Mixed-precision orthogonalization process
Performance on multicore CPUs with GPUs

Ichitaro Yamazaki, Stanimire Tomov, Jakub Kurzak, Jack Dongarra
University of Tennessee, Knoxville, USA

Jesse Barlow
Pennsylvania State University, Pennsylvania, USA

SIAM Conference on Applied Linear Algebra
Atalanta, U.S.A., 10-28-2015
TSQR: Tall-Skinny QR

orthogonalizes a set of dense columns vectors V (m-by-n, $m \gg n$),

$VQ = R$

where Q is a set of orthogonal vectors, and R is upper triangular.

- important computational kernels:
 - 1st part of this talk: $n = O(10)$
 “Communication-avoiding” Krylov ($n = s$)
 - 2nd part of this talk: $n = O(100)$
 Random sampling for low-rank matrix approximation ($n = k + \ell$)
TSQR Algorithms

Many ways to compute TSQR:

- **Householder QR** (with $O(s)$ reductions)
 - Householder transform each column based on BLAS-1,2 xGEQR2

- **Modified Gram-Schmidt** (with $O(s)$ reductions)
 - Orthogonalize each column against each column based on BLAS-2,1 xGEMV, xDOT

- **Classical Gram-Schmidt** (with $O(s)$ reductions)
 - Orthogonalize each column against previous columns based on BLAS-2,1 xGEMV, xDOT

- **Cholesky QR** (or SVQR) (with $O(1)$ reductions)
 - Orthogonalize all columns against previous columns based on BLAS-3 xGEMM, xTRSM

- **CAQR** (with $O(1)$ reductions)
 - Orthogonalize all columns against previous columns based on tree-reduction BLAS-1,2 xGEQR2
TSQR Performance (16-core SandyBridge with three M2090 Fermi, $s = 30$)

- **TSQR Performance on 1 GPU**

- **TSQR Performance on 3 GPUs**

- **CholQR shows superior performance based on BLAS-3**

- **performance depends more on intra-comm (BLAS performance) than on inter-comm.**

- **it scales well over 3 GPUs.**
CholQR factorization for \textit{TSQR} \cite{Stathopoulos:2002}.

\begin{itemize}
 \item \textbf{Step 1} Gram-matrix formation $G := V^T V$ ($\frac{1}{2}n s^2$ ops on GPUs).
 \item \textbf{Step 2} Cholesky factorization $R^T R := G$ ($\frac{1}{6}n s^3$ ops on CPUs).
 \item \textbf{Step 3} Backward-substitution $Q := VR^{-1}$ ($\frac{1}{2}n s^2$ ops on GPUs).
\end{itemize}

\begin{itemize}
 \item Most of flops using BLAS-3.
 \item Only a pair of global communication (reduction+broadcast).
\end{itemize}
TSQR Stability:

- **trade-off between performance and stability**
 - CholQR performs most of computation using BLAS-3.
 - Condition number of Gram matrix G is square of A.

<table>
<thead>
<tr>
<th></th>
<th>$|I - QTQ|$</th>
<th># flops, GPU kernel</th>
<th># GPU-CPU comm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGS</td>
<td>$O(\epsilon \kappa(V))$</td>
<td>2ns^2, BLAS-1 xDOT</td>
<td>$O(s^2)$</td>
</tr>
<tr>
<td>CGS</td>
<td>$O(\epsilon \kappa(V)^{s-1})$</td>
<td>2ns^2, BLAS-2 xGEMV</td>
<td>$O(s)$</td>
</tr>
<tr>
<td>CholQR</td>
<td>$O(\epsilon \kappa(V)^2)$</td>
<td>2ns^2, BLAS-3 xGEMM</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>SVQR</td>
<td>$O(\epsilon \kappa(V)^2)$</td>
<td>2ns^2, BLAS-3 xGEMM</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>CAQR</td>
<td>$O(\epsilon)$</td>
<td>4ns^2, BLAS-1,2 xGEQR2</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

- it often requires reorthogonalization
- it could fail if $\kappa(V) > \epsilon^{-1/2}$.
Mixed Precision CholQR

Remove “square” in error bound by selectively using “doubled” precision:

Step 1 Gram-matrix formation $G := V^T V$ (V in double)
doubled-precision on GPUs.

Step 2 Cholesky factorization $R^T R := G$
doubled-precision on CPUs.

Step 3 Backward-substitution $Q := VR^{-1}$
working-precision on GPUs.

→ orthogonality error depends linearly on $\kappa(V)$ (more details in SISC paper, submitted)

\[\| I - Q^T Q \| \leq O(\epsilon \kappa(V) + (\epsilon \kappa(V))^2) \text{ and } \| Q \| \leq 1 + O(\epsilon \kappa(V)) \]

→ may require software-emulated arithmetics for doubled-precision
e.g., for working double, double-double to enumerate quadruple precision
computation increases by $8.5 \times$ [Y. Hida, X. Li, and D. Bailey, ’00], but
communication-bounded, $\frac{1+n^2}{2}$ flops per read
read V in double, only volume doubles to form G
Batched GPU kernels for block inner-products

“batched” xGEMM/xSYRK kernel
1. thread block to compute partial block product
2. local reduction to compute partial Gram matrix
3. global all reduce to form final Gram matrix

brute-force tune for dimension and precision on GPU
(by Tim Dong)
Block inner-products in double-double vs. double precision

- Optimized batched xGEMM kernel for block inner-product, \(n = O(10^5), s = O(10) \).

- 1.7\(\times \) speedups over CUBLAS 5.5 for d-precision.
 30\% of the peak based on memory bandwidth

- 16\(\times \) more ops for dd-precision (Cray).
 - Input matrix in d-precision, compute intermediate results in dd-precision

![Diagram](image-url)
Block inner-products in double vs. double-double precision

- optimized batched \(\times \text{GEMM} \) kernel for block inner-product, \(n = O(10^5), s = O(10) \).
 - \(1.7 \times \) speedups over CUBLAS 5.5 for d-precision.
 - \(16 \times \) more ops for dd-precision (Cray).
 - memory-bound operation.
 → \(4.5 \times \) or \(3.5 \times \) slower on Fermi or Kepler.
Mixed Precision CholQR Performance

- only about 30% of d-CholQR in d-GEMM.
- dd-CholQR $8.5 \times$ ops, but $1.7 \times$ slower than d-CholQR
 - dd-CholQR may be competitive with $2 \times$ d-CholQR
 - d- or dd-CholQR could fail if $\kappa(V) > \epsilon^{-1/2}$ or $> \epsilon^{-1}$
- CA-Krylov performance can be improved
 - reduced orthogonalization time, larger step size, or faster convergence
Extension to orthogonalize many columns

- Motivation: random sampling of large sparse matrix, $n = O(100)$
- CholQR performs $\frac{1+n}{2}$ flops on each numerical value read.
- As n increases,
 - it becomes more compute-bound
 - mixed-precision CholQR becomes slower
- Use mixed-precision CholQR within block MGS
 - BMBS and then CholQR
 same bound by using mCholQR+CholQR
 with comp. overhead of $\frac{8.5}{n_t} \times$
 - restarted CA-Krlov to orthogonalize s vectors of m vectors at a time
Performance of BMGS: $m = 100,000$ on one GPU

with $n = 200$,

- mCholQR was $7.1 \times$ slower than CholQR (with $8.5 \times$ ops)
- mB1.5MGS was $1.7 \times$ slower than CholQR (with $1.8 \times$ ops)
 and was $4.1 \times$ faster than mCholQR
Performance of BMGS: \((m, n) = (500, 000, 200)\) on multiple GPUs

Compared to CholQR,

- B1.5MGS communicates \(n_t \times \) more
- mCholQR has greater bottleneck with ddPOTRF
Final Remarks

- Mixed-precision CholQR
 - performs $8.5 \times$ more computation
 - reduces $2 \times$ more words, $O(n^2)$ with $n \ll m$
 - was $1.4 \times$ slower when $n = O(10)$
 - was $7.1 \times$ slower when $n = O(100)$
 - smaller overhead if supported by hardware (e.g., single)

- BMGS combined with dd-CholQR + d-CholQR
 - performs $\frac{8.5}{n_t} \times$ more computation,
 where n_t is number of block columns
 - was $1.7 \times$ slower when $n = O(100)$
 - communicates $n_t \times$ more often

Current Work

- Numerical studies and theoretical bounds
- CAQR based on batched QR
 [J. Demmel, L. Grigori, M. Hoemmen, J. Langou, 2012]
Thank you!!