Publications

Export 110 results:
Filters: Author is Jakub Kurzak  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
Abdelfattah, A., K. Arturov, C. Cecka, J. Dongarra, C. Freitag, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, et al., C++ API for Batch BLAS,” SLATE Working Notes, no. 4, ICL-UT-17-12: University of Tennessee, December 2017.  (1.89 MB)
A
Luszczek, P., J. Kurzak, I. Yamazaki, D. Keffer, V. Maroulas, and J. Dongarra, Autotuning Techniques for Performance-Portable Point Set Registration in 3D,” Supercomputing Frontiers and Innovations, vol. 5, no. 4, December 2018. DOI: 10.14529/jsfi180404  (720.15 KB)
Dongarra, J., M. Gates, J. Kurzak, P. Luszczek, and Y. Tsai, Autotuning Numerical Dense Linear Algebra for Batched Computation With GPU Hardware Accelerators,” Proceedings of the IEEE, vol. 106, issue 11, pp. 2040–2055, November 2018. DOI: 10.1109/JPROC.2018.2868961
Kurzak, J., S. Tomov, and J. Dongarra, Autotuning GEMMs for Fermi,” University of Tennessee Computer Science Technical Report, UT-CS-11-671, (also Lawn 245), April 2011.  (397.45 KB)
Gates, M., J. Kurzak, P. Luszczek, Y. Pei, and J. Dongarra, Autotuning Batch Cholesky Factorization in CUDA with Interleaved Layout of Matrices,” Parallel and Distributed Processing Symposium Workshops (IPDPSW), Orlando, FL, IEEE, June 2017. DOI: 10.1109/IPDPSW.2017.18
Donfack, S., J. Dongarra, M. Faverge, M. Gates, J. Kurzak, P. Luszczek, and I. Yamazaki, On Algorithmic Variants of Parallel Gaussian Elimination: Comparison of Implementations in Terms of Performance and Numerical Properties,” University of Tennessee Computer Science Technical Report, no. UT-CS-13-715, July 2013, 2012.  (358.98 KB)
Yamazaki, I., T. Mary, J. Kurzak, S. Tomov, and J. Dongarra, Access-averse Framework for Computing Low-rank Matrix Approximations,” First International Workshop on High Performance Big Graph Data Management, Analysis, and Mining, Washington, DC, October 2014.
Dongarra, J., M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, and I. Yamazaki, Accelerating Numerical Dense Linear Algebra Calculations with GPUs,” Numerical Computations with GPUs: Springer International Publishing, pp. 3-28, 2014. DOI: 10.1007/978-3-319-06548-9_1  (1.06 MB)
Gates, M., H. Anzt, J. Kurzak, and J. Dongarra, Accelerating Collaborative Filtering for Implicit Feedback Datasets using GPUs,” 2015 IEEE International Conference on Big Data (IEEE BigData 2015), Santa Clara, CA, IEEE, November 2015.  (1.02 MB)

Pages