Publications

Export 230 results:
Filters: Author is Stanimire Tomov  [Clear All Filters]
Journal Article
Du, P., P. Luszczek, S. Tomov, and J. Dongarra, Soft Error Resilient QR Factorization for Hybrid System with GPGPU,” Journal of Computational Science, Seattle, WA, Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems at SC11, November 2011.  (965.88 KB)
Du, P., P. Luszczek, S. Tomov, and J. Dongarra, Soft Error Resilient QR Factorization for Hybrid System with GPGPU,” Journal of Computational Science, vol. 4, issue 6, pp. 457–464, November 2013. DOI: http://dx.doi.org/10.1016/j.jocs.2013.01.004  (995.45 KB)
Baboulin, M., J. Dongarra, A. Remy, S. Tomov, and I. Yamazaki, Solving Dense Symmetric Indefinite Systems using GPUs,” Concurrency and Computation: Practice and Experience, vol. 29, issue 9, March 2017. DOI: 10.1002/cpe.4055  (1.94 MB)
Zaitsev, D., S. Tomov, and J. Dongarra, Solving Linear Diophantine Systems on Parallel Architectures,” IEEE Transactions on Parallel and Distributed Systems, October 2018. DOI: 10.1109/TPDS.2018.2873354
Yamazaki, I., S. Tomov, and J. Dongarra, Stability and Performance of Various Singular Value QR Implementations on Multicore CPU with a GPU,” ACM Transactions on Mathematical Software (TOMS), vol. 43, issue 2, October 2016.
Voemel, C., S. Tomov, O. Marques, A. Canning, L-W. Wang, and J. Dongarra, State-of-the-Art Eigensolvers for Electronic Structure Calculations of Large Scale Nano-Systems,” Journal of Computational Physics, vol. 227, no. 15, pp. 7113-7124, January 2008.
Yamazaki, I., S. Nooshabadi, S. Tomov, and J. Dongarra, Structure-aware Linear Solver for Realtime Convex Optimization for Embedded Systems,” IEEE Embedded Systems Letters, vol. 9, issue 3, pp. 61–64, May 2017. DOI: 10.1109/LES.2017.2700401  (339.11 KB)
Tomov, S., J. Dongarra, and M. Baboulin, Towards Dense Linear Algebra for Hybrid GPU Accelerated Manycore Systems,” Parallel Computing, vol. 36, no. 5-6, pp. 232-240, 00 2010.  (606.41 KB)
Yamazaki, I., T. Dong, R. Solcà, S. Tomov, J. Dongarra, and T. C. Schulthess, Tridiagonalization of a dense symmetric matrix on multiple GPUs and its application to symmetric eigenvalue problems,” Concurrency and Computation: Practice and Experience, October 2013.  (1.71 MB)
Voemel, C., S. Tomov, L-W. Wang, O. Marques, and J. Dongarra, The use of bulk states to accelerate the band edge state calculation of a semiconductor quantum dot,” Journal of Computational Physics (submitted), January 2006.  (337.08 KB)
Voemel, C., S. Tomov, L-W. Wang, O. Marques, and J. Dongarra, The Use of Bulk States to Accelerate the Band Edge State Calculation of a Semiconductor Quantum Dot,” Journal of Computational Physics, vol. 223, pp. 774-782, 00 2007.  (452.6 KB)
Tomov, S., M. Faverge, P. Luszczek, and J. Dongarra, Using MAGMA with PGI Fortran,” PGI Insider, November 2010.  (176.67 KB)
Buttari, A., J. Dongarra, J. Kurzak, P. Luszczek, and S. Tomov, Using Mixed Precision for Sparse Matrix Computations to Enhance the Performance while Achieving 64-bit Accuracy,” ACM Transactions on Mathematical Software, vol. 34, no. 4, pp. 17-22, 00 2008.  (364.48 KB)
Poster
Cheng, X., A. Soma, E. D'Azevedo, K. Wong, and S. Tomov, Accelerating 2D FFT: Exploit GPU Tensor Cores through Mixed-Precision , Dallas, TX, The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC18), ACM Student Research Poster, November 2018.  (740.37 KB)
Haidar, A., A. Abdelfattah, V. Dobrev, I. Karlin, T. Kolev, S. Tomov, and J. Dongarra, Accelerating Tensor Contractions for High-Order FEM on CPUs, GPUs, and KNLs , Gatlinburg, TN, moky Mountains Computational Sciences and Engineering Conference (SMC16), Poster, September 2016.  (4.29 MB)
Dong, T., T. Kolev, R. Rieben, V. Dobrev, S. Tomov, and J. Dongarra, Acceleration of the BLAST Hydro Code on GPU,” Supercomputing '12 (poster), Salt Lake City, Utah, SC12, November 2012.
Abdelfattah, A., A. Haidar, S. Tomov, and J. Dongarra, Cholesky Factorization on Batches of Matrices with Fixed and Variable Sizes , San Jose, CA, GPU Technology Conference (GTC16), Poster, April 2016.  (480.51 KB)
Baboulin, M., J. Demmel, J. Dongarra, S. Tomov, and V. Volkov, Enhancing the Performance of Dense Linear Algebra Solvers on GPUs (in the MAGMA Project) , Austin, TX, The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC08), November 2008.  (5.28 MB)
Tomov, S., A. Haidar, A. Ayala, D. Schultz, and J. Dongarra, FFT-ECP Fast Fourier Transform , Houston, TX, 2019 ECP Annual Meeting (Research Poster), January 2019.  (1.51 MB)
Haidar, A., A. Abdelfattah, S. Tomov, and J. Dongarra, Harnessing GPU's Tensor Cores Fast FP16 Arithmetic to Speedup Mixed-Precision Iterative Refinement Solvers and Achieve 74 Gflops/Watt on Nvidia V100 , San Jose, CA, GPU Technology Conference (GTC), Poster, March 2018.  (2.96 MB)
Abdelfattah, A., J. Dongarra, A. Haidar, S. Tomov, and I. Yamazaki, MATEDOR: MAtrix, TEnsor, and Deep-learning Optimized Routines , Dallas, TX, The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC18), Research Poster, November 2018.  (2.55 MB)
Haidar, A., S. Tomov, A. Abdelfattah, I. Yamazaki, and J. Dongarra, MAtrix, TEnsor, and Deep-learning Optimized Routines (MATEDOR) , Washington, DC, NSF PI Meeting, Poster, April 2018. DOI: 10.6084/m9.figshare.6174143.v3  (2.4 MB)
Agullo, E., J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaeif, P. Luszczek, R. Nath, S. Tomov, et al., Numerical Linear Algebra on Emerging Architectures: The PLASMA and MAGMA Projects , Portland, OR, The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC09), November 2009.  (3.53 MB)
Nath, R., J. Dongarra, S. Tomov, H. Ltaeif, and P. Du, Numerical Linear Algebra on Hybrid Architectures: Recent Developments in the MAGMA Project , Portland, Oregon, The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC09), November 2009.  (1.41 MB)
Abdelfattah, A., S. Tomov, and J. Dongarra, Optimizing Batch HGEMM on Small Sizes Using Tensor Cores , San Jose, CA, GPU Technology Conference (GTC), March 2019.  (2.47 MB)
Kasichayanula, K., H. You, S. Moore, S. Tomov, H. Jagode, and M. Johnson, Power-aware Computing on GPGPUs , Gatlinburg, TN, Fall Creek Falls Conference, Poster, September 2011.  (2.89 MB)
Agullo, E., C. Augonnet, J. Dongarra, H. Ltaeif, R. Namyst, R. Nath, J. Roman, S. Thibault, and S. Tomov, Scheduling Cholesky Factorization on Multicore Architectures with GPU Accelerators , Knoxville, TN, 2010 Symposium on Application Accelerators in High-Performance Computing (SAAHPC'10), Poster, July 2010.  (3.86 MB)
Valero-Lara, P., J. Dongarra, A. Haidar, S. D. Relton, S. Tomov, and M. Zounon, A Standard for Batched BLAS Routines , Paris, France, 17th SIAM Conference on Parallel Processing for Scientific Computing (SIAM PP16), April 2016.  (1.93 MB)
Abdelfattah, A., A. Haidar, S. Tomov, and J. Dongarra, Tensor Contractions using Optimized Batch GEMM Routines , San Jose, CA, GPU Technology Conference (GTC), Poster, March 2018.  (1.64 MB)
Baboulin, M., V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, T. Kolev, I. Masliah, and S. Tomov, Towards a High-Performance Tensor Algebra Package for Accelerators , Gatlinburg, TN, moky Mountains Computational Sciences and Engineering Conference (SMC15), September 2015.  (1.76 MB)
Haidar, A., S. Tomov, A. Abdelfattah, M. Zounon, and J. Dongarra, Using GPU FP16 Tensor Cores Arithmetic to Accelerate Mixed-Precision Iterative Refinement Solvers and Reduce Energy Consumption , Frankfurt, Germany, ISC High Performance (ISC18), Best Poster Award, June 2018.  (3.01 MB)
Presentation
Tomov, S., G. Bosilca, and C. Augonnet, Accelerating Linear Algebra on Heterogeneous Architectures of Multicore and GPUs using MAGMA and DPLASMA and StarPU Schedulers : 2010 Symposium on Application Accelerators in. High-Performance Computing (SAAHPC'10), Tutorial, July 2010.  (499.51 KB)
Tomov, S., M. Gates, and A. Haidar, Accelerating Linear Algebra with MAGMA , Knoxville, TN, ECP Annual Meeting 2018, Tutorial, February 2018.  (35.27 MB)
Abdelfattah, A., M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, T. Kolev, I. Masliah, et al., Accelerating Tensor Contractions in High-Order FEM with MAGMA Batched , Atlanta, GA, SIAM Conference on Computer Science and Engineering (SIAM CSE17), Presentation, March 2017.  (9.29 MB)
Nath, R., S. Tomov, E. Agullo, and J. Dongarra, Autotuning Dense Linear Algebra Libraries on GPUs , Basel, Switzerland, Sixth International Workshop on Parallel Matrix Algorithms and Applications (PMAA 2010), June 2010.  (579.44 KB)
Tomov, S., Dense Linear Algebra Solvers for Multicore with GPU Accelerators , Atlanta, GA, International Parallel and Distributed Processing Symposium (IPDPS 2010), April 2010.  (956.68 KB)
Tomov, S., and J. Dongarra, The Future of Computing: Software Libraries , Savannah, GA, DOD CREATE Developers' Review, Keynote Presentation, February 2012.  (6.76 MB)
Dongarra, J., and S. Tomov, An Introduction to the MAGMA project - Acceleration of Dense Linear Algebra : NVIDIA Webinar, June 2010.
Tomov, S., Linear Algebra Software for High-Performance Computing (Part 2: Software for Hardware Accelerators and Coprocessors) , Frankfurt, Germany, ISC High Performance (ISC18), Tutorial Presentation, June 2015.  (15.41 MB)
Tomov, S., J. Dongarra, A. Haidar, I. Yamazaki, T. Dong, T. Schulthess, and R. Solcà, MAGMA: A Breakthrough in Solvers for Eigenvalue Problems , San Jose, CA, GPU Technology Conference (GTC12), Presentation, May 2012.  (9.23 MB)
Dongarra, J., T. Dong, M. Gates, A. Haidar, S. Tomov, and I. Yamazaki, MAGMA: A New Generation of Linear Algebra Library for GPU and Multicore Architectures , Salt Lake City, UT, The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC12), Presentation, November 2012.  (4.69 MB)
Tomov, S., MAGMA - LAPACK for GPUs , Atlanta, GA, Keeneland GPU Tutorial, April 2011.  (742.14 KB)
Tomov, S., and J. Dongarra, MAGMA - LAPACK for HPC on Heterogeneous Architectures , Oak Ridge, TN, Titan Summit at Oak Ridge National Laboratory, Presentation, August 2011.  (20.43 MB)
Dongarra, J., M. Gates, Y. Jia, K. Kabir, P. Luszczek, and S. Tomov, MAGMA MIC: Linear Algebra Library for Intel Xeon Phi Coprocessors , Salt Lake City, UT, The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC12), November 2012.  (6.4 MB)
Anzt, H., J. Dongarra, M. Gates, A. Haidar, K. Kabir, P. Luszczek, S. Tomov, and I. Yamazaki, MAGMA MIC: Optimizing Linear Algebra for Intel Xeon Phi , Frankfurt, Germany, ISC High Performance (ISC15), Intel Booth Presentation, June 2015.  (2.03 MB)
Tomov, S., and A. Haidar, MAGMA Tensors and Batched Computing for Accelerating Applications on GPUs , San Jose, CA, GPU Technology Conference (GTC17), Presentation in Session S7728, May 2017.  (11.12 MB)
Ng, L., S. Chen, A. Gessinger, D. Nichols, S. Cheng, A. Meenasorna, K. Wong, S. Tomov, A. Haidar, E. D'Azevedo, et al., MagmaDNN 0.2 High-Performance Data Analytics for Manycore GPUs and CPUs : University of Tennessee, January 2019. DOI: 10.13140/RG.2.2.14906.64961  (7.84 MB)
Ng, L., K. Wong, A. Haidar, S. Tomov, and J. Dongarra, MagmaDNN – High-Performance Data Analytics for Manycore GPUs and CPUs , Knoxville, TN, 2017 Summer Research Experiences for Undergraduate (REU), Presentation, December 2017.  (5.06 MB)
Tomov, S., Matrix Algebra on GPU and Multicore Architectures , Basel, Switzerland, Workshop on GPU-enabled Numerical Libraries, Presentation, May 2011.  (49.27 MB)
Haidar, A., H. Jagode, A. YarKhan, P. Vaccaro, S. Tomov, and J. Dongarra, Power-Aware HPC on Intel Xeon Phi KNL Processors , Frankfurt, Germany, ISC High Performance (ISC17), Intel Booth Presentation, June 2017.  (5.87 MB)

Pages