
POMPEI: Programming with OpenMP4 for
Exascale Investigations∗

Jack Dongarra1,2,3, Azzam Haidar1, Oscar Hernandez2, Stanimire Tomov1, and
Manjunath Gorentla Venkata2

1 University of Tennessee,
Knoxville, TN, USA

dongarra,haidar,tomov@eecs.utk.edu
2 Oak Ridge National Laboratory, Oak Ridge, TN, USA.

oscar,manjugv@ornl.gov
3 University of Manchester, Manchester, U.K.

Abstract

The objective of the Programming with OpenMP4 for Exascale Investigations (POMPEI) project is to explore
new task-based programming techniques together with data structure centric programming for scientific applica-
tions to harness the potential of extreme-scale systems. Tasking is a well established by now approach on such
systems as it has been used successfully to handle their large-scale parallelism and heterogeneity, which are leading
challenges on the way to exascale computing. The approach is to harness the latest features of OpenMP4.5 and
OpenACC2.5 to design abstractions shared among tasks and mapped efficiently to data-structure driven program-
ming paradigms. This technical report describes the approach, along with its reference implementation and results
for dense linear algebra algorithms.

1 Introduction
To meet the challenges of billion-way parallelism at exascale, it is widely agreed that math libraries
should, wherever possible, embrace event-driven and message-driven execution models, in which work
is abstracted in the form of asynchronous tasks, whose completion can trigger additional computation
tasks and data movements. Although this model does not work for all application areas in HPC, it is
very suitable for implementing dense linear algebra (DLA) workloads, which have historically been
on the leading edge of the communitys effort to address major changes in the hardware ecosystem.
Therefore, we propose to build on tools established in the area of DLA, by enhancing them with a
number of new techniques and abstractions to meet the HPC needs of other scientific applications of
interest. In particular, we propose to concentrate on the adoption of the new OpenMP4 standard in DLA
libraries, while exploring portable high-level data structure programming APIs in conjunction with the
SharP LDRD project [12, 13]. OpenMP4 offers task scheduling constructs. Their implementation in
the GNU compiler suite has illustrated advantages against other, custom build schedulers (like QUARK
and PaRSEC from UTK, SMPSs from the Barcelona Supercomputer Center, and StarPU from INRIA),
further raising the interest in the use and adoption of task scheduling approaches in numerical libraries.

Handling heterogeneity is the other leading challenge for numerical libraries. Libraries need to run
on a wide range of systems, supporting multiple processor architectures and multiple memory systems.
Vendors provide their own systems for offloading work to accelerators, e.g., CUDA (NVIDIA), OpenCL
(AMD), and Intel compiler offload features (Intel), which makes the simultaneous support of various
accelerators challenging. To evolve toward exascale-friendly programming approaches we will explore

∗POMPEI Technical Progress Report for the time period of 07/01/2016 – 09/30/2016.

1

Programming with OpenMP4 for Exascale Investigations Dongarra, Haidar, Hernandez, Tomov, Gorentla Venkata

the use of the OpenACC standard in numerical libraries. The Oak Ridge Leadership Computing Facility
(OLCF) has made a strategic investment in OpenACC for the Titan system and applications are starting
to use it. Therefore, we propose to develop key extensions to OpenACC/OpenMP to access different
types of memory hierarchies and support selected applications and demonstrate their efficiency with
prototype implementations.

This technical report presents our POMPEI proposal on how to address the above two challanges,
taking case studies and examples of fundamental dense linear algebra algorithms. To this end, we report
the technical details on POMPEI’s:

Study, analysis, and benchmarks of using OpenMP4.5 and data abstractions for dense linear algebra;
Framework design for POMPEI outlining a dense linear algebra programming approach that uses

OpenMP4.5 tasking and SharP data structure programing paradigms that enable ease of develop-
ment and seamless portability across multicore CPUs, Nvidia GPUs, and Intel Xeon Phi;

Prototype Cholesky factorization for a single node heterogeneous system using the POMPEI frame-
work with OpenMP4.5 tasking and prototype data abstractions and APIs.

2 Study, analysis, and benchmarks

2.1 Directives-based programming model
Directives-based parallel programming is the de-facto standard for shared memory systems. It has a
widespread vendor support and a large user base. Implementations, e.g., of the OpenMP standards,
provide a set of directives to manage, synchronize, and assign work to threads that share data. Adding
support for tasking and offload of work to accelerators in OpenMP, made directives-based programming
models based on OpenMP even more attractive. This also motivates our interest in developing directives-
based programming models for dense linear algebra (DLA) on heterogeneous systems.

DLA programming in libraries like in LAPACK [1], MAGMA [2], and others is based on express-
ing algorithms in terms of BLAS [3] calls. Subsequently, implementation can achieve high efficiency,
provided that highly efficient machine-specific BLAS implementations are provided, e.g., by the manu-
facturer. These current best practices drive our ideas towards the development for the next generation of
parallel programming model – one that will be based on BLAS-based tasking, directives, and dynamic
scheduling of work to heterogeneous processing elements.

2.2 OpenMP and OpenACC
The OpenMP community has been swiftly moving forward with standardization of new scheduling
techniques for multicores. First, the OpenMP 3.0 standard adopted the Cilk scheduling model, then the
OpenMP 4.0 standard adopted the superscalar scheduling model. Not without significance is the fact
that the GNU compiler suite was also quick to follow with high quality implementations of the new
extensions. We find that these new features are essential for DLA libraries. Since DLA is fundamental
to a wide range of scientific and engineering applications, by concentrating on developing best practices
in parallel programming models for DLA on heterogeneous architectures, we address indirectly other
areas as well.

OpenACC is another specification focused on directive-based ways to program accelerators.

2.3 PAPI-based analysis
We use the Performance Application Programming Interface (PAPI) [4] to get a consistent interface
access to the performance counter hardware found in most major microprocessors. Counter data is

2

Programming with OpenMP4 for Exascale Investigations Dongarra, Haidar, Hernandez, Tomov, Gorentla Venkata

needed for performance monitoring, application analysis, and optimizations.

2.4 BLAS benchmarks
To study the performance portability of accelerator directives provided by OpenMP 4 and OpenACC,
we developed benchmarks with various computational intensities. In particular, we studied DLA as it
is well represented on most architectures and many applications use it. We chose kernels of increasing
computational intensity – daxpy, dgemv, and dgemm – which are representative of the Level-1, Level-2,
and Level-3 BLAS, respectively [5].

2.4.1 daxpy

The daxpy kernel computes y← y+αx for vectors x and y and scalar α .
Listing 1 shows the code that we developed for the daxpy benchmark using OpenMP 4 directives.

The OpenACC version is similarly based on the equivalent OpenACC syntax. The code consists of a data
region specifying arrays to transfer to and from the accelerator and a parallel region directing execution
of the daxpy loop to the device. For the OpenMP 4.5 version we did not specify an OpenMP SIMD
directive in the inner loop since this vectorization pattern was recognized by all the tested compilers
(Intel, PGI and Cray).

double a lpha , ∗x , ∗y ;
i n t n ;
#pragma omp t a r g e t d a t a map (t o : x [0 : n]) &

map (to f r om : y [0 : n])
{

i n t i ;
#pragma omp t a r g e t teams
{

#pragma omp d i s t r i b u t e p a r a l l e l f o r
f o r (i =0 ; i<m; i ++)

y [i] += a l p h a ∗ x [i] ;
} / / t eams

} / / da ta

Listing 1: OpenMP 4/OpenACC version of daxpy

2.4.2 dgemv

The dgemv kernel computes y← βy+αAx or alternatively, y← βy+αAT x for matrix A, vectors x and
y, and scalars α and β . These are referred to as the non-transpose (“N”) and transpose (“T”) forms,
respectively.

Listing 2 shows the code for the dgemv operation, N case. The code has a similar structure including
a data region but also several loops including a doubly nested loop and if statement. Additionally, the
non-stride-1 access poses a challenge for compilation to efficient code.

double a lpha , be t a , ∗x , ∗y , ∗A;
i n t m, n ;
#pragma omp t a r g e t d a t a map (t o :A[0 :m∗n]) &

map (t o : x [0 : n]) map (t o f r om : y [0 :m]) &
map (a l l o c : tmp [0 :m])

{
i n t i , j ;
double prod , x v a l ;
#pragma omp t a r g e t teams
{

#pragma omp d i s t r i b u t e p a r a l l e l f o r &
p r i v a t e (prod , xva l , j)

3

Programming with OpenMP4 for Exascale Investigations Dongarra, Haidar, Hernandez, Tomov, Gorentla Venkata

f o r (i =0 ; i< m; i ++) {
prod = 0 . 0 ;
f o r (j =0 ; j< n ; j ++)

prod += A[i +m∗ j]∗x [j] ;
tmp [i] = a l p h a ∗ prod ;

}
i f (b e t a == 0 . 0) {

#pragma omp d i s t r i b u t e p a r a l l e l f o r
f o r (i =0 ; i<m; i ++)

y [i] = tmp [i] ;
} e l s e {

#pragma omp d i s t r i b u t e p a r a l l e l f o r
f o r (i =0 ; i<m; i ++)

y [i] = b e t a ∗ y [i] + tmp [i] ;
} / / i f

} / / t eams
} / / da ta

Listing 2: OpenMP4 version of dgemv/N

2.4.3 dgemm

The dgemm kernel computes C← αA[T]B[T]+βC for matrices A, B, and C, and scalars α and β . Based
on the transpose (“T”) or not (“N”) options for A and B, we recognize four versions – “NN”, “TN”,
“NT”, and “TT” – where the first character refers to the T/N option for A, and the second is for B.
We developed prototypes and autotuning strategies for this kernel, following the approach above and
GEMM designs for GPUs [6]. The developments are described in detail in [7].

2.5 Cholesky factorization
The LAPACK routine for the Cholesky factorization of a real (double precision) symmetric positive
definite matrix A is dpotrf. Following LAPACK’s convention, the Cholesky factorization of A has the
form A = UTU , if the symmetric matrix is specified in the upper triangular part of A, or alternatively
A = LLT , if A is given in the lower-triangular part of A. Below are three implementations that we
consider; all implementations are for the A = LLT case.

2.5.1 Reference implementation

Listing 3 shows a reference pseudo-code implementation for the Cholesky factorization of an m-by-m
matrix A. Using LAPACK’s convention, we refer to this code as potf2.

f o r (j =0 ; j< m; j ++){
/ / Update t h e c u r r e n t d i a g o n a l e l e m e n t (Leve l−1 BLAS ddo t)
a j j = a (j , j) ;
f o r (i =0 ; i<j ; i ++)

a j j −= a (j , i) ˆ 2 ;

/ / Fa c t o r t h e c u r r e n t d i a g o n a l e l e m e n t
a (j , j) = s q r t (a j j)

/ / Update c u r r e n t column (Leve l−2 BLAS dgemv f o l l o w e d by s c a l i n g)
a (j +1 :m , j) −= a (j +1 :m, 0 : j) a (j , 0 : j) ˆ T ;
a (j +1 :m , j) ∗= 1 . 0 / a (j , j) ;

}

Listing 3: Reference implementation of A = LLT factorization (potf2)

4

Programming with OpenMP4 for Exascale Investigations Dongarra, Haidar, Hernandez, Tomov, Gorentla Venkata

2.5.2 Blocked implementation

Listing 4 shows the LAPACK’s blocked implementation for the potrf of an m-by-m matrix A.

f o r (j =0 ; j< m; j +=nb){
/ / A d j u s t t h e b l o c k s i z e f o r t h e end b l o c k
j b = min (nb , m−j) ;

/ / Update t h e c u r r e n t d i a g o n a l b l o c k (Leve l−3 BLAS s y r k)
a (j : j + jb , j : j + j b) −= a (j : j + jb , 0 : j) ∗ a (j : j + jb , 0 : j) ˆ T ;

/ / Fa c t o r t h e c u r r e n t d i a g o n a l b l o c k (e . g . , u s i n g L i s t i n g 1)
p o t f 2 (’ Lower ’ , jb , a (j , j) , lda , i n f o) ;

/ / Update c u r r e n t b l o c k column (Leve l−3 BLAS gemm f o l l o w e d by t r sm)
a (j + j b :m , j : j + j b) = a (j + j b :m, 0 : j) ∗ a (j : j + jb , 0 : j) ˆ T ;
a (j + j b :m , j : j + j b) = a (j + j b :m, j : j + j b) ∗ a (j : j + jb , j : j + j b) ˆ{−T} ;

}

Listing 4: Blocked implementation of A = LLT factorization (potrf)

Here a(j:j+jb , j:j+jb)ˆ {-T} is not computed explicitly. Instead, we use LAPACK’s trsm routine to
solve for X the system X a(j : j+ jb, j : j+ jb)T = B, where X is a(j+1 : m, j : j+ jb), B is a(j+1 :
m, j : j+ jb), and a(j : j+ jb, j : j+ jb) is the lower triangular matrix resulting from the potf2 Cholesky
factorization of the current diagonal block.

2.5.3 Blocked implementation with tasks

The main building blocks of the implementation in Listing 4 – the diagonal block update, diagonal block
factorization, update of the column block, and its scaling – can be defined as dsyrk, potf2, dgemm, and
dtrsm tasks, respectively. Using the OpenMP tasking mechanism, we describe the tasks along with their
inputs and outputs, as given in Listing 5, and leave it to OpenMP to schedule the execution without
violating the data dependencies. The sequential description of the algorithm is known as left-looking, as
going and factorizing the matrix from left to right, only the current panel is updated using information
on its left. Studying the data dependencies, one can see that the computation can be organized in other
ways, e.g., right-looking where the transformations needed for the current panel factorization are applied
immediately to the right of the matrix, or top-looking where only the top left sub-matrix is used for the
update of next block row and corresponding diagonal block factorization. Note that using a dynamic
scheduling mechanism, e.g., based on the OpenMP tasking, one can describe the algorithm in sequential
fashion, e.g., right-looking, but the execution be data driven and in general not follow the order of the
sequential description. Listing 5 shows an implementation that features large tasks and a lookahead
strategy, as in MAGMA, and is a simple preview to the approach that we propose in Section 3.

/ / P o i n t e r s used f o r d e p e n d e n c i e s
double ∗pnew , ∗po ld = A(0 , 0) , ∗p ;

#pragma omp p a r a l l e l
#pragma omp m a s t e r
f o r (j =0 ; j< m; j +=nb){

/ / A d j u s t t h e b l o c k s i z e f o r t h e end b l o c k
j b = min (nb , m−j) ;

/ / Update t h e c u r r e n t d i a g o n a l b l o c k (Leve l−3 BLAS s y r k)
pnew = A(j , j) ;
#pragma omp task f i r s t p r i v a t e (jb , j , pold , pnew) \

depend (i n : po ld) \
depend (o u t : pnew)

d s y r k (’ Lower ’ , ’No t r a n s ’ , jb , j , −1, a (j , 0) , lda , 1 , a (j , j) , l d a) ;

5

Programming with OpenMP4 for Exascale Investigations Dongarra, Haidar, Hernandez, Tomov, Gorentla Venkata

/ / Fa c t o r t h e c u r r e n t d i a g o n a l b l o c k (e . g . , u s i n g L i s t i n g 1)
#pragma omp task f i r s t p r i v a t e (jb , j , pnew) \

depend (i n o u t : pnew)
p o t f 2 (’ Lower ’ , jb , a (j , j) , lda , i n f o) ;

/ / Update c u r r e n t b l o c k column (Leve l−3 BLAS gemm f o l l o w e d by t r sm)
p = A(j + jb , j) ;
#pragma omp task f i r s t p r i v a t e (jb , j , p , po ld) \

depend (i n : po ld) \
depend (o u t : p)

dgemm (’No t r a n s ’ , ’ Trans ’ , m−j−jb , jb , j ,
−1, a (j + jb , 0) , lda , a (j , 0) , lda , 1 , a (j + jb , j) , l d a) ;

#pragma omp task f i r s t p r i v a t e (jb , j , p , pnew) \
depend (i n : p) \
depend (i n o u t : pnew)

d t r sm (’ R i g h t ’ , ’ Lower ’ , ’ T r a n s p o s e ’ , ’Non−u n i t ’ ,
m−j−jb , jb , 1 , a (j , j) , lda , a (j + jb , j) , l d a) ;

po ld = pnew ;
}

Listing 5: Blocked implementation with OpenMP 4 tasks of the A = LLT factorization (dpotrf).

Also note that we give the dependencies as discrete values without range. Currently, a range can be
specified as a contiguous space, i.e., a dependency on a (non-contiguous) submatrix can not be repre-
sented using a leading dimension (lda), as typically done in DLA. This is not a problem for our model,
as we will discuss further below, because we can still use OpenMP to handle the dependencies, while
ranges and data movements (e.g., between CPUs and GPUs) will be handled by other abstractions.

3 Framework design
Making an algorithm work with heterogeneous hardware components can be challenging. We designed
a framework along with a programming model that provide high-level abstractions for programming
multi-way heterogeneous resources. The goal is to have a unified approach and a seamless porting of
algorithms across a wide range of hardware. We use: 1) algorithmic blocking techniques, 2) 1−D
block-column and 2−D data distributions guided by hardware-capabilities-weight, and 3) optimized
kernels that enable ease of programming as well as efficiency on a wide range of architectures through
use of building blocks. To be fast, reliable, and efficient, we take advantage of OpenMP 4 that allows
us to write serial code while extracting parallelism and enabling adaptive execution on the available
resources.

This work builds on our earlier work on programming models for DLA [8] on multi-way node-
heterogeneous [9] and distributed [10] architectures. We extend the ideas into a prototype framework
for DLA that can handle new architectures through a single code.

3.1 OpenMP 4.5 tasking
Here we present the linear algebra aspects of our generic solution for development of the one-sided
factorizations: Cholesky (Chol), Gaussian (LU), and the Householder QR. Algorithmically, as presented
in Algorithm 1 and illustrated in Figure 1, these factorizations can be viewed as a sequence of steps with
two distinct phases per step: 1) a panel factorization that affects the data depicted by the blue portion of
Figure 1, and, 2) a trailing matrix update that updates data represented by the magenta and green color
in Figure 1. Table 1 shows the BLAS and LAPACK routines that must be substituted for the generic
routines named in the algorithm. From a hardware standpoint, the increased computational capability

6

Programming with OpenMP4 for Exascale Investigations Dongarra, Haidar, Hernandez, Tomov, Gorentla Venkata

for Pi ∈ {P1,P2, . . . ,Pn} do
PanelFactorize(Pi) ;
TrailingMatrixUpdate(A(i)) ;

Algorithm 1: Two-phase matrix factorization.

Cholesky Householder Gaussian

PanelFactorize xPOTF2 xGEQF2 xGETF2
xTRSM xLARFT xLASWP

TrailingMatrixUpdate xSYRK xLARFB xTRSM
xGEMM xGEMM

Table 1: Panel factorization and trailing matrix update routines.

requires an incredible increase in the amount of concurrency that a software must be able to utilize. Our
design achieves this through a Master-Devices approach that we describe in the next section. From a
software point of view, we know that from the Table 1 routines, the PanelFactorize is memory-bound,
while the TrailingMatrixUpdate is compute-bound. Thus, one can expect inefficiency of the simple
loop of Algorithm 1 due to the nature of the PanelFactorize phase. As a consequence, the algorithm
must be modified further in order to overcome this issue and to achieve closer to optimal performance.
The first optimization is to hide the inefficiency of the memory-bound task (e.g., the PanelFactorize
phase). A common technique to achieve this is lookahead, where the update phase of step i is split into
an update of the next panel UnextP (the first green block from the left of Figure 1), and an update of the
rest of the trailing matrix Urest (the green blocks to the right). Thus, once the update of the next panel
is done, its PanelFactorize phase of step i+ 1 can start in parallel with the update of the rest of the
trailing matrix Urest, hiding its memory-bound behavior. The Multi-way Heterogeneous Programing
model described in the next subsection provides an easy way to perform these two operations in parallel.

The efficient use of multiple computational devices for Algorithm 1 strongly depends on the data
distribution of the matrix. The PanelFactorize phase operates on a block-column of data (cf., the
blue blocks of Figure 1), and thus it is preferable for its data to be located in the same memory space in

panel

update

step 1 step 2 step 3 step 4

nb	

nb	

Figure 1: Two-phase implementation of a one-sided factorization.

7

Programming with OpenMP4 for Exascale Investigations Dongarra, Haidar, Hernandez, Tomov, Gorentla Venkata

order to avoid communications, and to increase data locality, and cache reuse. The compute-intensive
TrailingMatrixUpdate phase requires data from the panel and the top block of nb rows, and in the
QR case a summation over the columns of the trailing matrix, which makes a block-row data distribu-
tion a bad candidate. For example, the xGEMM routine of the LU update (green blocks of Figure 1)
requires data from the output of the xTRSM magenta blocks of Figure 1. We easily deduce that a block-
column data distribution is preferable for both phases. Thus, based on the analysis of all the routines
described in Table 1, we concluded that an optimal distribution that minimizes the communications is a
1D block-column data distribution. Note that in contrast to the 2D data distribution, well known from the
distributed memory ScaLAPACK, here we are in shared memory, and the number of targeted devices is
in general less than 10. It turns out that the benefits of a 2D distribution (to keep load balance through-
out the computation) cannot overcome the overheads of the extra communications and synchronizations
associated with it on shared memory systems. This is illustrated by the performance experiments in
Figures 4 and 5. We see that two KNCs (purple curves) reach twice the performance of one KNC (cyan
curve), i.e., a perfect scalability, and performance is close to the theoretical peak. This shows that the
optimization techniques cited above are well implemented, and that the panel computation and the CPU-
KNC communications are overlapped with the trailing matrix update phase. More details are provided in
Section 5. We propose a 1D hardware-capabilities-weight block-column distribution, which distributes
the data across the devices based on their computing capabilities (in a 1D block-column fashion). For
more details about the hardware-capabilities-weight distribution, we refer to [9].

3.2 Programming Multi-way Heterogeneous Resources

Developing software that properly maps algorithmic requirements to the specific strengths of the hard-
ware components requires the design of heterogeneous algorithms. Xeon Phi and GPUs have high
computational peaks compared to multicore CPUs. The difference in capabilities makes it challenging
to develop a portable algorithm that can achieve high performance, reach good scalability in a multi-way
heterogeneous environment, while also being easy to use, modify, and optimize. For example, computa-
tions on the critical path of an algorithm (mainly memory-bound operations like the PanelFactorize
phase) may be more suitable to run on a small number of cores – the well known way is to run it on mul-
ticore CPUs – than on high-throughput computing devices such as GPUs or Xeon Phis, which are more
suitable for highly-parallel computations as in the TrailingMatrixUpdate phase. This is what we call
hybrid mode – where CPUs work together with accelerators. We have demonstrated the methodology
of developing these types of hybrid algorithms in the MAGMA Library [9].

Our goal is to design a fremework for this approach that is based on OpenMP and supports multiple
architectures, such as multicore CPUs, GPUs, and Xeon Phi, including the recent self-hosted KNL,
through a single code. One of the abstractions of the framework is of a virtual view of the hardware as a
Master(or Host) computing unit with low capability that is responsible for tasks that are memory-bound,
and other Device units (or workers) that are for compute-intensive tasks, as illustrated in Figure 2. This
way, we can represent any native mode as a virtual hybrid mode even within the same hardware [11].
For example, a KNL with 64 cores can be viewed as a Master using 4 cores, and one Device using 60
cores. Another possible configuration is a Master using 4 cores along with 6 Devices using 10 cores
each, etc. Hence, the techniques proposed in Section 3.1 can be easily developed now using this Master-
Device design. For the rest of the this report, we consider any hardware as two compute units, a Master
unit and one, or many, Device units, independently from the associated hardware.

The key features taken into account by our model are the capabilities of the computational resources,
the memory access, and the communication cost. We have developed a strategy that prioritizes the
data-intensive operations to be executed by the Devices and the memory-bound ones by the Master.
Moreover, we redesigned the kernels and implemented dynamically guided data distribution to exploit

8

Programming with OpenMP4 for Exascale Investigations Dongarra, Haidar, Hernandez, Tomov, Gorentla Venkata

Figure 2: The design of our Unified Programming Model.

parallelism in order to keep the Devices busy. From a programming model point of view, each algorithm
is converted into a Master part and a Device part. The routines destined to execute on the Devices must
be extracted into a separate hardware-specific kernel function. The kernels may need to be optimized for
the Device, e.g., including unrolling loops, replacing some memory-bound operations with compute-
intensive ones even if it has a marginal extra cost, and also arranging operations to use the Device
memory efficiently. The Master must manage the Device memory allocation, the Master-Device data
movement, and the kernel invocation. We used a runtime engine in order to present a much easier
programming environment and to simplify scheduling. This often allows us to maintain a single source
version that handles different types of hardware either independently, or mixed together. Our goal is to
abstract hardware details, while still maintaining fine levels of control.

Algorithm 2 shows the pseudocode for the LU factorization. It consists of a sequential code that is
simple to comprehend and is independent of the architecture. Each call represents a task that is inserted
into the scheduler, which stores it to be executed when all of its dependencies are satisfied. Each task
by itself consists of a call to a kernel function that could either be a Master or a Device function. We
tried to hide the differences between hardware and to allow the scheduler engine to handle the transfer
of data asynchronously and automatically, when needed (meaning when Master and Device do not share
the same memory). We have proposed a set of scheduling directives (such as DEVTYPE, PRIORITY,
and OPTYPE flags) that are evaluated at runtime in order to fully map the algorithm to the hardware,
and to run close to the peak performance of the system. DEVTYPE specify the type of of the device,
OPTYPE specify the operation type (e.g., memory-bound BLAS2 or compute-intensive BLAS3) while
PRIORITY specify the priority of the task. Using these strategies, we can easily develop simple and
portable code that can run on different heterogeneous architectures, letting the scheduling and execution
engine do the task dependency analysis, resource scheduling, and finally, the task execution. A simple
example of these functionalities is the implementation of the lookahead technique that does not requires

9

Programming with OpenMP4 for Exascale Investigations Dongarra, Haidar, Hernandez, Tomov, Gorentla Venkata

Task Flags panel flags = Task Flags Initializer ;
Task Flags update flags = Task Flags Initializer ;
Set the priority of the panel task ;

TaskFlagSet(&panel flags, PRIORITY, 10) ;
Panel is memory-bound→ locked to Master and disable task stealing ;

TaskFlagSet(&panel flags, OPTYPE, BLAS2, DEVTYPE, Master) ;
Update is compute-intensive→ preference to Device ;

TaskFlagSet(&update flags, OPTYPE, BLAS3, DEVTYPE, Device) ;
for k ∈ {0,nb,2×nb, . . . ,n} do

Factorization of the panel A(k:n,k:k+nb) ;
TASK: getf2(A(k:n,k:k+nb)) ;
Swap the rows to the left and the right of the panel ;

TASK: laswp(A(k:n,1:k)) ;
TASK: laswp(A(k:n,k+nb:n)) ;
for j ∈ {k+nb,k+2nb, . . . ,n−nb} do

if j = k+nb then
TaskFlagSet(&update flags, PRIORITY, 10) ;

TASK: trsm(A(k:k+nb,k:k+nb)→ A(k:k+nb,j:j+nb);
if panel m > panel n then

TASK: gemm(A(j:n,k:k+nb) × A(k:k+nb,j,j+nb)→ A(j:n,j:j+nb)) ;

Algorithm 2: LU implementation for multiple devices.

any extra programming effort. The first task of the trailing matrix update phase (trsm and gemm) consists
of the update of the next panel. Since it is a priority task, the scheduling engine ensures that the scheduler
places it at the top of the queue as a priority task (since it is on the critical path), tracks its dependencies,
and once finished, sends it to the Master in order to perform the panel factorization of the next step,
while the accelerator Device continues the update of the trailing matrix of step k. This technique is
called lookahead, and is hidden here by the scheduler without any extra lines of code. Figure 3 shows
the execution trace of the LU factorization on the KNL. We see that the panel factorization task of step
i+1 runs in parallel with the update of the rest of the trailing matrix of step i, allowing lookahead.

���������	��

���������	��

���������
 ��� ��� ��� ���

������
 ���� ����� ��� ! ���"� ��� ! �������� ����

�����

���	���

���	�
�

���	���

�����

��������	�� ��� ���
��
�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
���
���

��

��
���
���
���
���
���
���
���
���

����������� �� !" #$	%& #$�'$% ��		%& !$��"�! !��

�����

���	���

���	�
�

���	���

�����

��������	�� ��� ���
��
�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
���
���

��

��
���
���

������� ���� �� !" #$	%& #$�'$% ��		%& !$��"�! !��

Figure 3: Execution traces for the LU factorization on KNL (64 cores) viewed as a Master using 4
cores and either one Device of 60 cores (top) or four Devices of 15 cores each (bottom) [11]. The panel
factorization is represented in red (Master tasks) and the update by the green color (Devices tasks).

10

Programming with OpenMP4 for Exascale Investigations Dongarra, Haidar, Hernandez, Tomov, Gorentla Venkata

Matrix size
2k 4k 6k 8k 12k 16k 20k 24k 28k 32k 36k 40k

G
flo

p/
s

0

200

400

600

800

1000

1200

1400

1600

1800
Dynamic-MAGMA LU

Native: 1 KNL preproduction (64cores)
Native: 1 KNC 7120 (61c)
Hybrid: 2 KNC 7120 (61c) (+16 CPU SandyBridge E5-2670)
Hybrid: 1 KNC 7120 (61c) (+16 CPU SandyBridge E5-2670)
Native: 36 CPUs E5-2697 (Broadwell)

Matrix size
2k 4k 6k 8k 12k 16k 20k 24k 28k 32k 36k 40k

G
flo

p/
s

0

200

400

600

800

1000

1200

1400

1600

1800
Dynamic-MAGMA QR

Native: 1 KNL preproduction (64cores)
Native: 1 KNC 7120 (61c)
Hybrid: 2 KNC 7120 (61c) (+16 CPU SandyBridge E5-2670)
Hybrid: 1 KNC 7120 (61c) (+16 CPU SandyBridge E5-2670)
Native: 36 CPUs E5-2697 (Broadwell)

Figure 4: Performance of LU (left) and QR (right) across five hardware configurations.

Matrix size
2k 4k 6k 8k 12k 16k 20k 24k 28k 32k 36k 40k

G
flo

p/
s

0

200

400

600

800

1000

1200

1400

1600

1800
Dynamic-MAGMA Cholesky

Native: 1 KNL preproduction (64cores)
Native: 1 KNC 7120 (61c)
Hybrid: 2 KNC 7120 (61c) (+16 CPU SandyBridge E5-2670)
Hybrid: 1 KNC 7120 (61c) (+16 CPU SandyBridge E5-2670)
Native: 36 CPUs E5-2697 (Broadwell)

1 4 9 16 25 36 64 100
0

10

20

30

40

50

60

70

80

Nodes

P
er

fo
rm

an
ce

 T
flo

p/
s

Our algo 3 Nvidia M2090
Our algo 2 Nvidia M2090
Our algo 1 Nvidia M2090
Our algo 12 CPUs cores
ScaLapack 12 CPUs cores

Figure 5: Left: Performance of Cholesky across five hardware configurations. Right: Weak scalability
of the distributed multi-device Cholesky factorization on system with NVIDIA GPUs.

3.3 Framework abstractions

Fig. 6 shows the performance obtained when we used as the target hardware four generations of Intel
Xeon multi-socket multicore servers with NUMA shared memory without any accelerators. Each pro-
cessor generation represents a different combination of floating-point performance and memory band-
width/latency, which influences the overhead from task switching during the scheduling process. The
results presented in the figure show that we obtain good scalability across the processor generations
even for relatively small matrix sizes and we are able to extract a sizable portion of peak performance.
The presented runs were obtained with each hardware core was used as a single virtual compute device
and the Intel HyperThreading was switched off.

The results show that we have the technology needed to target various hardware configurations
from a single code that is performance portable across architectures. This opens further opportuni-
ties to extend our framework to be data-structure centric, where the codes are expressed with familiar
data-structure abstractions that give unified view of data. Thus, data movements for example between
CPUs/GPUs will be build in and therefore performed seamlessly to the developer. This can be accom-
plished through data abstraction APIs that can be integrated in POMPEI and be target of our future
plans.

11

Programming with OpenMP4 for Exascale Investigations Dongarra, Haidar, Hernandez, Tomov, Gorentla Venkata

Matrix size
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k 28k 30k 32k 34k 36k 38k 40k

G
flo

p/
s

0

100

200

300

400

500

600

700

800

900

1000

1100
36 cores E5-2697v4 (Broadwell)
28 cores E5-2697v3 (Haswell)
24 cores E5-2697v2 (Ivy Bridge)
16 cores E5-2670 (Sandy Bridge)

Figure 6: Performance of our approach on native mode for three different type of CPU hardware.

4 Cholesky factorization prototype
The framework presented in Section 3 uses the QUARK run-time. The framework can rely on other run-
times and current work is on replacing QUARK by the OpenMP 4 tasking mechanism. We developed
prototypes for experimentation and future work for the Cholesky factorization. Our deliverable for this
period includes the three versions presented in Section 4. The tasks can use optimized implementations,
e.g., BLAS from MKL, or our own implementations based on OpenMP. We developed representative
Level-1, Level-2, and Level-3 BLAS kernels as a proof of concept and to demonstrate the portabil-
ity of single BLAS implementation across architectures. Some performance results are given next, in
Section 5.

5 Performance Results

5.1 Cholesky factorization across architectures
Figure 5, already mentioned in the previous section, illustrates the performance results in double preci-
sion (DP) arithmetic for the Cholesky factorization for three types of hardware and in both hybrid and
native configurations. We use the same code to show its portability, sustainability, and ability to provide
close to peak performance when used in native mode, on a single KNC (the blue curve), self-hosted pre-
production single KNL (the red curve), 36 Broadwell CPUs only (the green curve), as well as in hybrid
mode on 16 Sandy Bridge E5-2670 CPU cores with either one KNC (cyan curve) or two KNCs (purple
curve). In addition to the portability, note that the results confirm the following observations. Our het-
erogeneous multi-device implementation achieves perfect scalability for large matrix sizes. In order to
evaluate the performance of an algorithm we rate its performance compared to what we refer to practical
peak which is the peak of the most compute-intensive and the most optimized Level 3 BLAS routine,
the dgemm routine. The peak performance of the Intel MKL square dgemm on 36 cores Broadwell E5-
2697 is about 1,140 Gflop/s, on one KNC is 940 Gflop/s, and around 2,000 Gflop/s for the KNL. The
operands of the update phases have rectangular shapes reducing the update’s performance to about 90%
of the square gemm peak mentioned above. This also indicates that the panel factorization phase running
on the CPUs is fully overlapped with the trailing matrix update running on the KNCs, and for that, the
overall factorization performance reaches the Level 3 BLAS gemm performance. More attractive are
the native performance results. We obtained about 772 Gflop/s on the KNC and about 1,500 Gflop/s on

12

Programming with OpenMP4 for Exascale Investigations Dongarra, Haidar, Hernandez, Tomov, Gorentla Venkata

the KNL, which is considered efficient and high performance. Note that when running in native mode
for any hardware (CPUs, KNC, or KNL), the hardware is split over Master and Devices. The master is
assigned to a small number of the hardware cores (in our experiments, about 10%), and the remaining
cores are the ones that contribute to the trailing matrix update. As a consequence, in order to evaluate
our algorithm, the peak now is the performance of the gemm on the remaining number of cores. The
native codes are within 90+% of the hybrid ones, i.e., within 90+% of running just the Level 3 BLAS
flops of the factorizations. A similar trend was observed for the QR and Cholesky factorizations.

Figure 7 shows a performance comparison of our results vs. Intel MKL for the Cholesky factor-
ization on the KNL processor. MKL is optimized for all Intel Xeon and Xeon Phi architectures. The
Intel MKL team puts additional effort into optimizing the Level 3 BLAS routines and the LAPACK LU,
Cholesky, and QR factorizations, as these are some of the most commonly used routines in the library.
The Cholesky factorizations are about the same performance with Intel MKL, slightly outperforming
the POMPEI version.

Matrix size
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k 28k 30k

G
flo

p/
s

0

200

400

600

800

1000

1200

1400

1600

1800
Dynamic MAGMA Cholesky (preproduction KNL 64cores)
MKL Cholesky (preproduction KNL 64cores)

Figure 7: POMPEI vs. MKL Cholesky on the preproduction KNL in DP

5.2 Portability of Level-1 and Level-2 BLAS using OpenMP

Figure 8 shows the performance measurements of the daxpy kernel on GPU K20X (Left) and Xeon Phi
KNC 7210 (Right) using three different methods of offloading and comparisons to the vendor optimized
cuBLAS and KNL, respectively.

Figure 9 shows the performance measurements of the dgemv “T” kernel on a K20X GPU (Left) and
Xeon Phi KNC 7210 (Right) using three different methods of offloading and comparisons to the vendor
optimized cuBLAS and KNL, respectively.

The results illustrate that the offload model does not affect the performance of the kernels and even
more impressive, that this behavior has been demonstrated across multiple platforms. Current work is on
the dgemm kernel. The dgemm is compute bound to get top performance vendor optimized implemen-
tations are hardware-specific and use assembly language. Therefore, we expect that we can not reach
the performance of vendor-optimized implemntations. Note that our model allows as to use vendor-
optimized versions, when available, but for independence, when vendor libraries are not available or
intentionally avoided, we are developing our own dgemm kernel.

13

Programming with OpenMP4 for Exascale Investigations Dongarra, Haidar, Hernandez, Tomov, Gorentla Venkata

Matrix size
1.e5 5.e5 1.e6 5.e6 1.e7 5.e7 1.e8

G
flo

p/
s

0

2

4

6

8

10

12

14

16

18
Performance study of the daxpy on GPU K20X

cuBLAS v7.5
Our using Cray 8.5.0 & OMP 4.0 offload
Our using Cray 8.5.0 & OpenACC offload
Our using PGI 16.5 & OpenACC offload
Roofline based on the achievable Bandwidth 192 GB/s

Matrix size
1.e5 5.e5 1.e6 5.e6 1.e7 5.e7 1.e8

G
flo

p/
s

0

2

4

6

8

10

12

14

16

18
Performance study of the daxpy on Xeon Phi 7210

Intel MKL native (16.0.3)
Our with OMP 4.0 (e.g., offload model)
Our with OMP 4.0 self hosted OMP 3.1 (e.g., native model)
Roofline based on the achievable Bandwidth 200 GB/s

Figure 8: Left: Performance measurement of the daxpy kernel on GPU K20X using three different
methods of offloading and comparison to the vendor optimized cuBLAS Library. Right: daxpy kernel
on Xeon Phi KNC 7210 using the offload model and comparison to itself in native model and to MKL.

Matrix size
1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

G
flo

p/
s

0
5

10
15
20
25
30
35
40
45
50

Performance study of the dgemv "T" on GPU K20X

cuBLAS v7.5
Our using Cray 8.5.0 & OMP 4.0 offload
Our using Cray 8.5.0 & OpenACC offload
Our using PGI 16.5 & OpenACC offload
Roofline based on the achievable Bandwidth 192 GB/s

Matrix size
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

G
flo

p/
s

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

Performance study of the dgemv "T" on Xeon Phi 7120
Intel MKL native (16.0.3)
Our with OMP 4.0 (e.g., offload model)
Our with OMP 4.0 self hosted OMP 3.1 (e.g., native model)
Roofline based on the achievable Bandwidth 200 GB/s

Figure 9: Left: Performance measurement of the dgemv “T” kernel on GPU K20X using three different
methods of offloading and comparison to cuBLAS. Right: dgemv “T” kernel on Xeon Phi KNC 7210
using the offload model and comparison to itself in selfhosted model and to MKL.

5.3 Cholesky factorization using OpenMP tasking
Figure 10 shows a performance comparison of the Cholesky factorizations from Section 4 against the
Apple optimized implementation in vecLib available in Accelerate Framework. Note that the reference
implementation is very slow as it is based on Level-1 and Level-2 BLAS only. The blocked implemen-
tation is comparable to vecLib in Accelerate, and the tasking implementations in POMPEI outperforms
both.

6 Conclusions and future directions
The work for this time period made significant contributions to the overall thrusts of the project. The use
of OpenMP was evaluated for developing kernels as well as higher level algorithms, like the Cholesky
factorization. A framework was designed and a prototype Cholesky was implemented using OpenMP
tasking. The Level-1 and Level-2 BLAS results show that the offload model does not affect the perfor-
mance of the kernels and this behavior has been demonstrated across multiple platforms. These BLAS
implementations can be used in task-based approaches with OpenMP, where we demonstrated very good
performance for the Cholesky factorization. Further, OpenMP tasking will allow the use of vendor opti-

14

Programming with OpenMP4 for Exascale Investigations Dongarra, Haidar, Hernandez, Tomov, Gorentla Venkata

Matrix size

G
flo

p/
s

0

20

40

60

80

100

120

140

160

1088 2112 3136 4160 5184 6208 7232 8256 9280 10304

POMPEI	

vecLib	

Blocked	

Reference	

Figure 10: Performance comparisons of the Cholesky factorizations from Section 4 in double precision
on 4 core Intel Core i7 @2.3GHz against the Apple optimized implementation in vecLib from the
Accelerate Framework.

mized BLAS, if available, which use is the fundamental approach for obtaining performance portability
in DLA libraries.

The work during this period opened a number of possibilities for extension and future work. First, it
is of interest to port the framework presented to OpenMP. Second, the current abstractions for portability
must be extended/replaced by data-structure abstractions that give unified view of data. In particular,
this can be accomplished through the SharP library [12, 13]. The use of SharP and the integration of
SharP data abstractions in POMPEI is the main target of our future plans. Finally, the development
of performance portable Level-3 BLAS using OpenMP and SharP is a very high-value proposition for
many applications.

Acknowledgments

This research was supported by the U.S. Department of Energy under subcontract No. 4000148194
issued by UT-Battelle, c/o ORNL. The work was also partially supported by Nvidia and Intel.

References

[1] Edward Anderson, Zhaojun Bai, Christian Bischof, Suzan L. Blackford, James W. Demmel,
Jack J. Dongarra, Jeremy Du Croz, Anne Greenbaum, Sven J. Hammarling, Alan McKenney,
and Danny C. Sorensen. LAPACK User’s Guide. Society for Industrial and Applied Mathematics,
Philadelphia, Third edition, 1999.

[2] S. Tomov, J. Dongarra, and M. Baboulin. Towards dense linear algebra for hybrid
gpu accelerated manycore systems. Parellel Comput. Syst. Appl., 36(5-6):232–240, 2010.
http://dx.doi.org/10.1016/j.parco.2009.12.005, DOI: 10.1016/j.parco.2009.12.005.

[3] Reference BLAS implementation. Website: http://www.netlib.org/blas/. Accessed on Feb 15,
2016.

15

Programming with OpenMP4 for Exascale Investigations Dongarra, Haidar, Hernandez, Tomov, Gorentla Venkata

[4] Philip J. Mucci, Shirley Browne, Christine Deane, and George Ho. Papi: A portable interface to
hardware performance counters. In In Proceedings of the Department of Defense HPCMP Users
Group Conference, pages 7–10, 1999.

[5] M Lopez, V Larrea, W Joubert, O Hernandez, A Haidar, S Tomov, and J. Dongarra. Towards
achieving performance portability using directives for accelerators. In The International Confer-
ence for High Performance Computing, Networking, Storage and Analysis (SC’16), Third Work-
shop on Accelerator Programming Using Directives (WACCPD), Salt Lake City, Utah, 11-2016
2016. Innovative Computing Laboratory, University of Tennessee, Innovative Computing Labora-
tory, University of Tennessee.

[6] Rajib Nath, Stanimire Tomov, and Jack Dongarra. An improved magma gemm for fermi graphics
processing units. Int. J. High Perform. Comput. Appl., 24(4):511–515, November 2010.

[7] M. Graham Lopez, Verónica Larrea, Wayne Joubert, Oscar Hernandez, Azzam Haidar, Stanimire
Tomov, and Jack Dongarra. Evaluation of directive-based performance portable programming
models. International Journal of High Performance Computing and Networking (IJHPCN), (In
Press), 2017 2017.

[8] Maksims Abalenkovs, Ahmad Abdelfattah, Jack Dongarra, Mark Gates, Azzam Haidar, Jakub
Kurzak, Piotr Luszczek, Stanimire Tomov, Ichitaro Yamazaki, and Asim YarKhan. Parallel pro-
gramming models for dense linear algebra on heterogeneous systems. Supercomputing Frontiers
and Innovations, 2(4), 10-2015 2015.

[9] Azzam Haidar, Chongxiao Cao, Asim Yarkhan, Piotr Luszczek, Stanimire Tomov, Khairul Kabir,
and Jack Dongarra. Unified Development for Mixed Multi-GPU and Multi-coprocessor Environ-
ments Using a Lightweight Runtime Environment. In Proceedings of the 2014 IEEE 28th Interna-
tional Parallel and Distributed Processing Symposium, IPDPS ’14, pages 491–500, Washington,
DC, USA, 2014. IEEE Computer Society.

[10] Azzam Haidar, Asim YarKhan, Chongxiao Cao, Piotr Luszczek, Stanimire Tomov, and Jack Don-
garra. Flexible linear algebra development and scheduling with cholesky factorization. In 17th
IEEE International Conference on High Performance Computing and Communications, Newark,
NJ, 08-2015 2015.

[11] Azzam Haidar, Stanimire Tomov, Konstantin Arturov, Murat Guney, Shane Story, and Jack Don-
garra. LU, QR, and Cholesky Factorizations: Programming Model, Performance Analysis and
Optimization Techniques for the Intel Knights Landing Xeon Phi. In IEEE High Performance
Extreme Computing Conference (HPEC’16), Waltham, MA, 09-2016 2016. IEEE, IEEE.

[12] M. G. Venkata, F. Aderholdt, and Z. Parchman. Sharp: Towards programming extreme-scale sys-
tems with hierarchical heterogeneous memory. In 2017 46th International Conference on Parallel
Processing Workshops (ICPPW), pages 145–154, Aug 2017.

[13] Z. W. Parchman, F. Aderholdt, and M. G. Venkata. Sharp hash: A high-performing distributed
hash for extreme-scale systems. In 2017 IEEE International Conference on Cluster Computing
(CLUSTER), pages 647–648, Sept 2017.

16

	Introduction
	Study, analysis, and benchmarks
	Directives-based programming model
	OpenMP and OpenACC
	PAPI-based analysis
	BLAS benchmarks
	daxpy
	dgemv
	dgemm

	Cholesky factorization
	Reference implementation
	Blocked implementation
	Blocked implementation with tasks

	Framework design
	OpenMP 4.5 tasking
	Programming Multi-way Heterogeneous Resources
	Framework abstractions

	Cholesky factorization prototype
	Performance Results
	Cholesky factorization across architectures
	Portability of Level-1 and Level-2 BLAS using OpenMP
	Cholesky factorization using OpenMP tasking

	Conclusions and future directions
	References

