PAPI (Performance Application Programming Interface) provides a consistent interface (and methodology) for hardware performance counters, found across a compute system: i.e., CPUs, GPUs, on- and off-chip memory, interconnects, I/O system, file system, energy/power, etc. PAPI enables software engineers to see, in near real time, the relationship between software performance and hardware events across the entire compute system. FIND OUT MORE AT http://icl.utk.edu/papi

PAPI (Performance Application Programming Interface)

Standard Features
- Standardized Performance Metrics
- Easy Access to Platform-Specific Metrics
- Multiplexed Event Measurement
- Dispatch on Overflow
- Overflow & Profiling on Multiple Simultaneous Events
- Bindings for C, Fortran and Matlab
- User Definable Metrics derived from Platform-Specific Metrics
- Support for Virtual Computing Environments
- Performance counter monitoring at task granularity for dataflow runtime PaRSEC

Supported Architectures
- AMD X86
- ARM Cortex A7, A8, A9, A15, X-Gene (ARM64), Raspberry Pi
- CRAY Gemini and Aries interconnects | RAPL power
- IBM Blue Gene Series, Q: 5D-Torus, I/O system, EMON power on BG/Q | Power Series
- Infiniband
- Intel Nehalem, Westmere, Sandy Bridge, Ivy Bridge, Haswell, Haswell-EP, Broadwell, Skylake(-X), Kaby Lake, Knights Corner, Knights Landing | RAPL; power capping, Power on Xeon Phi
- Lustre
- NVIDIA Tesla, Kepler, NVML | CUDA support for multiple GPUs, PC Sampling
- Virtual Environment VMWare, KVM

Performance Analysis Tools
- Vampir
- TAU
- HPCView

FutureGrid
FutureGrid provided resources for testing and development of PAPI-V

R&D100 Winner

Innovative Computing Laboratory

The University of Tennessee

Center for Information Technology Research

SPONSORED BY
- U.S. Department of Defense
- U.S. Department of Energy
- ECP
- National Science Foundation

WITH SUPPORT FROM
- IN COLLABORATION WITH
- INNOVATIVE COMPUTING LABORATORY
- THE UNIVERSITY OF TENNESSEE KNOXVILLE

MORE
- HPCToolkit
- OpenSpeedShop
- PaRSEC
- PerfSuite
- Scalasca
- SCORE-P
PAPI provides tool designers and application engineers with a consistent interface and methodology for the use of low-level performance counter hardware found across the entire compute system (i.e. CPUs, GPUs, on/off-chip memory, interconnects, I/O system, energy/power, etc.). PAPI enables users to see, in near real time, the relationships between software performance and hardware events across the entire compute system.

Exa-PAPI builds on the latest PAPI project and we will extend it with:

• Performance counter monitoring capabilities for new and advanced ECP hardware, and also software technologies;
• Fine-grained power management support;
• Integration capabilities for exascale paradigms, such as task-based runtime systems that support dataflow programming models;
• “Software-defined Events” that originate from the ECP software stack and are currently treated as black boxes (i.e., communication libraries, math libraries, task-based runtime systems, etc.).

The objective is to enable monitoring of both types of performance events—hardware- and software-related events—in a uniform way, through one consistent PAPI interface. That implies, 3rd-party tools and application developers have to handle only a single hook to PAPI in order to access all hardware performance counters in a system, including the new software-defined events.

The Exascale Computing Project (ECP) was established with the goals of maximizing the benefits of high-performance computing (HPC) for the United States and accelerating the development of a capable exascale computing ecosystem. Exascale refers to computing systems at least 50 times faster than the nation’s most powerful supercomputers in use today.

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration.
