
information is in the last large step, the analysis seeks the biggest
scaled step dY s = dY ×Y .

Quality Threshold Clustering The benchmark for detecting the
cache size, count, and latency has multiple steps that carry useful
information. We can group the data points into clusters based on
their Y value (access latency) such that each cluster includes the
data points that belong to one cache level. For the clustering, we use
a modified version of the quality threshold clustering algorithm [5].
We modify the cluster diameter threshold used by the algorithm to
determine if a candidate point belongs to a cluster or not. Unlike
regular QT-Clustering, where the diameter is a constant value pre-
determined by the user of the algorithm, our version uses a variable
diameter equal to 25% of the average value of each cluster. An ex-
ample use of this analysis, on the data from a Power7 processor,
can be seen in Figure 6.

 1

 5

 25

 1 2 4 8 16 32 64 128
 256

 512
 1024

 2048
 4096

 8192
 16384

 32768

A
c
c
e

s
s
 L

a
te

n
c
y
 (

n
s
)

Buffer Size (KiB)

Power7 Cache Data
(Remote) L3 cluster

(Local) L3 cluster
L2 cluster
L1 cluster

Figure 6: QT-Clustering applied to Power7 Cache Data

5. CONCLUSION
We have presented the BlackjackBench suite of micro-benchmarks

goes beyond the state of the art in benchmarking by:
• Offering micro-benchmarks that can exercise a wider set of hard-
ware features than most existing benchmark suites do.
• Emphasizing portability by avoiding low level primitives, spe-
cialized software tools and libraries, or non-portable OS calls.
• Providing statistical analyses capable of inferring useful values
that describe the hardware from the raw results of the micro-benchmarks.
• Emphasizing the detection of hardware features through varia-
tions in performance. BlackjackBench detects the effective values
of hardware characteristics, which is what a user level application
experiences when running on the hardware.

6. REFERENCES
[1] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A

Portable Programming Interface for Performance Evaluation
on Modern Processors. International Journal of High
Performance Computing Applications, 14(3):189–204, 2000.

[2] J. Dongarra, S. Moore, P. Mucci, K. Seymour, and H. You.
Accurate Cache and TLB Characterization Using hardware
Counters. In ICCS, June 2004.

[3] A. X. Duchateau, A. Sidelnik, M. Garzarán, and D. Padua.
P-ray: A suite of micro-benchmarks for multi-core
architectures. In Proc. 21st Intl. Workshop on Languages and
Compilers for Parallel Computing (LCPC’08), volume 5335
of LNCS, pages 187–201, Edmonton, Canada, 2008.

[4] J. Gonzalez-Dominguez, G.L. Taboada, B.B. Fraguela, M.J.
Martin, and J. Tourio. Servet: A Benchmark Suite for
Autotuning on Multicore Clusters. In IPDPS, 2010.

[5] L. J. Heyer, S. Kruglyak, and S. Yooseph. Exploring
expression data: Identification and analysis of coexpressed
genes. Genome Research, 9(11):1106–1115, 1999.

[6] L. McVoy and C. Staelin. lmbench: portable tools for
performance analysis. In ATEC’96: USENIX 1996, pages
23–23, Berkeley, CA, 1996.

[7] Daniel Molka, Daniel Hackenberg, Robert Schone, and
Matthias S. Muller. Memory Performance and Cache
Coherency Effects on an Intel Nehalem Multiprocessor
System. In PACT ’09, pages 261–270, Washington, DC,
USA, 2009.

[8] P. Mucci and K. London. The CacheBench Report. Technical
report, University of Tennessee Knoxville, 1998.

[9] R. Saavedra and A. Smith. Measuring Cache and TLB
Performance and Their Effect on Benchmark Runtimes.
IEEE Trans. Computers, 44(10):1223–1235, 1995.

[10] C. Staelin and L. McVoy. mhz: Anatomy of a
micro-benchmark. In USENIX 1998, pages 155–166, New
Orleans, LA, January 15-18 1998.

[11] R. Clint Whaley and Anthony M. Castaldo. Achieving
accurate and context-sensitive timing for code optimization.
Software: Practice and Experience, 38(15):1621–1642,
April 2008.

[12] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra.
Automated empirical optimizations of software and the
ATLAS project. Parallel Computing, 27(1-2):3–35, 2001.

[13] K. Yotov, S. Jackson, T. Steele, K. Pingali, and P. Stodghill.
Automatic measurement of instruction cache capacity. In
Proceedings of the 18th LCPC Workshop, 2005.

[14] K. Yotov, K. Pingali, and P. Stodghill. Automatic
measurement of memory hierarchy parameters.
SIGMETRICS Perform. Eval. Rev., 33(1):181–192, 2005.

