Publications

Export 148 results:
Filters: Author is Piotr Luszczek  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Dongarra, J., M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, and I. Yamazaki, Accelerating Numerical Dense Linear Algebra Calculations with GPUs,” Numerical Computations with GPUs: Springer International Publishing, pp. 3-28, 2014.  (1.06 MB)
Anzt, H., W. Sawyer, S. Tomov, P. Luszczek, and J. Dongarra, Acceleration of GPU-based Krylov solvers via Data Transfer Reduction,” International Journal of High Performance Computing Applications, 2015.
Dongarra, J., M. Faverge, H. Ltaeif, and P. Luszczek, Achieving numerical accuracy and high performance using recursive tile LU factorization with partial pivoting,” Concurrency and Computation: Practice and Experience, vol. 26, issue 7, pp. 1408-1431, May 2014.  (1.96 MB)
Dongarra, J., M. Faverge, H. Ltaeif, and P. Luszczek, Achieving Numerical Accuracy and High Performance using Recursive Tile LU Factorization,” University of Tennessee Computer Science Technical Report (also as a LAWN), no. ICL-UT-11-08, September 2011.  (618.53 KB)
Donfack, S., J. Dongarra, M. Faverge, M. Gates, J. Kurzak, P. Luszczek, and I. Yamazaki, On Algorithmic Variants of Parallel Gaussian Elimination: Comparison of Implementations in Terms of Performance and Numerical Properties,” University of Tennessee Computer Science Technical Report, no. UT-CS-13-715, July 2013, 2012.  (358.98 KB)
Luszczek, P., and J. Dongarra, Analysis of Various Scalar, Vector, and Parallel Implementations of RandomAccess,” Innovative Computing Laboratory (ICL) Technical Report, no. ICL-UT-10-03, June 2010.  (226.9 KB)
Luszczek, P., and J. Dongarra, Anatomy of a Globally Recursive Embedded LINPACK Benchmark,” 2012 IEEE High Performance Extreme Computing Conference, Waltham, MA, pp. 1-6, September 2012.  (204.74 KB)
Gates, M., J. Kurzak, P. Luszczek, Y. Pei, and J. Dongarra, Autotuning Batch Cholesky Factorization in CUDA with Interleaved Layout of Matrices,” Parallel and Distributed Processing Symposium Workshops (IPDPSW), Orlando, FL, IEEE, June 2017.
Dongarra, J., M. Gates, J. Kurzak, P. Luszczek, and Y. Tsai, Autotuning Numerical Dense Linear Algebra for Batched Computation With GPU Hardware Accelerators,” Proceedings of the IEEE, vol. 106, issue 11, pp. 2040–2055, November 2018.
Luszczek, P., J. Kurzak, I. Yamazaki, D. Keffer, V. Maroulas, and J. Dongarra, Autotuning Techniques for Performance-Portable Point Set Registration in 3D,” Supercomputing Frontiers and Innovations, vol. 5, no. 4, December 2018.  (720.15 KB)
B
Dongarra, J., I. Duff, M. Gates, A. Haidar, S. Hammarling, N. J. Higham, J. Hogg, P. Valero Lara, P. Luszczek, M. Zounon, et al., Batched BLAS (Basic Linear Algebra Subprograms) 2018 Specification , July 2018.  (483.05 KB)
Haidar, A., P. Luszczek, S. Tomov, and J. Dongarra, Batched Matrix Computations on Hardware Accelerators,” EuroMPI/Asia 2015 Workshop, Bordeaux, France, September 2015.  (589.05 KB)
Haidar, A., T. Dong, P. Luszczek, S. Tomov, and J. Dongarra, Batched matrix computations on hardware accelerators based on GPUs,” International Journal of High Performance Computing Applications, February 2015.  (2.16 MB)
Danalis, A., P. Luszczek, G. Marin, J. Vetter, and J. Dongarra, BlackjackBench: Hardware Characterization with Portable Micro-Benchmarks and Automatic Statistical Analysis of Results,” IEEE International Parallel and Distributed Processing Symposium (submitted), Anchorage, AK, May 2011.
Danalis, A., P. Luszczek, G. Marin, J. Vetter, and J. Dongarra, BlackjackBench: Portable Hardware Characterization with Automated Results Analysis,” The Computer Journal, March 2013.  (408.45 KB)
Anzt, H., J. Dongarra, M. Gates, J. Kurzak, P. Luszczek, S. Tomov, and I. Yamazaki, Bringing High Performance Computing to Big Data Algorithms,” Handbook of Big Data Technologies: Springer, 2017.
C
Gates, M., P. Luszczek, A. Abdelfattah, J. Kurzak, J. Dongarra, K. Arturov, C. Cecka, and C. Freitag, C++ API for BLAS and LAPACK,” SLATE Working Notes, no. 2, ICL-UT-17-03: Innovative Computing Laboratory, University of Tennessee, June 2017.  (1.12 MB)
Fayad, D., J. Kurzak, P. Luszczek, P. Wu, and J. Dongarra, The Case for Directive Programming for Accelerator Autotuner Optimization,” Innovative Computing Laboratory Technical Report, no. ICL-UT-17-07: University of Tennessee, October 2017.  (341.52 KB)
Luszczek, P., J. Kurzak, and J. Dongarra, Changes in Dense Linear Algebra Kernels - Decades Long Perspective,” in Solving the Schrodinger Equation: Has everything been tried? (to appear): Imperial College Press, 00-2011.
YarKhan, A., A. Haidar, C. Cao, P. Luszczek, S. Tomov, and J. Dongarra, Cholesky Across Accelerators,” 17th IEEE International Conference on High Performance Computing and Communications (HPCC 2015), Elizabeth, NJ, IEEE, August 2015.
Cao, C., J. Dongarra, P. Du, M. Gates, P. Luszczek, and S. Tomov, clMAGMA: High Performance Dense Linear Algebra with OpenCL ,” International Workshop on OpenCL, Bristol University, England, May 2014.  (460.91 KB)
Cao, C., J. Dongarra, P. Du, M. Gates, P. Luszczek, and S. Tomov, clMAGMA: High Performance Dense Linear Algebra with OpenCL,” University of Tennessee Technical Report (Lawn 275), no. UT-CS-13-706: University of Tennessee, March 2013.  (526.6 KB)
Yamazaki, I., M. Hoemmen, P. Luszczek, and J. Dongarra, Comparing performance of s-step and pipelined GMRES on distributed-memory multicore CPUs , Pittsburgh, Pennsylvania, SIAM Annual Meeting, July 2017.  (748 KB)
Haidar, A., H. Ltaeif, P. Luszczek, and J. Dongarra, A Comprehensive Study of Task Coalescing for Selecting Parallelism Granularity in a Two-Stage Bidiagonal Reduction,” IPDPS 2012, Shanghai, China, May 2012.  (480.43 KB)
Jia, Y., P. Luszczek, G. Bosilca, and J. Dongarra, CPU-GPU Hybrid Bidiagonal Reduction With Soft Error Resilience,” ScalA '13 Proceedings of the Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, Montpellier, France, November 2013.  (238.58 KB)
Agarwal, P., R. A.. Alexander, E.. Apra, S. Balay, A. S. Bland, J. Colgan, E. D'Azevedo, J. Dongarra, T. Dunigan, M. Fahey, et al., Cray X1 Evaluation Status Report,” Oak Ridge National Laboratory Report, vol. /-2004/13, January 2004.  (817.33 KB)
D
Dongarra, J., R. Graybill, W. Harrod, R. Lucas, E. Lusk, P. Luszczek, J. McMahon, A. Snavely, J. Vetter, K. Yelick, et al., DARPA's HPCS Program: History, Models, Tools, Languages,” in Advances in Computers, vol. 72: Elsevier, January 2008.  (3.61 MB)
Dongarra, J., J. Kurzak, P. Luszczek, and S. Tomov, Dense Linear Algebra on Accelerated Multicore Hardware,” High Performance Scientific Computing: Algorithms and Applications, London, UK, Springer-Verlag, 00-2012.
Bosilca, G., A. Bouteiller, A. Danalis, T. Herault, P. Luszczek, and J. Dongarra, Dense Linear Algebra on Distributed Heterogeneous Hardware with a Symbolic DAG Approach,” Scalable Computing and Communications: Theory and Practice: John Wiley & Sons, pp. 699-735, March 2013.  (1.01 MB)
Yamazaki, I., J. Kurzak, P. Luszczek, and J. Dongarra, Design and Implementation of a Large Scale Tree-Based QR Decomposition Using a 3D Virtual Systolic Array and a Lightweight Runtime,” Workshop on Large-Scale Parallel Processing, IPDPS 2014, Phoenix, AZ, IEEE, May 2014.  (398.16 KB)
Kurzak, J., P. Luszczek, I. Yamazaki, Y. Robert, and J. Dongarra, Design and Implementation of the PULSAR Programming System for Large Scale Computing,” Supercomputing Frontiers and Innovations, vol. 4, issue 1, 2017.
Luszczek, P., and J. Dongarra, Design of an Interactive Environment for Numerically Intensive Parallel Linear Algebra Calculations,” International Conference on Computational Science, Poland, Springer Verlag, June 2004.  (88.31 KB)
Kurzak, J., P. Wu, M. Gates, I. Yamazaki, P. Luszczek, G. Ragghianti, and J. Dongarra, Designing SLATE: Software for Linear Algebra Targeting Exascale,” SLATE Working Notes, no. 3, ICL-UT-17-06: Innovative Computing Laboratory, University of Tennessee, October 2017.  (2.8 MB)
Bosilca, G., A. Bouteiller, A. Danalis, M. Faverge, A. Haidar, T. Herault, J. Kurzak, J. Langou, P. Lemariner, H. Ltaeif, et al., Distributed Dense Numerical Linear Algebra Algorithms on Massively Parallel Architectures: DPLASMA,” University of Tennessee Computer Science Technical Report, UT-CS-10-660, September 2010.  (366.26 KB)
Bosilca, G., A. Bouteiller, A. Danalis, M. Faverge, A. Haidar, T. Herault, J. Kurzak, J. Langou, P. Lemariner, H. Ltaeif, et al., Distributed-Memory Task Execution and Dependence Tracking within DAGuE and the DPLASMA Project,” Innovative Computing Laboratory Technical Report, no. ICL-UT-10-02, 00-2010.  (400.75 KB)
E
Haidar, A., P. Luszczek, S. Tomov, and J. Dongarra, Efficient Eigensolver Algorithms on Accelerator Based Architectures,” 2015 SIAM Conference on Applied Linear Algebra (SIAM LA), Atlanta, GA, SIAM, October 2015.  (6.98 MB)
Dongarra, J., H. Ltaeif, P. Luszczek, and V. M. Weaver, Energy Footprint of Advanced Dense Numerical Linear Algebra using Tile Algorithms on Multicore Architecture,” The 2nd International Conference on Cloud and Green Computing (submitted), Xiangtan, Hunan, China, November 2012.  (329.5 KB)
Ltaeif, H., P. Luszczek, and J. Dongarra, Enhancing Parallelism of Tile Bidiagonal Transformation on Multicore Architectures using Tree Reduction,” Lecture Notes in Computer Science, vol. 7203, pp. 661-670, September 2012.  (185.77 KB)
Luszczek, P., E. Meek, S. Moore, D. Terpstra, V. M. Weaver, and J. Dongarra, Evaluation of the HPC Challenge Benchmarks in Virtualized Environments,” 6th Workshop on Virtualization in High-Performance Cloud Computing, Bordeaux, France, August 2011.  (114.73 KB)
Anzt, H., B. Haugen, J. Kurzak, P. Luszczek, and J. Dongarra, Experiences in Autotuning Matrix Multiplication for Energy Minimization on GPUs,” Concurrency and Computation: Practice and Experience, vol. 27, issue 17, pp. 5096 - 5113, Oct-December 2015.  (1.99 MB)
Anzt, H., B. Haugen, J. Kurzak, P. Luszczek, and J. Dongarra, Experiences in autotuning matrix multiplication for energy minimization on GPUs,” Concurrency in Computation: Practice and Experience, vol. 27, issue 17, pp. 5096-5113, December 2015.  (1.98 MB)
Dongarra, J., M. Faverge, H. Ltaeif, and P. Luszczek, Exploiting Fine-Grain Parallelism in Recursive LU Factorization,” Proceedings of PARCO'11, no. ICL-UT-11-04, Gent, Belgium, April 2011.
Buttari, A., J. Dongarra, J. Kurzak, J. Langou, J. Langou, P. Luszczek, and S. Tomov, Exploiting Mixed Precision Floating Point Hardware in Scientific Computations,” In High Performance Computing and Grids in Action (to appear), Amsterdam, IOS Press, 00-2007.  (122.01 KB)
Buttari, A., J. Dongarra, J. Kurzak, J. Langou, J. Langou, P. Luszczek, and S. Tomov, Exploiting Mixed Precision Floating Point Hardware in Scientific Computations,” in High Performance Computing and Grids in Action, Amsterdam, IOS Press, January 2008.  (92.95 KB)
Langou, J., J. Langou, P. Luszczek, J. Kurzak, A. Buttari, and J. Dongarra, Exploiting the Performance of 32 bit Floating Point Arithmetic in Obtaining 64 bit Accuracy,” University of Tennessee Computer Science Tech Report, no. UT-CS-06-574, LAPACK Working Note #175, April 2006.  (221.39 KB)
F
Bosilca, G., A. Bouteiller, A. Danalis, M. Faverge, A. Haidar, T. Herault, J. Kurzak, J. Langou, P. Lemariner, H. Ltaeif, et al., Flexible Development of Dense Linear Algebra Algorithms on Massively Parallel Architectures with DPLASMA,” Proceedings of the Workshops of the 25th IEEE International Symposium on Parallel and Distributed Processing (IPDPS 2011 Workshops), Anchorage, Alaska, USA, IEEE, pp. 1432-1441, May 2011.  (1.26 MB)
Haidar, A., A. YarKhan, C. Cao, P. Luszczek, S. Tomov, and J. Dongarra, Flexible Linear Algebra Development and Scheduling with Cholesky Factorization,” 17th IEEE International Conference on High Performance Computing and Communications, Newark, NJ, August 2015.  (494.31 KB)
Haidar, A., T. Dong, S. Tomov, P. Luszczek, and J. Dongarra, Framework for Batched and GPU-resident Factorization Algorithms to Block Householder Transformations,” ISC High Performance, Frankfurt, Germany, Springer, July 2015.  (778.26 KB)
Du, P., R. Weber, P. Luszczek, S. Tomov, G. D. Peterson, and J. Dongarra, From CUDA to OpenCL: Towards a Performance-portable Solution for Multi-platform GPU Programming,” Parallel Computing (submitted), 00-2010.
Du, P., R. Weber, P. Luszczek, S. Tomov, G. D. Peterson, and J. Dongarra, From CUDA to OpenCL: Towards a Performance-portable Solution for Multiplatform GPU Programming,” Parallel Computing (submitted), August 2010.

Pages