Comparing Hybrid CPU-GPU and Native GPU-only Acceleration for Linear Algebra

Mark Gates, Stan Tomov, Azzam Haidar
SIAM LA — Oct 29, 2015
Overview

- Dense linear algebra algorithms
- Hybrid CPU–GPU implementation
- GPU–only implementation
- Case studies:
 - QR factorization
 - QR with column pivoting
 - Hessenberg reduction
Linear algebra routines

• Iterate two steps:
 • Panel factorization
 • Level 1–2 BLAS
 • Control flow
 • Data dependent (pivoting, etc.)
 • Trailing matrix update
 • Level 3 BLAS
Hybrid CPU–GPU algorithms

- Assign panel to CPU
- Assign trailing matrix to GPU
- Communicate panel from CPU <-> GPU
- Overlap next panel during trailing matrix update
GPU–only algorithms

• Assign both panel and trailing matrix to GPU
• No CPU <=> GPU communication
• CPU available for other tasks
• No overlap
 • Some algorithms don’t allow overlap anyhow

CPU:

GPU: 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 7
Householder–based algorithms

• QR factorization (geqrf)
 • $A = QR$
 • Least squares, etc.

• QR with column pivoting (geqp3)
 • $AP = QR$
 • More stable, esp. for rank-deficient matrices

• Hessenberg reduction (gehrd)
 • $Q^H A Q = H$
 • Non-symmetric eigenvalues
QR factorization

• Panel (nb columns)
 • for each column
 • apply previous reflectors
 • annihilate entries below diagonal

• Trailing matrix
 • update next panel (look-ahead)
 • update rest of A

• Overlap next panel & trailing matrix update
Execution trace

• Hybrid CPU–GPU

CPU 0: [Diagram]
GPU 0 (s0): [Diagram]
Time (sec): 0.00

Legend: larfb panel sync

• GPU–only

CPU 0: [Diagram]
GPU 0 (s0): [Diagram]
Time (sec): 0.00

Legend: larfb panel
Results: QR

- GPU-only is much worse than Hybrid
QR with column pivoting

- Compute column norms
- Panel (nb columns)
 - for each column
 - swap with column of max norm
 - apply previous reflectors
 - annihilate entries below diagonal
 - GEMV with trailing matrix on GPU
 - update column norms
- Trailing matrix
 - update rest of A
- Dependencies prevent overlap
QR with column pivoting

• Compute column norms
• Panel (nb columns)
 • for each column
 • swap with column of max norm
 • apply previous reflectors
 • annihilate entries below diagonal
 • GEMV with trailing matrix on GPU
 • update column norms

• Trailing matrix
 • update rest of A

• Dependencies prevent overlap
QR with column pivoting

- Compute column norms
- Panel (nb columns)
 - for each column
 - swap with column of max norm
 - apply previous reflectors
 - annihilate entries below diagonal
 - GEMV with trailing matrix on GPU
 - update column norms
- Trailing matrix
 - update rest of A
- Dependencies prevent overlap
Execution trace

• Hybrid CPU–GPU

CPU 0: [graph]
GPU 0 (s0): [graph]
Time (sec): 0.00
Legend: gemv, panel, trail

• GPU–only

CPU 0: [graph]
GPU 0 (s0): [graph]
Time (sec): 0.00
Legend: gemv, panel, trail
Results: QR with column pivoting

- GPU-only is better than Hybrid

![Graphs showing performance of single and double precision QR with column pivoting](image)
Hessenberg reduction

- Panel (nb columns)
 - for each column
 - apply previous reflectors (from right and left)
 - annihilate entries below sub-diagonal
 - GEMV with trailing matrix on GPU

- Trailing matrix
 - update rest of A from right and left

- Dependencies prevent overlap
Hessenberg reduction

• Panel (nb columns)
 • for each column
 • apply previous reflectors (from right and left)
 • annihilate entries below sub-diagonal
 • GEMV with trailing matrix on GPU
• Trailing matrix
 • update rest of A from right and left
• Dependencies prevent overlap

Update trailing matrix
Execution traces:

• Hybrid CPU–GPU

CPU 0:
GPU 0 (s0):
Time (sec): 0.00

Legend: gemv lahrn panel

• GPU-only

CPU 0:
GPU 0 (s0):
Time (sec): 0.00

Legend: gemv lahrn panel
Results: Hessenberg

- GPU-only similar to Hybrid

![Graph showing performance of single (sgehrd), single-complex (cgehrd), double (dgehrd), and double-complex (zgehrd) operations with varying matrix dimensions.]
GPU–only kernels & optimizations

• Householder reflectors
 • Generate — vector norm and scaling (larfg)
 • save extra copies of tau in T, etc.
 • Apply — dot product and axpy (larf)

• Custom norm update for QR with pivoting

• Optimized gemv
 • Tall matrix transposed * vector: $V^T a_j$

• Use gemv, faster than trmv
 • Store V and T with explicit 0’s and 1’s
 • Merge trmv+gemv into one gemv
Lessons Learned

• Panels
 • Lack parallelism
 • Significant control flow
 • Many separate function calls
 • Perform poorly on GPUs
 • Requires programming custom GPU kernels
 • Merge kernels together to reduce overheads

• GPU-only reduces communication
 • Modest win for QR with pivoting
 • No improvement for Hessenberg
Thank you

http://icl.utk.edu/magma/