Publications

Export 1031 results:
Journal Article
Danalis, A., P. Luszczek, G. Marin, J. Vetter, and J. Dongarra, BlackjackBench: Portable Hardware Characterization with Automated Results Analysis,” The Computer Journal, March 2013. DOI: 10.1093/comjnl/bxt057  (408.45 KB)
YarKhan, A., and J. Dongarra, Biological Sequence Alignment on the Computational Grid Using the GrADS Framework,” Future Generation Computing Systems, vol. 21, no. 6: Elsevier, pp. 980-986, June 2005.  (147.29 KB)
Asch, M., T. Moore, R. M. Badia, M. Beck, P. Beckman, T. Bidot, F. Bodin, F. Cappello, A. Choudhary, B. R. de Supinski, et al., Big Data and Extreme-Scale Computing: Pathways to Convergence - Toward a Shaping Strategy for a Future Software and Data Ecosystem for Scientific Inquiry,” The International Journal of High Performance Computing Applications, vol. 32, issue 4, pp. 435–479, July 2018. DOI: 10.1177/1094342018778123  (1.29 MB)
Dongarra, J., H. Meuer, H. D. Simon, and E. Strohmaier, Biannual Top-500 Computer Lists Track Changing Environments for Scientific Computing,” SIAM News, vol. 34, no. 9, October 2002.  (2.62 MB)
Abdelfattah, A., A. Haidar, S. Tomov, and J. Dongarra, Batched One-Sided Factorizations of Tiny Matrices Using GPUs: Challenges and Countermeasures,” Journal of Computational Science, vol. 26, pp. 226–236, May 2018. DOI: 10.1016/j.jocs.2018.01.005  (3.73 MB)
Haidar, A., T. Dong, P. Luszczek, S. Tomov, and J. Dongarra, Batched matrix computations on hardware accelerators based on GPUs,” International Journal of High Performance Computing Applications, February 2015. DOI: 10.1177/1094342014567546  (2.16 MB)
Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard , January 2001.
Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard,” International Journal of High Performance Computing Applications: Special Issue - Part I & II, vol. 16, no. 1-2, pp. 1-199, January 2002.
Blackford, S., J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, et al., Basic Linear Algebra Subprograms (BLAS),” (an update), submitted to ACM TOMS, February 2001.  (228.33 KB)
Luszczek, P., J. Kurzak, I. Yamazaki, D. Keffer, V. Maroulas, and J. Dongarra, Autotuning Techniques for Performance-Portable Point Set Registration in 3D,” Supercomputing Frontiers and Innovations, vol. 5, no. 4, December 2018. DOI: 10.14529/jsfi180404  (720.15 KB)
Dongarra, J., M. Gates, J. Kurzak, P. Luszczek, and Y. Tsai, Autotuning Numerical Dense Linear Algebra for Batched Computation With GPU Hardware Accelerators,” Proceedings of the IEEE, vol. 106, issue 11, pp. 2040–2055, November 2018. DOI: 10.1109/JPROC.2018.2868961
Balaprakash, P., J. Dongarra, T. Gamblin, M. Hall, J. Hollingsworth, B. Norris, and R. Vuduc, Autotuning in High-Performance Computing Applications,” Proceedings of the IEEE, vol. 106, issue 11, pp. 2068–2083, November 2018. DOI: 10.1109/JPROC.2018.2841200
You, H., B. Rekapalli, Q. Liu, and S. Moore, Autotuned Parallel I/O for Highly Scalable Biosequence Analysis,” TeraGrid'11, Salt Lake City, Utah, July 2011.  (275.34 KB)
Seymour, K., and J. Dongarra, Automatic Translation of Fortran to JVM Bytecode,” Concurrency and Computation: Practice and Experience, vol. 15, no. 3-5, pp. 202-207, 00 2003.  (185.8 KB)
Wolf, F., and B. Mohr, Automatic performance analysis of hybrid MPI/OpenMP applications,” Journal of Systems Architecture, Special Issue 'Evolutions in parallel distributed and network-based processing', vol. 49(10-11): Elsevier, pp. 421-439, November 2003.
Cuenca, J., D. Giminez, J. González, J. Dongarra, and K. Roche, Automatic Optimisation of Parallel Linear Algebra Routines in Systems with Variable Load,” EuroPar 2002, Paderborn, Germany, August 2002.  (92.59 KB)
Wolf, F., B. Mohr, J. Dongarra, and S. Moore, Automatic analysis of inefficiency patterns in parallel applications,” Concurrency and Computation: Practice and Experience, Special issue "Automatic Performance Analysis" (submitted), 00 2005.  (233.31 KB)
Wolf, F., B. Mohr, J. Dongarra, and S. Moore, Automatic Analysis of Inefficiency Patterns in Parallel Applications,” Concurrency and Computation: Practice and Experience, vol. 19, no. 11, pp. 1481-1496, August 2007.  (233.31 KB)
Whaley, C., A. Petitet, and J. Dongarra, Automated Empirical Optimization of Software and the ATLAS Project,” Parallel Computing, vol. 27, no. 1-2, pp. 3-25, January 2001.  (370.71 KB)
Berry, M., and J. Dongarra, Atlanta Organizers Put Mathematics to Work For the Math Sciences Community,” SIAM News, vol. 32, no. 6, January 1999.  (45.98 KB)
Herrmann, J., G. Bosilca, T. Herault, L. Marchal, Y. Robert, and J. Dongarra, Assessing the Cost of Redistribution followed by a Computational Kernel: Complexity and Performance Results,” Parallel Computing, vol. 52, pp. 22-41, February 2016. DOI: doi:10.1016/j.parco.2015.09.005  (2.06 MB)
Benoit, A., A. Cavelan, Y. Robert, and H. Sun, Assessing General-purpose Algorithms to Cope with Fail-stop and Silent Errors,” ACM Transactions on Parallel Computing, August 2016. DOI: 10.1145/2897189  (573.71 KB)
Seo, S., A. Amer, P. Balaji, C. Bordage, G. Bosilca, A. Brooks, P. Carns, A. Castello, D. Genet, T. Herault, et al., Argobots: A Lightweight Low-Level Threading and Tasking Framework,” IEEE Transactions on Parallel and Distributed Systems, October 2017. DOI: 10.1109/TPDS.2017.2766062
Bhowmick, S., V. Eijkhout, Y. Freund, E. Fuentes, and D. Keyes, Application of Machine Learning to the Selection of Sparse Linear Solvers,” International Journal of High Performance Computing Applications (submitted), 00 2006.  (392.96 KB)
Nelson, J., Analyzing PAPI Performance on Virtual Machines,” VMWare Technical Journal, vol. Winter 2013, January 2014.
Song, F., S. Moore, and J. Dongarra, Analytical Modeling and Optimization for Affinity Based Thread Scheduling on Multicore Systems,” IEEE Cluster 2009, New Orleans, August 2009.  (395.53 KB)
Haidar, A., H. Ltaeif, A. YarKhan, and J. Dongarra, Analysis of Dynamically Scheduled Tile Algorithms for Dense Linear Algebra on Multicore Architectures,” Submitted to Concurrency and Computations: Practice and Experience, November 2010.  (1.65 MB)
Abdelfattah, A., A. Haidar, S. Tomov, and J. Dongarra, Analysis and Design Techniques towards High-Performance and Energy-Efficient Dense Linear Solvers on GPUs,” IEEE Transactions on Parallel and Distributed Systems, vol. 29, issue 12, pp. 2700–2712, December 2018. DOI: 10.1109/TPDS.2018.2842785
Masliah, I., A. Abdelfattah, A. Haidar, S. Tomov, M. Baboulin, J. Falcou, and J. Dongarra, Algorithms and Optimization Techniques for High-Performance Matrix-Matrix Multiplications of Very Small Matrices,” Parallel Computing, vol. 81, pp. 1–21, January 2019. DOI: 10.1016/j.parco.2018.10.003  (3.27 MB)
Petitet, A., and J. Dongarra, Algorithmic Redistribution Methods for Block Cyclic Decompositions,” IEEE Transactions on Parallel and Distributed Computing, vol. 10, no. 12, pp. 201-220, October 2002.  (524.82 KB)
Boulet, P., J. Dongarra, F. Rastello, Y. Robert, and F. Vivien, Algorithmic Issues on Heterogeneous Computing Platforms,” Parallel Processing Letters, vol. 9, no. 2, pp. 197-213, January 1999.  (301.17 KB)
Dongarra, J., G. Bosilca, R. Delmas, and J. Langou, Algorithmic Based Fault Tolerance Applied to High Performance Computing,” Journal of Parallel and Distributed Computing, vol. 69, pp. 410-416, 00 2009.  (313.55 KB)
Chen, Z., and J. Dongarra, Algorithm-Based Fault Tolerance for Fail-Stop Failures,” IEEE Transactions on Parallel and Distributed Systems, vol. 19, no. 12, January 2008.  (340.49 KB)
Bouteiller, A., T. Herault, G. Bosilca, P. Du, and J. Dongarra, Algorithm-based Fault Tolerance for Dense Matrix Factorizations, Multiple Failures, and Accuracy,” ACM Transactions on Parallel Computing, vol. 1, issue 2, no. 10, pp. 10:1-10:28, January 2015. DOI: 10.1145/2686892  (1.14 MB)
Casanova, H., M H. Kim, J. Plank, and J. Dongarra, Adaptive Scheduling for Task Farming with Grid Middleware,” International Journal of Supercomputer Applications and High-Performance Computing, vol. 13, no. 3, pp. 231-240, October 2002.  (461.08 KB)
Anzt, H., J. Dongarra, G. Flegar, N. J. Higham, and E. S. Quintana-Ortí, Adaptive Precision in Block‐Jacobi Preconditioning for Iterative Sparse Linear System Solvers,” Concurrency Computation: Practice and Experience, March 2018. DOI: 10.1002/cpe.4460
Anzt, H., J. Dongarra, G. Flegar, N. J. Higham, and E. S. Quintana-Orti, Adaptive precision in block-Jacobi preconditioning for iterative sparse linear system solvers,” Concurrency and Computation: Practice and Experience, vol. 31, no. 6, pp. e4460, 2019. DOI: 10.1002/cpe.4460  (341.54 KB)
Moore, S., A.J.. Baker, J. Dongarra, C. Halloy, and C. Ng, Active Netlib: An Active Mathematical Software Collection for Inquiry-based Computational Science and Engineering Education,” Journal of Digital Information special issue on Interactivity in Digital Libraries, vol. 2, no. 4, 00 2002.  (182.59 KB)
Dongarra, J., M. Faverge, H. Ltaeif, and P. Luszczek, Achieving numerical accuracy and high performance using recursive tile LU factorization with partial pivoting,” Concurrency and Computation: Practice and Experience, vol. 26, issue 7, pp. 1408-1431, May 2014. DOI: 10.1002/cpe.3110  (1.96 MB)
Anzt, H., W. Sawyer, S. Tomov, P. Luszczek, and J. Dongarra, Acceleration of GPU-based Krylov solvers via Data Transfer Reduction,” International Journal of High Performance Computing Applications, 2015.
Demmel, J., J. Dongarra, A. Fox, S. Williams, V. Volkov, and K. Yelick, Accelerating Time-To-Solution for Computational Science and Engineering,” SciDAC Review, 00 2009.  (739.11 KB)
Gates, M., S. Tomov, and J. Dongarra, Accelerating the SVD Two Stage Bidiagonal Reduction and Divide and Conquer Using GPUs,” Parallel Computing, vol. 74, pp. 3–18, May 2018. DOI: 10.1016/j.parco.2017.10.004
Dong, T., A. Haidar, S. Tomov, and J. Dongarra, Accelerating the SVD Bi-Diagonalization of a Batch of Small Matrices using GPUs,” Journal of Computational Science, vol. 26, pp. 237–245, May 2018. DOI: 10.1016/j.jocs.2018.01.007  (2.18 MB)
Tomov, S., R. Nath, and J. Dongarra, Accelerating the Reduction to Upper Hessenberg, Tridiagonal, and Bidiagonal Forms through Hybrid GPU-Based Computing,” Parallel Computing, vol. 36, no. 12, pp. 645-654, 00 2010.  (1.39 MB)
Anzt, H., M. Baboulin, J. Dongarra, Y. Fournier, F. Hulsemann, A. Khabou, and Y. Wang, Accelerating the Conjugate Gradient Algorithm with GPU in CFD Simulations,” VECPAR, 2016.
Jagode, H., A. Danalis, and J. Dongarra, Accelerating NWChem Coupled Cluster through Dataflow-Based Execution,” The International Journal of High Performance Computing Applications, pp. 1–13, January 2017. DOI: 10.1177/1094342016672543  (4.07 MB)
Jagode, H., A. Danalis, and J. Dongarra, Accelerating NWChem Coupled Cluster through dataflow-based Execution,” The International Journal of High Performance Computing Applications, vol. 32, issue 4, pp. 540--551, July 2018. DOI: 10.1177/1094342016672543  (1.68 MB)
Baboulin, M., J. Dongarra, J. Herrmann, and S. Tomov, Accelerating Linear System Solutions Using Randomization Techniques,” ACM Transactions on Mathematical Software (also LAWN 246), vol. 39, issue 2, February 2013. DOI: 10.1145/2427023.2427025  (358.79 KB)
Baboulin, M., J. Dongarra, J. Herrmann, and S. Tomov, Accelerating Linear System Solutions Using Randomization Techniques,” INRIA RR-7616 / LAWN #246 (presented at International AMMCS’11), Waterloo, Ontario, Canada, July 2011.  (358.79 KB)
Nath, R., S. Tomov, and J. Dongarra, Accelerating GPU Kernels for Dense Linear Algebra,” Proc. of VECPAR'10, Berkeley, CA, June 2010.  (615.07 KB)

Pages