Publications

Export 892 results:
Filters: Author is Jack Dongarra  [Clear All Filters]
Poster
Baboulin, M., V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, T. Kolev, I. Masliah, and S. Tomov, Towards a High-Performance Tensor Algebra Package for Accelerators , Gatlinburg, TN, moky Mountains Computational Sciences and Engineering Conference (SMC15), September 2015.  (1.76 MB)
Abdelfattah, A., A. Haidar, S. Tomov, and J. Dongarra, Tensor Contractions using Optimized Batch GEMM Routines , San Jose, CA, GPU Technology Conference (GTC), Poster, March 2018.  (1.64 MB)
Valero-Lara, P., J. Dongarra, A. Haidar, S. D. Relton, S. Tomov, and M. Zounon, A Standard for Batched BLAS Routines , Paris, France, 17th SIAM Conference on Parallel Processing for Scientific Computing (SIAM PP16), April 2016.  (1.93 MB)
Agullo, E., C. Augonnet, J. Dongarra, H. Ltaeif, R. Namyst, R. Nath, J. Roman, S. Thibault, and S. Tomov, Scheduling Cholesky Factorization on Multicore Architectures with GPU Accelerators , Knoxville, TN, 2010 Symposium on Application Accelerators in High-Performance Computing (SAAHPC'10), Poster, July 2010.  (3.86 MB)
Abdelfattah, A., S. Tomov, and J. Dongarra, Optimizing Batch HGEMM on Small Sizes Using Tensor Cores , San Jose, CA, GPU Technology Conference (GTC), March 2019.  (2.47 MB)
Nath, R., J. Dongarra, S. Tomov, H. Ltaeif, and P. Du, Numerical Linear Algebra on Hybrid Architectures: Recent Developments in the MAGMA Project , Portland, Oregon, The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC09), November 2009.  (1.41 MB)
Agullo, E., J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaeif, P. Luszczek, R. Nath, S. Tomov, et al., Numerical Linear Algebra on Emerging Architectures: The PLASMA and MAGMA Projects , Portland, OR, The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC09), November 2009.  (3.53 MB)
Haidar, A., S. Tomov, A. Abdelfattah, I. Yamazaki, and J. Dongarra, MAtrix, TEnsor, and Deep-learning Optimized Routines (MATEDOR) , Washington, DC, NSF PI Meeting, Poster, April 2018. DOI: 10.6084/m9.figshare.6174143.v3  (2.4 MB)
Abdelfattah, A., J. Dongarra, A. Haidar, S. Tomov, and I. Yamazaki, MATEDOR: MAtrix, TEnsor, and Deep-learning Optimized Routines , Dallas, TX, The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC18), Research Poster, November 2018.  (2.55 MB)
Haidar, A., A. Abdelfattah, S. Tomov, and J. Dongarra, Harnessing GPU's Tensor Cores Fast FP16 Arithmetic to Speedup Mixed-Precision Iterative Refinement Solvers and Achieve 74 Gflops/Watt on Nvidia V100 , San Jose, CA, GPU Technology Conference (GTC), Poster, March 2018.  (2.96 MB)
Shaiek, H., S. Tomov, A. Ayala, A. Haidar, and J. Dongarra, GPUDirect MPI Communications and Optimizations to Accelerate FFTs on Exascale Systems,” EuroMPI'19 Posters, Zurich, Switzerland, no. icl-ut-19-06: ICL, September 2019.  (2.25 MB)
Tomov, S., A. Haidar, A. Ayala, D. Schultz, and J. Dongarra, FFT-ECP Fast Fourier Transform , Houston, TX, 2019 ECP Annual Meeting (Research Poster), January 2019.  (1.51 MB)
Baboulin, M., J. Demmel, J. Dongarra, S. Tomov, and V. Volkov, Enhancing the Performance of Dense Linear Algebra Solvers on GPUs (in the MAGMA Project) , Austin, TX, The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC08), November 2008.  (5.28 MB)
Abdelfattah, A., A. Haidar, S. Tomov, and J. Dongarra, Cholesky Factorization on Batches of Matrices with Fixed and Variable Sizes , San Jose, CA, GPU Technology Conference (GTC16), Poster, April 2016.  (480.51 KB)
Dong, T., T. Kolev, R. Rieben, V. Dobrev, S. Tomov, and J. Dongarra, Acceleration of the BLAST Hydro Code on GPU,” Supercomputing '12 (poster), Salt Lake City, Utah, SC12, November 2012.
Haidar, A., A. Abdelfattah, V. Dobrev, I. Karlin, T. Kolev, S. Tomov, and J. Dongarra, Accelerating Tensor Contractions for High-Order FEM on CPUs, GPUs, and KNLs , Gatlinburg, TN, moky Mountains Computational Sciences and Engineering Conference (SMC16), Poster, September 2016.  (4.29 MB)
Miscellaneous
Dongarra, J., The HPL Benchmark: Past, Present & Future , ISC High Performance, Frankfurt, Germany, July 2016.  (3.41 MB)
Brown, C., A. Abdelfattah, S. Tomov, and J. Dongarra, hipMAGMA v2.0 : Zenodo, July 2020. DOI: 10.5281/zenodo.3928667
Brown, C., A. Abdelfattah, S. Tomov, and J. Dongarra, hipMAGMA v1.0 : Zenodo, March 2020. DOI: 10.5281/zenodo.3908549
Reed, D., and J. Dongarra, Exascale Computing and Big Data,” Communications of the ACM, vol. 58, no. 7: ACM, pp. 56-68, July 2015. DOI: 10.1145/2699414  (7.3 MB)
Journal Article
Dongarra, J., S. Tomov, P. Luszczek, J. Kurzak, M. Gates, I. Yamazaki, H. Anzt, A. Haidar, and A. Abdelfattah, With Extreme Computing, the Rules Have Changed,” Computing in Science & Engineering, vol. 19, issue 3, pp. 52-62, May 2017. DOI: 10.1109/MCSE.2017.48  (485.34 KB)
Anzt, H., J. Dongarra, and V. Heuveline, Weighted Block-Asynchronous Relaxation for GPU-Accelerated Systems,” SIAM Journal on Computing (submitted), March 2012.  (811.01 KB)
Lee, DW., and J. Dongarra, VisPerf: Monitoring Tool for Grid Computing,” Lecture Notes in Computer Science, vol. 2659: Springer Verlag, Heidelberg, pp. 233-243, 00 2003.  (835.09 KB)
Casanova, H., T. Bartol, F. Berman, A. Birnbaum, J. Dongarra, M. Ellisman, M. Faerman, E. Gockay, M. Miller, G. Obertelli, et al., The Virtual Instrument: Support for Grid-enabled Scientific Simulations,” International Journal of High Performance Computing Applications, vol. 18, no. 1, pp. 3-17, January 2004.  (282.16 KB)
Casanova, H., T. Bartol, F. Berman, A. Birnbaum, J. Dongarra, M. Ellisman, M. Faerman, E. Gockay, M. Miller, G. Obertelli, et al., The Virtual Instrument: Support for Grid-enabled Scientific Simulations,” Journal of Parallel and Distributed Computing (submitted), October 2002.  (282.16 KB)
Anzt, H., J. Dongarra, G. Flegar, and E. S. Quintana-Orti, Variable-Size Batched Gauss-Jordan Elimination for Block-Jacobi Preconditioning on Graphics Processors,” Parallel Computing, vol. 81, pp. 131-146, January 2019. DOI: 10.1016/j.parco.2017.12.006  (1.9 MB)
Buttari, A., J. Dongarra, J. Kurzak, P. Luszczek, and S. Tomov, Using Mixed Precision for Sparse Matrix Computations to Enhance the Performance while Achieving 64-bit Accuracy,” ACM Transactions on Mathematical Software, vol. 34, no. 4, pp. 17-22, 00 2008.  (364.48 KB)
Tomov, S., M. Faverge, P. Luszczek, and J. Dongarra, Using MAGMA with PGI Fortran,” PGI Insider, November 2010.  (176.67 KB)
Chow, E., H. Anzt, J. Scott, and J. Dongarra, Using Jacobi Iterations and Blocking for Solving Sparse Triangular Systems in Incomplete Factorization Preconditioning,” Journal of Parallel and Distributed Computing, vol. 119, pp. 219–230, November 2018. DOI: 10.1016/j.jpdc.2018.04.017  (273.53 KB)
Voemel, C., S. Tomov, L-W. Wang, O. Marques, and J. Dongarra, The use of bulk states to accelerate the band edge state calculation of a semiconductor quantum dot,” Journal of Computational Physics (submitted), January 2006.  (337.08 KB)
Voemel, C., S. Tomov, L-W. Wang, O. Marques, and J. Dongarra, The Use of Bulk States to Accelerate the Band Edge State Calculation of a Semiconductor Quantum Dot,” Journal of Computational Physics, vol. 223, pp. 774-782, 00 2007.  (452.6 KB)
Anzt, H., E. Chow, J. Saak, and J. Dongarra, Updating Incomplete Factorization Preconditioners for Model Order Reduction,” Numerical Algorithms, vol. 73, issue 3, no. 3, pp. 611–630, February 2016. DOI: 10.1007/s11075-016-0110-2  (565.34 KB)
Blackford, S., J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, et al., An Updated Set of Basic Linear Algebra Subprograms (BLAS),” ACM Transactions on Mathematical Software, vol. 28, no. 2, pp. 135-151, December 2002. DOI: 10.1145/567806.567807  (228.33 KB)
Bosilca, G., A. Bouteiller, E. Brunet, F. Cappello, J. Dongarra, A. Guermouche, T. Herault, Y. Robert, F. Vivien, and D. Zaidouni, Unified Model for Assessing Checkpointing Protocols at Extreme-Scale,” Concurrency and Computation: Practice and Experience, November 2013. DOI: 10.1002/cpe.3173  (894.61 KB)
Du, P., M. Parsons, E. Fuentes, S-L. Shaw, and J. Dongarra, Tuning Principal Component Analysis for GRASS GIS on Multi-core and GPU Architectures,” FOSS4G 2010, Barcelona, Spain, September 2010.  (1.57 MB)
Hiroyasu, T., M. Miki, H. Shimosaka, M. Sano, Y. Tanimura, Y. Mimura, S. Yoshimura, and J. Dongarra, Truss Structural Optimization Using NetSolve System,” Meeting of the Japan Society of Mechanical Engineers, Kyoto University, Kyoto, Japan, October 2002.  (450.65 KB)
Yamazaki, I., T. Dong, R. Solcà, S. Tomov, J. Dongarra, and T. C. Schulthess, Tridiagonalization of a dense symmetric matrix on multiple GPUs and its application to symmetric eigenvalue problems,” Concurrency and Computation: Practice and Experience, October 2013.  (1.71 MB)
Dongarra, J., A Tribute to Gene Golub,” Computing in Science and Engineering: IEEE, pp. 5, January 2008.
Dongarra, J., Trends in High Performance Computing,” The Computer Journal, vol. 47, no. 4: The British Computer Society, pp. 399-403, 00 2004.  (455.96 KB)
Seymour, K., A. YarKhan, and J. Dongarra, Transparent Cross-Platform Access to Software Services using GridSolve and GridRPC,” in Cloud Computing and Software Services: Theory and Techniques (to appear): CRC Press, 00 2009.
Jagode, H., A. Knuepfer, J. Dongarra, M. Jurenz, M. S. Mueller, and W. E. Nagel, Trace-based Performance Analysis for the Petascale Simulation Code FLASH,” International Journal of High Performance Computing Applications (to appear), 00 2010.  (887.54 KB)
Hoefler, T., Y-S. Dai, and J. Dongarra, Towards Efficient MapReduce Using MPI,” Lecture Notes in Computer Science, Recent Advances in Parallel Virtual Machine and Message Passing Interface - 16th European PVM/MPI Users' Group Meeting, vol. 5759, Espoo, Finland, Springer Berlin / Heidelberg, pp. 240-249, 00 2009.
Hoefler, T., Y-S. Dai, and J. Dongarra, Towards Efficient MapReduce Using MPI,” Lecture Notes in Computer Science, Recent Advances in Parallel Virtual Machine and Message Passing Interface - 16th European PVM/MPI Users' Group Meeting, vol. 5759, Espoo, Finland, Springer Berlin / Heidelberg, pp. 240-249, 00 2009.
Tomov, S., J. Dongarra, and M. Baboulin, Towards Dense Linear Algebra for Hybrid GPU Accelerated Manycore Systems,” Parallel Computing, vol. 36, no. 5-6, pp. 232-240, 00 2010.  (606.41 KB)
Vadhiyar, S., G. Fagg, and J. Dongarra, Towards an Accurate Model for Collective Communications,” International Journal of High Performance Applications, Special Issue: Automatic Performance Tuning, vol. 18, no. 1, pp. 159-167, January 2004.  (250.73 KB)
Haidar, A., H. Ltaeif, and J. Dongarra, Toward High Performance Divide and Conquer Eigensolver for Dense Symmetric Matrices,” SIAM Journal on Scientific Computing (Accepted), July 2012.
Haidar, A., H. Ltaeif, and J. Dongarra, Toward High Performance Divide and Conquer Eigensolver for Dense Symmetric Matrices.,” Submitted to SIAM Journal on Scientific Computing (SISC), 00 2011.
Strohmaier, E., H. Meuer, J. Dongarra, and H. D. Simon, The TOP500 List and Progress in High-Performance Computing,” IEEE Computer, vol. 48, issue 11, pp. 42-49, November 2015. DOI: doi:10.1109/MC.2015.338
Calland, P-Y., J. Dongarra, and Y. Robert, Tiling on Systems with Communication/Computation Overlap,” Concurrency: Practice and Experience, vol. 11, no. 3, pp. 139-153, January 1999.  (286.14 KB)
Kennedy, K., B. Broom, K. Cooper, J. Dongarra, R. Fowler, D. Gannon, L. Johnsson, J. Mellor-Crummey, and L. Torczon, Telescoping Languages: A Strategy for Automatic Generation of Scientific Problem-Solving Systems from Annotated Libraries,” Journal of Parallel and Distributed Computing, vol. 61, no. 12, pp. 1803-1826, December 2001.  (386.37 KB)

Pages