Publications

Export 896 results:
Filters: Author is Jack Dongarra  [Clear All Filters]
2019
Herault, T., Y. Robert, G. Bosilca, and J. Dongarra, Generic Matrix Multiplication for Multi-GPU Accelerated Distributed-Memory Platforms over PaRSEC,” ScalA'19: 10th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, Denver, CO, IEEE, November 2019.  (260.69 KB)
Shaiek, H., S. Tomov, A. Ayala, A. Haidar, and J. Dongarra, GPUDirect MPI Communications and Optimizations to Accelerate FFTs on Exascale Systems,” EuroMPI'19 Posters, Zurich, Switzerland, no. icl-ut-19-06: ICL, September 2019.  (2.25 MB)
Wong, K., S. Tomov, and J. Dongarra, Hands-on Research and Training in High-Performance Data Sciences, Data Analytics, and Machine Learning for Emerging Environments,” ISC High Performance, Frankfurt, Germany, Springer International Publishing, June 2019.  (1016.52 KB)
Ayala, A., S. Tomov, X. Luo, H. Shaiek, A. Haidar, G. Bosilca, and J. Dongarra, Impacts of Multi-GPU MPI Collective Communications on Large FFT Computation,” Workshop on Exascale MPI (ExaMPI) at SC19, Denver, CO, November 2019.  (1.6 MB)
Luszczek, P., I. Yamazaki, and J. Dongarra, Increasing Accuracy of Iterative Refinement in Limited Floating-Point Arithmetic on Half-Precision Accelerators,” IEEE High Performance Extreme Computing Conference (HPEC 2019), Best Paper Finalist, Waltham, MA, IEEE, September 2019.  (470.21 KB)
Kurzak, J., M. Gates, A. Charara, A. YarKhan, and J. Dongarra, Least Squares Solvers for Distributed-Memory Machines with GPU Accelerators,” ACM International Conference on Supercomputing (ICS '19), Phoenix, Arizona, ACM, pp. 117–126, June 2019. DOI: https://dl.acm.org/doi/abs/10.1145/3330345.3330356  (1.63 MB)
Kurzak, J., M. Gates, A. Charara, A. YarKhan, I. Yamazaki, and J. Dongarra, Linear Systems Solvers for Distributed-Memory Machines with GPU Accelerators,” Euro-Par 2019: Parallel Processing, vol. 11725: Springer, pp. 495–506, August 2019. DOI: 10.1007/978-3-030-29400-7_35
Ng, L., S. Chen, A. Gessinger, D. Nichols, S. Cheng, A. Meenasorna, K. Wong, S. Tomov, A. Haidar, E. D'Azevedo, et al., MagmaDNN 0.2 High-Performance Data Analytics for Manycore GPUs and CPUs : University of Tennessee, January 2019. DOI: 10.13140/RG.2.2.14906.64961  (7.84 MB)
Nichols, D., N-S. Tomov, F. Betancourt, S. Tomov, K. Wong, and J. Dongarra, MagmaDNN: Towards High-Performance Data Analytics and Machine Learning for Data-Driven Scientific Computing,” ISC High Performance, Frankfurt, Germany, Springer International Publishing, June 2019. DOI: 10.1007/978-3-030-34356-9_37  (1.37 MB) (8.72 MB)
Kurzak, J., Y. Tsai, M. Gates, A. Abdelfattah, and J. Dongarra, Massively Parallel Automated Software Tuning,” 48th International Conference on Parallel Processing (ICPP 2019), Kyoto, Japan, ACM Press, August 2019. DOI: 10.1145/3337821.3337908  (911.88 KB)
Bai, Z., J. Dongarra, D. Lu, and I. Yamazaki, Matrix Powers Kernels for Thick-Restart Lanczos with Explicit External Deflation,” International Parallel and Distributed Processing Symposium (IPDPS), Rio de Janeiro, Brazil, IEEE, May 2019.  (480.73 KB)
Abdelfattah, A., S. Tomov, and J. Dongarra, Optimizing Batch HGEMM on Small Sizes Using Tensor Cores , San Jose, CA, GPU Technology Conference (GTC), March 2019.  (2.47 MB)
Jagode, H., A. Danalis, H. Anzt, and J. Dongarra, PAPI Software-Defined Events for in-Depth Performance Analysis,” The International Journal of High Performance Computing Applications, vol. 33, issue 6, pp. 1113-1127, November 2019.  (442.39 KB)
Danalis, A., H. Jagode, and J. Dongarra, PAPI's new Software-Defined Events for in-depth Performance Analysis , Dresden, Germany, 13th Parallel Tools Workshop, September 2019.  (3.14 MB)
Anzt, H., T. Ribizel, G. Flegar, E. Chow, and J. Dongarra, ParILUT – A Parallel Threshold ILU for GPUs,” IEEE International Parallel and Distributed Processing Symposium (IPDPS), Rio de Janeiro, Brazil, IEEE, May 2019. DOI: 10.1109/IPDPS.2019.00033  (505.95 KB)
Cao, Q., Y. Pei, T. Herault, K. Akbudak, A. Mikhalev, G. Bosilca, H. Ltaief, D. Keyes, and J. Dongarra, Performance Analysis of Tile Low-Rank Cholesky Factorization Using PaRSEC Instrumentation Tools,” Workshop on Programming and Performance Visualization Tools (ProTools 19) at SC19, Denver, CO, ACM, November 2019.  (429.55 KB)
Yamazaki, I., E. Chow, A. Bouteiller, and J. Dongarra, Performance of Asynchronous Optimized Schwarz with One-sided Communication,” Parallel Computing, vol. 86, pp. 66-81, August 2019. DOI: 10.1016/j.parco.2019.05.004  (3.09 MB)
Dongarra, J., M. Gates, A. Haidar, J. Kurzak, P. Luszczek, P. Wu, I. Yamazaki, A. YarKhan, M. Abalenkovs, N. Bagherpour, et al., PLASMA: Parallel Linear Algebra Software for Multicore Using OpenMP,” ACM Transactions on Mathematical Software, vol. 45, issue 2, June 2019. DOI: 10.1145/3264491  (7.5 MB)
Abdelfattah, A., S. Tomov, and J. Dongarra, Progressive Optimization of Batched LU Factorization on GPUs,” IEEE High Performance Extreme Computing Conference (HPEC’19), Waltham, MA, IEEE, September 2019.  (299.38 KB)
Dongarra, J., S. Gottlieb, and W. T. Kramer, Race to Exascale,” Computing in Science and Engineering, vol. 21, issue 1, pp. 4-5, March 2019. DOI: 10.1109/MCSE.2018.2882574  (106.97 KB)
Gates, M., J. Kurzak, A. Charara, A. YarKhan, and J. Dongarra, SLATE: Design of a Modern Distributed and Accelerated Linear Algebra Library,” International Conference for High Performance Computing, Networking, Storage and Analysis (SC19), Denver, CO, ACM, November 2019. DOI: 10.1145/3295500.3356223  (2.01 MB)
Gates, M., J. Kurzak, A. Charara, A. YarKhan, and J. Dongarra, SLATE: Design of a Modern Distributed and Accelerated Linear Algebra Library , Denver, CO, International Conference for High Performance Computing, Networking, Storage and Analysis (SC19), November 2019.  (16.19 MB)
Charara, A., M. Gates, J. Kurzak, A. YarKhan, and J. Dongarra, SLATE Developers' Guide,” SLATE Working Notes, no. 11, ICL-UT-19-02: Innovative Computing Laboratory, University of Tennessee, December 2019.  (1.68 MB)
Charara, A., J. Dongarra, M. Gates, J. Kurzak, and A. YarKhan, SLATE Mixed Precision Performance Report,” Innovative Computing Laboratory Technical Report, no. ICL-UT-19-03: University of Tennessee, April 2019.  (1.04 MB)
Kurzak, J., M. Gates, A. Charara, A. YarKhan, and J. Dongarra, SLATE Working Note 12: Implementing Matrix Inversions,” SLATE Working Notes, no. 12, ICL-UT-19-04: Innovative Computing Laboratory, University of Tennessee, June 2019.  (1.95 MB)
Gates, M., M. Al Farhan, A. Charara, J. Kurzak, D. Sukkari, A. YarKhan, and J. Dongarra, SLATE Working Note 13: Implementing Singular Value and Symmetric/Hermitian Eigenvalue Solvers,” SLATE Working Notes, no. 13, ICL-UT-19-07: Innovative Computing Laboratory, University of Tennessee, September 2019.  (2.71 MB)
Danalis, A., H. Jagode, T. Herault, P. Luszczek, and J. Dongarra, Software-Defined Events through PAPI,” 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Rio de Janeiro, Brazil, IEEE, May 2019. DOI: 10.1109/IPDPSW.2019.00069  (446.41 KB)
Zaitsev, D., S. Tomov, and J. Dongarra, Solving Linear Diophantine Systems on Parallel Architectures,” IEEE Transactions on Parallel and Distributed Systems, vol. 30, issue 5, pp. 1158-1169, May 2019. DOI: http://dx.doi.org/10.1109/TPDS.2018.2873354  (802.97 KB)
Anzt, H., Y. Chen Chen, T. Cojean, J. Dongarra, G. Flegar, P. Nayak, E. S. Quintana-Orti, Y. M. Tsai, and W. Wang, Towards Continuous Benchmarking,” Platform for Advanced Scientific Computing Conference (PASC 2019), Zurich, Switzerland, ACM Press, June 2019. DOI: 10.1145/3324989.3325719  (1.51 MB)
Abdelfattah, A., S. Tomov, and J. Dongarra, Towards Half-Precision Computation for Complex Matrices: A Case Study for Mixed Precision Solvers on GPUs,” ScalA19: 10th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, Denver, CO, IEEE, November 2019.  (523.87 KB) (3.42 MB)
Danalis, A., H. Jagode, D. Barry, and J. Dongarra, Understanding Native Event Semantics , Knoxville, TN, 9th JLESC Workshop, April 2019.  (2.33 MB)
Anzt, H., J. Dongarra, G. Flegar, and E. S. Quintana-Orti, Variable-Size Batched Gauss-Jordan Elimination for Block-Jacobi Preconditioning on Graphics Processors,” Parallel Computing, vol. 81, pp. 131-146, January 2019. DOI: 10.1016/j.parco.2017.12.006  (1.9 MB)
Jagode, H., A. Danalis, and J. Dongarra, What it Takes to keep PAPI Instrumental for the HPC Community,” 1st Workshop on Sustainable Scientific Software (CW3S19), Collegeville, Minnesota, July 2019.  (50.57 KB)
Jagode, H., A. Danalis, and J. Dongarra, What it Takes to keep PAPI Instrumental for the HPC Community , Collegeville, MN, The 2019 Collegeville Workshop on Sustainable Scientific Software (CW3S19), July 2019.  (3.29 MB)
Danalis, A., H. Jagode, and J. Dongarra, Is your scheduling good? How would you know? , Bordeaux, France, 14th Scheduling for Large Scale Systems Workshop, June 2019.  (2.5 MB)
2018
Dongarra, J., V. Getov, and K. Walsh, The 30th Anniversary of the Supercomputing Conference: Bringing the Future Closer—Supercomputing History and the Immortality of Now,” Computer, vol. 51, issue 10, pp. 74–85, November 2018. DOI: 10.1109/MC.2018.3971352  (1.73 MB)
Jagode, H., A. Danalis, and J. Dongarra, Accelerating NWChem Coupled Cluster through dataflow-based Execution,” The International Journal of High Performance Computing Applications, vol. 32, issue 4, pp. 540--551, July 2018. DOI: 10.1177/1094342016672543  (1.68 MB)
Dong, T., A. Haidar, S. Tomov, and J. Dongarra, Accelerating the SVD Bi-Diagonalization of a Batch of Small Matrices using GPUs,” Journal of Computational Science, vol. 26, pp. 237–245, May 2018. DOI: 10.1016/j.jocs.2018.01.007  (2.18 MB)
Gates, M., S. Tomov, and J. Dongarra, Accelerating the SVD Two Stage Bidiagonal Reduction and Divide and Conquer Using GPUs,” Parallel Computing, vol. 74, pp. 3–18, May 2018. DOI: 10.1016/j.parco.2017.10.004  (1.34 MB)
Luo, X., W. Wu, G. Bosilca, T. Patinyasakdikul, L. Wang, and J. Dongarra, ADAPT: An Event-Based Adaptive Collective Communication Framework,” The 27th International Symposium on High-Performance Parallel and Distributed Computing (HPDC '18), Tempe, Arizona, ACM Press, June 2018. DOI: 10.1145/3208040.3208054  (493.65 KB)
Masliah, I., A. Abdelfattah, A. Haidar, S. Tomov, M. Baboulin, J. Falcou, and J. Dongarra, Algorithms and Optimization Techniques for High-Performance Matrix-Matrix Multiplications of Very Small Matrices,” Innovative Computing Laboratory Technical Report, no. ICL-UT-18-09: Innovative Computing Laboratory, University of Tennessee, September 2018.  (3.74 MB)
Abdelfattah, A., A. Haidar, S. Tomov, and J. Dongarra, Analysis and Design Techniques towards High-Performance and Energy-Efficient Dense Linear Solvers on GPUs,” IEEE Transactions on Parallel and Distributed Systems, vol. 29, issue 12, pp. 2700–2712, December 2018. DOI: 10.1109/TPDS.2018.2842785  (2.53 MB)
Yamazaki, I., A. Abdelfattah, A. Ida, S. Ohshima, S. Tomov, R. Yokota, and J. Dongarra, Analyzing Performance of BiCGStab with Hierarchical Matrix on GPU Clusters,” IEEE International Parallel and Distributed Processing Symposium (IPDPS), Vancouver, BC, Canada, IEEE, May 2018.  (1.37 MB)
Balaprakash, P., J. Dongarra, T. Gamblin, M. Hall, J. Hollingsworth, B. Norris, and R. Vuduc, Autotuning in High-Performance Computing Applications,” Proceedings of the IEEE, vol. 106, issue 11, pp. 2068–2083, November 2018. DOI: 10.1109/JPROC.2018.2841200  (2.5 MB)
Dongarra, J., M. Gates, J. Kurzak, P. Luszczek, and Y. Tsai, Autotuning Numerical Dense Linear Algebra for Batched Computation With GPU Hardware Accelerators,” Proceedings of the IEEE, vol. 106, issue 11, pp. 2040–2055, November 2018. DOI: 10.1109/JPROC.2018.2868961  (2.53 MB)
Luszczek, P., J. Kurzak, I. Yamazaki, D. Keffer, V. Maroulas, and J. Dongarra, Autotuning Techniques for Performance-Portable Point Set Registration in 3D,” Supercomputing Frontiers and Innovations, vol. 5, no. 4, December 2018. DOI: 10.14529/jsfi180404  (720.15 KB)
Dongarra, J., I. Duff, M. Gates, A. Haidar, S. Hammarling, N. J. Higham, J. Hogg, P. Valero Lara, P. Luszczek, M. Zounon, et al., Batched BLAS (Basic Linear Algebra Subprograms) 2018 Specification , July 2018.  (483.05 KB)
Abdelfattah, A., A. Haidar, S. Tomov, and J. Dongarra, Batched One-Sided Factorizations of Tiny Matrices Using GPUs: Challenges and Countermeasures,” Journal of Computational Science, vol. 26, pp. 226–236, May 2018. DOI: 10.1016/j.jocs.2018.01.005  (3.73 MB)
Asch, M., T. Moore, R. M. Badia, M. Beck, P. Beckman, T. Bidot, F. Bodin, F. Cappello, A. Choudhary, B. R. de Supinski, et al., Big Data and Extreme-Scale Computing: Pathways to Convergence - Toward a Shaping Strategy for a Future Software and Data Ecosystem for Scientific Inquiry,” The International Journal of High Performance Computing Applications, vol. 32, issue 4, pp. 435–479, July 2018. DOI: 10.1177/1094342018778123  (1.29 MB)
Sun, J., J. Fu, J. Drake, Q. Zhu, A. Haidar, M. Gates, S. Tomov, and J. Dongarra, Computational Benefit of GPU Optimization for Atmospheric Chemistry Modeling,” Journal of Advances in Modeling Earth Systems, vol. 10, issue 8, pp. 1952–1969, August 2018. DOI: 10.1029/2018MS001276  (3.4 MB)

Pages