Publications

Export 232 results:
Filters: Author is Stanimire Tomov  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Cheng, X., A. Soma, E. D'Azevedo, K. Wong, and S. Tomov, Accelerating 2D FFT: Exploit GPU Tensor Cores through Mixed-Precision , Dallas, TX, The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC18), ACM Student Research Poster, November 2018.  (740.37 KB)
Nath, R., S. Tomov, and J. Dongarra, Accelerating GPU Kernels for Dense Linear Algebra,” Proc. of VECPAR'10, Berkeley, CA, June 2010.  (615.07 KB)
Tomov, S., G. Bosilca, and C. Augonnet, Accelerating Linear Algebra on Heterogeneous Architectures of Multicore and GPUs using MAGMA and DPLASMA and StarPU Schedulers : 2010 Symposium on Application Accelerators in. High-Performance Computing (SAAHPC'10), Tutorial, July 2010.  (499.51 KB)
Tomov, S., M. Gates, and A. Haidar, Accelerating Linear Algebra with MAGMA , Knoxville, TN, ECP Annual Meeting 2018, Tutorial, February 2018.  (35.27 MB)
Baboulin, M., J. Dongarra, J. Herrmann, and S. Tomov, Accelerating Linear System Solutions Using Randomization Techniques,” INRIA RR-7616 / LAWN #246 (presented at International AMMCS’11), Waterloo, Ontario, Canada, July 2011.  (358.79 KB)
Baboulin, M., J. Dongarra, J. Herrmann, and S. Tomov, Accelerating Linear System Solutions Using Randomization Techniques,” ACM Transactions on Mathematical Software (also LAWN 246), vol. 39, issue 2, February 2013. DOI: 10.1145/2427023.2427025  (358.79 KB)
Dongarra, J., M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, and I. Yamazaki, Accelerating Numerical Dense Linear Algebra Calculations with GPUs,” Numerical Computations with GPUs: Springer International Publishing, pp. 3-28, 2014. DOI: 10.1007/978-3-319-06548-9_1  (1.06 MB)
Haidar, A., A. Abdelfattah, V. Dobrev, I. Karlin, T. Kolev, S. Tomov, and J. Dongarra, Accelerating Tensor Contractions for High-Order FEM on CPUs, GPUs, and KNLs , Gatlinburg, TN, moky Mountains Computational Sciences and Engineering Conference (SMC16), Poster, September 2016.  (4.29 MB)
Abdelfattah, A., M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, T. Kolev, I. Masliah, et al., Accelerating Tensor Contractions in High-Order FEM with MAGMA Batched , Atlanta, GA, SIAM Conference on Computer Science and Engineering (SIAM CSE17), Presentation, March 2017.  (9.29 MB)
Anzt, H., S. Tomov, and J. Dongarra, Accelerating the LOBPCG method on GPUs using a blocked Sparse Matrix Vector Product,” University of Tennessee Computer Science Technical Report, no. UT-EECS-14-731: University of Tennessee, October 2014.  (1.83 MB)
Anzt, H., S. Tomov, and J. Dongarra, Accelerating the LOBPCG method on GPUs using a blocked Sparse Matrix Vector Product,” Spring Simulation Multi-Conference 2015 (SpringSim'15), Alexandria, VA, SCS, April 2015.  (1.46 MB)
Tomov, S., and J. Dongarra, Accelerating the Reduction to Upper Hessenberg Form through Hybrid GPU-Based Computing,” University of Tennessee Computer Science Technical Report, UT-CS-09-642 (also LAPACK Working Note 219), May 2009.  (2.37 MB)
Tomov, S., R. Nath, and J. Dongarra, Accelerating the Reduction to Upper Hessenberg, Tridiagonal, and Bidiagonal Forms through Hybrid GPU-Based Computing,” Parallel Computing, vol. 36, no. 12, pp. 645-654, 00 2010.  (1.39 MB)
Dong, T., A. Haidar, S. Tomov, and J. Dongarra, Accelerating the SVD Bi-Diagonalization of a Batch of Small Matrices using GPUs,” Journal of Computational Science, vol. 26, pp. 237–245, May 2018. DOI: 10.1016/j.jocs.2018.01.007  (2.18 MB)
Gates, M., S. Tomov, and J. Dongarra, Accelerating the SVD Two Stage Bidiagonal Reduction and Divide and Conquer Using GPUs,” Parallel Computing, vol. 74, pp. 3–18, May 2018. DOI: 10.1016/j.parco.2017.10.004
Anzt, H., W. Sawyer, S. Tomov, P. Luszczek, and J. Dongarra, Acceleration of GPU-based Krylov solvers via Data Transfer Reduction,” International Journal of High Performance Computing Applications, 2015.
Dong, T., T. Kolev, R. Rieben, V. Dobrev, S. Tomov, and J. Dongarra, Acceleration of the BLAST Hydro Code on GPU,” Supercomputing '12 (poster), Salt Lake City, Utah, SC12, November 2012.
Yamazaki, I., T. Mary, J. Kurzak, S. Tomov, and J. Dongarra, Access-averse Framework for Computing Low-rank Matrix Approximations,” First International Workshop on High Performance Big Graph Data Management, Analysis, and Mining, Washington, DC, October 2014.
Masliah, I., A. Abdelfattah, A. Haidar, S. Tomov, M. Baboulin, J. Falcou, and J. Dongarra, Algorithms and Optimization Techniques for High-Performance Matrix-Matrix Multiplications of Very Small Matrices,” Innovative Computing Laboratory Technical Report, no. ICL-UT-18-09: Innovative Computing Laboratory, University of Tennessee, September 2018.  (3.74 MB)
Masliah, I., A. Abdelfattah, A. Haidar, S. Tomov, M. Baboulin, J. Falcou, and J. Dongarra, Algorithms and Optimization Techniques for High-Performance Matrix-Matrix Multiplications of Very Small Matrices,” Parallel Computing, vol. 81, pp. 1–21, January 2019. DOI: 10.1016/j.parco.2018.10.003  (3.27 MB)
Abdelfattah, A., A. Haidar, S. Tomov, and J. Dongarra, Analysis and Design Techniques towards High-Performance and Energy-Efficient Dense Linear Solvers on GPUs,” IEEE Transactions on Parallel and Distributed Systems, vol. 29, issue 12, pp. 2700–2712, December 2018. DOI: 10.1109/TPDS.2018.2842785
Yamazaki, I., A. Abdelfattah, A. Ida, S. Ohshima, S. Tomov, R. Yokota, and J. Dongarra, Analyzing Performance of BiCGStab with Hierarchical Matrix on GPU Clusters,” IEEE International Parallel and Distributed Processing Symposium (IPDPS), Vancouver, BC, Canada, IEEE, May 2018.  (1.37 MB)
Nath, R., S. Tomov, E. Agullo, and J. Dongarra, Autotuning Dense Linear Algebra Libraries on GPUs , Basel, Switzerland, Sixth International Workshop on Parallel Matrix Algorithms and Applications (PMAA 2010), June 2010.  (579.44 KB)
Kurzak, J., S. Tomov, and J. Dongarra, Autotuning GEMMs for Fermi,” University of Tennessee Computer Science Technical Report, UT-CS-11-671, (also Lawn 245), April 2011.  (397.45 KB)
B
Dongarra, J., I. Duff, M. Gates, A. Haidar, S. Hammarling, N. J. Higham, J. Hogg, P. Valero Lara, P. Luszczek, M. Zounon, et al., Batched BLAS (Basic Linear Algebra Subprograms) 2018 Specification , July 2018.  (483.05 KB)
Haidar, A., P. Luszczek, S. Tomov, and J. Dongarra, Batched Matrix Computations on Hardware Accelerators,” EuroMPI/Asia 2015 Workshop, Bordeaux, France, September 2015.  (589.05 KB)
Haidar, A., A. Abdelfattah, S. Tomov, and J. Dongarra, Batched Matrix Computations on Hardware Accelerators Based on GPUs,” 2015 SIAM Conference on Applied Linear Algebra (SIAM LA), Atlanta, GA, SIAM, October 2015.  (9.36 MB)
Haidar, A., T. Dong, P. Luszczek, S. Tomov, and J. Dongarra, Batched matrix computations on hardware accelerators based on GPUs,” International Journal of High Performance Computing Applications, February 2015. DOI: 10.1177/1094342014567546  (2.16 MB)
Abdelfattah, A., A. Haidar, S. Tomov, and J. Dongarra, Batched One-Sided Factorizations of Tiny Matrices Using GPUs: Challenges and Countermeasures,” Journal of Computational Science, vol. 26, pp. 226–236, May 2018. DOI: 10.1016/j.jocs.2018.01.005  (3.73 MB)
Nath, R., S. Tomov, and J. Dongarra, Blas for GPUs,” Scientific Computing with Multicore and Accelerators, Boca Raton, Florida, CRC Press, 2010.  (1.05 MB)
Anzt, H., S. Tomov, M. Gates, J. Dongarra, and V. Heuveline, Block-asynchronous Multigrid Smoothers for GPU-accelerated Systems , no. UT-CS-11-689, December 2011.  (608.95 KB)
Anzt, H., S. Tomov, M. Gates, J. Dongarra, and V. Heuveline, Block-asynchronous Multigrid Smoothers for GPU-accelerated Systems,” ICCS 2012, Omaha, NE, June 2012.  (608.95 KB)
Anzt, H., S. Tomov, J. Dongarra, and V. Heuveline, A Block-Asynchronous Relaxation Method for Graphics Processing Units,” University of Tennessee Computer Science Technical Report, no. UT-CS-11-687 / LAWN 258, November 2011.  (1.08 MB)
Anzt, H., S. Tomov, J. Dongarra, and V. Heuveline, A Block-Asynchronous Relaxation Method for Graphics Processing Units,” Journal of Parallel and Distributed Computing, vol. 73, issue 12, pp. 1613–1626, December 2013. DOI: http://dx.doi.org/10.1016/j.jpdc.2013.05.008  (1.08 MB)
Anzt, H., J. Dongarra, M. Gates, J. Kurzak, P. Luszczek, S. Tomov, and I. Yamazaki, Bringing High Performance Computing to Big Data Algorithms,” Handbook of Big Data Technologies: Springer, 2017. DOI: 10.1007/978-3-319-49340-4
C
Abdelfattah, A., K. Arturov, C. Cecka, J. Dongarra, C. Freitag, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, et al., C++ API for Batch BLAS,” SLATE Working Notes, no. 4, ICL-UT-17-12: University of Tennessee, December 2017.  (1.89 MB)
YarKhan, A., A. Haidar, C. Cao, P. Luszczek, S. Tomov, and J. Dongarra, Cholesky Across Accelerators,” 17th IEEE International Conference on High Performance Computing and Communications (HPCC 2015), Elizabeth, NJ, IEEE, August 2015.
Abdelfattah, A., A. Haidar, S. Tomov, and J. Dongarra, Cholesky Factorization on Batches of Matrices with Fixed and Variable Sizes , San Jose, CA, GPU Technology Conference (GTC16), Poster, April 2016.  (480.51 KB)
Baboulin, M., S. Donfack, J. Dongarra, L. Grigori, A. Remi, and S. Tomov, A Class of Communication-Avoiding Algorithms for Solving General Dense Linear Systems on CPU/GPU Parallel Machines,” Proc. of the International Conference on Computational Science (ICCS), vol. 9, pp. 17-26, June 2012.
Horton, M., S. Tomov, and J. Dongarra, A Class of Hybrid LAPACK Algorithms for Multicore and GPU Architectures,” Symposium for Application Accelerators in High Performance Computing (SAAHPC'11), Knoxville, TN, July 2011.  (329.68 KB)
Cao, C., J. Dongarra, P. Du, M. Gates, P. Luszczek, and S. Tomov, clMAGMA: High Performance Dense Linear Algebra with OpenCL,” University of Tennessee Technical Report (Lawn 275), no. UT-CS-13-706: University of Tennessee, March 2013.  (526.6 KB)
Cao, C., J. Dongarra, P. Du, M. Gates, P. Luszczek, and S. Tomov, clMAGMA: High Performance Dense Linear Algebra with OpenCL ,” International Workshop on OpenCL, Bristol University, England, May 2014.  (460.91 KB)
Gates, M., S. Tomov, and A. Haidar, Comparing Hybrid CPU-GPU and Native GPU-only Acceleration for Linear Algebra,” 2015 SIAM Conference on Applied Linear Algebra, Atlanta, GA, SIAM, October 2015.  (4.7 MB)
Tomov, S., J. Langou, A. Canning, L-W. Wang, and J. Dongarra, Comparison of Nonlinear Conjugate-Gradient methods for computing the Electronic Properties of Nanostructure Architectures,” Proceedings of 5th International Conference on Computational Science (ICCS), Atlanta, GA, USA, Springer's Lecture Notes in Computer Science, pp. 317-325, January 2005.  (172.86 KB)
Sun, J., J. Fu, J. Drake, Q. Zhu, A. Haidar, M. Gates, S. Tomov, and J. Dongarra, Computational Benefit of GPU Optimization for Atmospheric Chemistry Modeling,” Journal of Advances in Modeling Earth Systems, vol. 10, issue 8, pp. 1952–1969, August 2018. DOI: 10.1029/2018MS001276
Yamazaki, I., S. Tomov, and J. Dongarra, Computing Low-rank Approximation of a Dense Matrix on Multicore CPUs with a GPU and its Application to Solving a Hierarchically Semiseparable Linear System of Equations,” Scientific Programming, 2015.  (648.87 KB)
Tomov, S., J. Langou, J. Dongarra, A. Canning, and L-W. Wang, Conjugate-Gradient Eigenvalue Solvers in Computing Electronic Properties of Nanostructure Architectures,” International Journal of Computational Science and Engineering, vol. 2, no. 3/4, pp. 205-212, 00 2006.  (428.21 KB)
Tomov, S., J. Langou, A. Canning, L-W. Wang, and J. Dongarra, Conjugate-Gradient Eigenvalue Solvers in Computing Electronic Properties of Nanostructure Architectures,” International Journal of Computational Science and Engineering (to appear), January 2005.  (428.21 KB)
D
Yamazaki, I., S. Tomov, and J. Dongarra, Deflation Strategies to Improve the Convergence of Communication-Avoiding GMRES,” 5th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, New Orleans, LA, November 2014.  (465.52 KB)
Tomov, S., and J. Dongarra, Dense Linear Algebra for Hybrid GPU-based Systems,” Scientific Computing with Multicore and Accelerators, Boca Raton, Florida, CRC Press, 2010.

Pages