Publications

Export 6 results:
Filters: Author is Daniel Nichols  [Clear All Filters]
2019
Ng, L., S. Chen, A. Gessinger, D. Nichols, S. Cheng, A. Meenasorna, K. Wong, S. Tomov, A. Haidar, E. D'Azevedo, et al., MagmaDNN 0.2 High-Performance Data Analytics for Manycore GPUs and CPUs : University of Tennessee, January 2019. DOI: 10.13140/RG.2.2.14906.64961  (7.84 MB)
Nichols, D., K. Wong, S. Tomov, L. Ng, S. Chen, and A. Gessinger, MagmaDNN: Accelerated Deep Learning Using MAGMA,” Practice and Experience in Advanced Research Computing (PEARC ’19), Chicago, IL, ACM, July 2019.  (1.09 MB)
Nichols, D., N-S. Tomov, F. Betancourt, S. Tomov, K. Wong, and J. Dongarra, MagmaDNN: Towards High-Performance Data Analytics and Machine Learning for Data-Driven Scientific Computing,” ISC High Performance, Frankfurt, Germany, Springer International Publishing, June 2019. DOI: 10.1007/978-3-030-34356-9_37  (1.37 MB) (8.72 MB)
Betancourt, F., K. Wong, E. Asemota, Q. Marshall, D. Nichols, and S. Tomov, OpenDIEL: A Parallel Workflow Engine and DataAnalytics Framework,” Practice and Experience in Advanced Research Computing (PEARC ’19), Chicago, IL, ACM, July 2019.  (1.48 MB)
2020
Wong, K., S. Tomov, D. Nichols, R. Febbo, F. Lopez, J. Halloy, and X. Ma, How to Build Your Own Deep Neural Network : PEARC20, July 2020.  (18.8 MB)
Archibald, R., E. Chow, E. D'Azevedo, J. Dongarra, M. Eisenbach, R. Febbo, F. Lopez, D. Nichols, S. Tomov, K. Wong, et al., Integrating Deep Learning in Domain Sciences at Exascale,” Innovative Computing Laboratory Technical Report, no. ICL-UT-20-10: University of Tennessee, August 2020.  (1.09 MB)