Unified Development for Mixed Multi-GPU and Multi-Coprocessor Environments using a Lightweight Runtime Environment

TitleUnified Development for Mixed Multi-GPU and Multi-Coprocessor Environments using a Lightweight Runtime Environment
Publication TypeConference Paper
Year of Publication2014
AuthorsHaidar, A., C. Cao, J. Dongarra, P. Luszczek, and S. Tomov
Conference NameIPDPS 2014
Date Published05-2014
PublisherIEEE
Conference LocationPhoenix, AZ
Keywordsalgorithms, Computer science, CUDA, Heterogeneous systems, Intel Xeon Phi, linear algebra, nVidia, Tesla K20, Tesla M2090
Abstract

Many of the heterogeneous resources available to modern computers are designed for different workloads. In order to efficiently use GPU resources, the workload must have a greater degree of parallelism than a workload designed for multicore-CPUs. And conceptually, the Intel Xeon Phi coprocessors are capable of handling workloads somewhere in between the two. This multitude of applicable workloads will likely lead to mixing multicore-CPUs, GPUs, and Intel coprocessors in multi-user environments that must offer adequate computing facilities for a wide range of workloads. In this work, we are using a lightweight runtime environment to manage the resourcespecific workload, and to control the dataflow and parallel execution in two-way hybrid systems. The lightweight runtime environment uses task superscalar concepts to enable the developer to write serial code while providing parallel execution. In addition, our task abstractions enable unified algorithmic development across all the heterogeneous resources. We provide performance results for dense linear algebra applications, demonstrating the effectiveness of our approach and full utilization of a wide variety of accelerator hardware.

Project Tags: